Molecular Bionics (Seebeck)
Publications
72 found
Show per page
Peng, J. (2025) Bionic alkyltransferases for biocatalysis.
Peng, J. (2025) Bionic alkyltransferases for biocatalysis.
Nalivaiko, Egor Y. and Seebeck, Florian P. (2024) ‘A Rhodanese‐Like Enzyme that Catalyzes Desulfination of Ergothioneine Sulfinic Acid’, ChemBioChem, 25(9). Available at: https://doi.org/10.1002/cbic.202400131.
Nalivaiko, Egor Y. and Seebeck, Florian P. (2024) ‘A Rhodanese‐Like Enzyme that Catalyzes Desulfination of Ergothioneine Sulfinic Acid’, ChemBioChem, 25(9). Available at: https://doi.org/10.1002/cbic.202400131.
Vasseur, Camille M., Karunasegaram, Dishani and Seebeck, Florian P. (2024) ‘Structure and Substrate Specificity of S -Methyl Thiourocanate Hydratase’, ACS Chemical Biology, 19(3), pp. 718–724. Available at: https://doi.org/10.1021/acschembio.3c00745.
Vasseur, Camille M., Karunasegaram, Dishani and Seebeck, Florian P. (2024) ‘Structure and Substrate Specificity of S -Methyl Thiourocanate Hydratase’, ACS Chemical Biology, 19(3), pp. 718–724. Available at: https://doi.org/10.1021/acschembio.3c00745.
Nalivaiko, Egor Y., Vasseur, Camille M. and Seebeck, Florian P. (2024) ‘Enzyme‐Catalyzed Oxidative Degradation of Ergothioneine’, Angewandte Chemie International Edition, 63(8). Available at: https://doi.org/10.1002/anie.202318445.
Nalivaiko, Egor Y., Vasseur, Camille M. and Seebeck, Florian P. (2024) ‘Enzyme‐Catalyzed Oxidative Degradation of Ergothioneine’, Angewandte Chemie International Edition, 63(8). Available at: https://doi.org/10.1002/anie.202318445.
Peng, Jiaming et al. (2024) ‘Enzymatic Fluoromethylation as a Tool for ATP‐Independent Ligation’, Angewandte Chemie, 136(1). Available at: https://doi.org/10.1002/ange.202312104.
Peng, Jiaming et al. (2024) ‘Enzymatic Fluoromethylation as a Tool for ATP‐Independent Ligation’, Angewandte Chemie, 136(1). Available at: https://doi.org/10.1002/ange.202312104.
Carrillo, M. (2024) Polymer fixed-targets for time-resolved serial protein crystallography at XFELs and synchrotrons.
Carrillo, M. (2024) Polymer fixed-targets for time-resolved serial protein crystallography at XFELs and synchrotrons.
F. M . de Carvalho, C. (2024) Isotopic fractionation of molecular oxygen during enzymatic O2-consuming processes in aquatic environments.
F. M . de Carvalho, C. (2024) Isotopic fractionation of molecular oxygen during enzymatic O2-consuming processes in aquatic environments.
Wen, X. (2024) Synthetic reagents for in vitro enzymatic and protein alkylation.
Wen, X. (2024) Synthetic reagents for in vitro enzymatic and protein alkylation.
Wen, Xiaojin, Leopold, Viviane and Seebeck, Florian P. (2024) ‘Enzymatic synthesis of S -adenosyl- l -homocysteine and its nucleoside analogs from racemic homocysteine thiolactone’, Chemical Science, 15(38), pp. 15900–15906. Available at: https://doi.org/10.1039/d4sc03801k.
Wen, Xiaojin, Leopold, Viviane and Seebeck, Florian P. (2024) ‘Enzymatic synthesis of S -adenosyl- l -homocysteine and its nucleoside analogs from racemic homocysteine thiolactone’, Chemical Science, 15(38), pp. 15900–15906. Available at: https://doi.org/10.1039/d4sc03801k.
Peng, Jiaming et al. (2023) ‘Enzymatic Fluoromethylation as a Tool for ATP‐Independent Ligation’, Angewandte Chemie International Edition. 13.11.2023, 63(1). Available at: https://doi.org/10.1002/anie.202312104.
Peng, Jiaming et al. (2023) ‘Enzymatic Fluoromethylation as a Tool for ATP‐Independent Ligation’, Angewandte Chemie International Edition. 13.11.2023, 63(1). Available at: https://doi.org/10.1002/anie.202312104.
Reed, John H. and Seebeck, Florian P. (2023) ‘Reagent Engineering for Group Transfer Biocatalysis’, Angewandte Chemie International Edition. 09.09.2023, 63(7). Available at: https://doi.org/10.1002/anie.202311159.
Reed, John H. and Seebeck, Florian P. (2023) ‘Reagent Engineering for Group Transfer Biocatalysis’, Angewandte Chemie International Edition. 09.09.2023, 63(7). Available at: https://doi.org/10.1002/anie.202311159.
Gericke, Lukas et al. (2023) ‘Biomimetic S-Adenosylmethionine Regeneration Starting from Multiple Byproducts Enables Biocatalytic Alkylation with Radical SAM Enzymes’, ChemBioChem, 24(9). Available at: https://doi.org/10.1002/cbic.202300133.
Gericke, Lukas et al. (2023) ‘Biomimetic S-Adenosylmethionine Regeneration Starting from Multiple Byproducts Enables Biocatalytic Alkylation with Radical SAM Enzymes’, ChemBioChem, 24(9). Available at: https://doi.org/10.1002/cbic.202300133.
Hartmann, Lea et al. (2023) ‘Isotope-labeled ergothioneine clarifies the mechanism of reaction with singlet oxygen’, Free Radical Biology and Medicine. 02.02.2023, 198, pp. 12–26. Available at: https://doi.org/10.1016/j.freeradbiomed.2023.01.023.
Hartmann, Lea et al. (2023) ‘Isotope-labeled ergothioneine clarifies the mechanism of reaction with singlet oxygen’, Free Radical Biology and Medicine. 02.02.2023, 198, pp. 12–26. Available at: https://doi.org/10.1016/j.freeradbiomed.2023.01.023.
Beliaeva, M. (2022) The enzymatic landscape of ergothioneine degradation.
Beliaeva, M. (2022) The enzymatic landscape of ergothioneine degradation.
Beliaeva, Mariia A., Atac, Reyhan and Seebeck, Florian P. (2022) ‘Bacterial Degradation of Nτ-Methylhistidine’, ACS Chemical Biology, 17(7), pp. 1989–1995. Available at: https://doi.org/10.1021/acschembio.2c00437.
Beliaeva, Mariia A., Atac, Reyhan and Seebeck, Florian P. (2022) ‘Bacterial Degradation of Nτ-Methylhistidine’, ACS Chemical Biology, 17(7), pp. 1989–1995. Available at: https://doi.org/10.1021/acschembio.2c00437.
Beliaeva, Mariia A. and Seebeck, Florian P. (2022) ‘Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from Caldithrix abyssi’, JACS Au, 2(9), pp. 2098–2107. Available at: https://doi.org/10.1021/jacsau.2c00365.
Beliaeva, Mariia A. and Seebeck, Florian P. (2022) ‘Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from Caldithrix abyssi’, JACS Au, 2(9), pp. 2098–2107. Available at: https://doi.org/10.1021/jacsau.2c00365.
Igareta, N.V. (2022) Expanding the secondary coordination sphere of streptavidin-based artificial metalloenzymes and their characterization
.
Igareta, N.V. (2022) Expanding the secondary coordination sphere of streptavidin-based artificial metalloenzymes and their characterization
.
Leisinger, F. (2022) How structure guides function: ergothioneine anabolism and catabolism formylglycine generating enzyme methyl transferases.
Leisinger, F. (2022) How structure guides function: ergothioneine anabolism and catabolism formylglycine generating enzyme methyl transferases.
Wen, Xiaojin et al. (2022) ‘Synthetic Reagents for Enzyme-Catalyzed Methylation’, Angewandte Chemie International Edition, 61(41), p. e202208746. Available at: https://doi.org/10.1002/anie.202208746.
Wen, Xiaojin et al. (2022) ‘Synthetic Reagents for Enzyme-Catalyzed Methylation’, Angewandte Chemie International Edition, 61(41), p. e202208746. Available at: https://doi.org/10.1002/anie.202208746.
Beliaeva, Mariia A. et al. (2021) ‘In Vitro Production of Ergothioneine Isotopologues’, Angewandte Chemie International Edition, 60(10), pp. 5209–5212. Available at: https://doi.org/10.1002/anie.202011096.
Beliaeva, Mariia A. et al. (2021) ‘In Vitro Production of Ergothioneine Isotopologues’, Angewandte Chemie International Edition, 60(10), pp. 5209–5212. Available at: https://doi.org/10.1002/anie.202011096.
Beliaeva, Mariia A., Leisinger, Florian and Seebeck, Florian P. (2021) ‘In Vitro Reconstitution of a Five-Step Pathway for Bacterial Ergothioneine Catabolism’, ACS Chemical Biology, 16(2), pp. 397–403. Available at: https://doi.org/10.1021/acschembio.0c00968.
Beliaeva, Mariia A., Leisinger, Florian and Seebeck, Florian P. (2021) ‘In Vitro Reconstitution of a Five-Step Pathway for Bacterial Ergothioneine Catabolism’, ACS Chemical Biology, 16(2), pp. 397–403. Available at: https://doi.org/10.1021/acschembio.0c00968.
Burn, R. (2021) Enzymatic strategies for carbon-sulfur bond formation in ergothioneine biosynthesis.
Burn, R. (2021) Enzymatic strategies for carbon-sulfur bond formation in ergothioneine biosynthesis.
Duncombe, Todd et al. (2021) ‘UV-Vis Spectra-Activated Droplet Sorting for Label-Free Chemical Identification and Collection of Drople’, Analytical Chemistry, 93(38), pp. 13008–13013. Available at: https://doi.org/10.1021/acs.analchem.1c02822.
Duncombe, Todd et al. (2021) ‘UV-Vis Spectra-Activated Droplet Sorting for Label-Free Chemical Identification and Collection of Drople’, Analytical Chemistry, 93(38), pp. 13008–13013. Available at: https://doi.org/10.1021/acs.analchem.1c02822.
Leisinger, Florian, Miarzlou , Dzmitry A. and Seebeck, Florian P. (2021) ‘Non-Coordinative Binding of O2 at the Active Center of a Copper-Dependent Enzyme’, Angewandte Chemie International Edition, 60(11), pp. 6154–6159. Available at: https://doi.org/10.1002/anie.202014981.
Leisinger, Florian, Miarzlou , Dzmitry A. and Seebeck, Florian P. (2021) ‘Non-Coordinative Binding of O2 at the Active Center of a Copper-Dependent Enzyme’, Angewandte Chemie International Edition, 60(11), pp. 6154–6159. Available at: https://doi.org/10.1002/anie.202014981.
Miarzlou, D. (2021) Insights into the mechanism and structure of formylglycine generating enzyme.
Miarzlou, D. (2021) Insights into the mechanism and structure of formylglycine generating enzyme.
Peng, Jiaming et al. (2021) ‘Fluorinated S-Adenosylmethionine as a Reagent for Enzyme-Catalyzed Fluoromethylation’, Angewandte Chemie International Edition, 60(52), pp. 27178–27183. Available at: https://doi.org/10.1002/anie.202108802.
Peng, Jiaming et al. (2021) ‘Fluorinated S-Adenosylmethionine as a Reagent for Enzyme-Catalyzed Fluoromethylation’, Angewandte Chemie International Edition, 60(52), pp. 27178–27183. Available at: https://doi.org/10.1002/anie.202108802.
Schneider, Peter et al. (2021) ‘Biocatalytic C3-Indole Methylation-A Useful Tool for the Natural-Product-Inspired Stereoselective Synthesis of Pyrroloindoles’, Angewandte Chemie International Edition, 60(43), pp. 23412–23418. Available at: https://doi.org/10.1002/anie.202107619.
Schneider, Peter et al. (2021) ‘Biocatalytic C3-Indole Methylation-A Useful Tool for the Natural-Product-Inspired Stereoselective Synthesis of Pyrroloindoles’, Angewandte Chemie International Edition, 60(43), pp. 23412–23418. Available at: https://doi.org/10.1002/anie.202107619.
Vallapurackal, J. (2021) Development of a Microfluidics-Based Screening Assay for the High-Throughput Directed Evolution of Artificial Metalloenzymes
.
Vallapurackal, J. (2021) Development of a Microfluidics-Based Screening Assay for the High-Throughput Directed Evolution of Artificial Metalloenzymes
.
Flückger, Sebastian, Igareta, Nico V. and Seebeck, Florian P. (2020) ‘Convergent Evolution of Fungal Cysteine Dioxygenases’, ChemBioChem, 21(21), pp. 3082–3086. Available at: https://doi.org/10.1002/cbic.202000317.
Flückger, Sebastian, Igareta, Nico V. and Seebeck, Florian P. (2020) ‘Convergent Evolution of Fungal Cysteine Dioxygenases’, ChemBioChem, 21(21), pp. 3082–3086. Available at: https://doi.org/10.1002/cbic.202000317.
Goncharenko, Kristina V. et al. (2020) ‘Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron-Dependent Sulfoxide Synthases’, Chemistry - A European Journal, 26(6), pp. 1328–1334. Available at: https://doi.org/10.1002/chem.201903898.
Goncharenko, Kristina V. et al. (2020) ‘Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron-Dependent Sulfoxide Synthases’, Chemistry - A European Journal, 26(6), pp. 1328–1334. Available at: https://doi.org/10.1002/chem.201903898.
Liao, Cangsong and Seebeck, Florian P. (2020) ‘Asymmetric β-Methylation of l- and d-α-Amino Acids by a Self-Contained Enzyme Cascade’, Angewandte Chemie International Edition, 59(18), pp. 7184–7187. Available at: https://doi.org/10.1002/anie.201916025.
Liao, Cangsong and Seebeck, Florian P. (2020) ‘Asymmetric β-Methylation of l- and d-α-Amino Acids by a Self-Contained Enzyme Cascade’, Angewandte Chemie International Edition, 59(18), pp. 7184–7187. Available at: https://doi.org/10.1002/anie.201916025.
Lim, David, Wen, Xiaojin and Seebeck, Florian P. (2020) ‘Selenoimidazolium Salts as Supramolecular Reagents for Protein Alkylation’, Chembiochem : a European journal of chemical biology, 21(24), pp. 3515–3520. Available at: https://doi.org/10.1002/cbic.202000557.
Lim, David, Wen, Xiaojin and Seebeck, Florian P. (2020) ‘Selenoimidazolium Salts as Supramolecular Reagents for Protein Alkylation’, Chembiochem : a European journal of chemical biology, 21(24), pp. 3515–3520. Available at: https://doi.org/10.1002/cbic.202000557.
Maurer, A. (2020) The Mechanism of Enzyme-catalyzed Ergothioneine Degradation.
Maurer, A. (2020) The Mechanism of Enzyme-catalyzed Ergothioneine Degradation.
Maurer, Alice and Seebeck, Florian P. (2020) ‘Reexamination of the Ergothioneine Biosynthetic Methyltransferase EgtD from Mycobacterium tuberculosis as a Protein Kinase Substrate’, ChemBioChem, 21(20), pp. 2908–2911. Available at: https://doi.org/10.1002/cbic.202000232.
Maurer, Alice and Seebeck, Florian P. (2020) ‘Reexamination of the Ergothioneine Biosynthetic Methyltransferase EgtD from Mycobacterium tuberculosis as a Protein Kinase Substrate’, ChemBioChem, 21(20), pp. 2908–2911. Available at: https://doi.org/10.1002/cbic.202000232.
Milito, Alfonsina et al. (2020) ‘First evidence of ovothiol biosynthesis in marine diatoms’, Free radical biology and medicine, 152, pp. 680–688. Available at: https://doi.org/10.1016/j.freeradbiomed.2020.01.010.
Milito, Alfonsina et al. (2020) ‘First evidence of ovothiol biosynthesis in marine diatoms’, Free radical biology and medicine, 152, pp. 680–688. Available at: https://doi.org/10.1016/j.freeradbiomed.2020.01.010.
Stampfli, Anja R., Blankenfeldt, Wulf and Seebeck, Florian P. (2020) ‘Structural basis of ergothioneine biosynthesis’, Current Opinion in Structural Biology, 65, pp. 1–8. Available at: https://doi.org/10.1016/j.sbi.2020.04.002.
Stampfli, Anja R., Blankenfeldt, Wulf and Seebeck, Florian P. (2020) ‘Structural basis of ergothioneine biosynthesis’, Current Opinion in Structural Biology, 65, pp. 1–8. Available at: https://doi.org/10.1016/j.sbi.2020.04.002.
Stampfli, Anja R. and Seebeck, Florian P. (2020) ‘The catalytic mechanism of sulfoxide synthases’, Current Opinion in Chemical Biology, 59, pp. 111–118. Available at: https://doi.org/10.1016/j.cbpa.2020.06.007.
Stampfli, Anja R. and Seebeck, Florian P. (2020) ‘The catalytic mechanism of sulfoxide synthases’, Current Opinion in Chemical Biology, 59, pp. 111–118. Available at: https://doi.org/10.1016/j.cbpa.2020.06.007.
Di Girolamo, S. (2019) First characterization of a class F sortase and establishment of a microreactor-based assay for its directed evolution. Available at: https://doi.org/10.5451/unibas-007215325.
Di Girolamo, S. (2019) First characterization of a class F sortase and establishment of a microreactor-based assay for its directed evolution. Available at: https://doi.org/10.5451/unibas-007215325.
Engi, P. (2019) Chemical probes for mechanistic enzymology. Available at: https://doi.org/10.5451/unibas-007116162.
Engi, P. (2019) Chemical probes for mechanistic enzymology. Available at: https://doi.org/10.5451/unibas-007116162.
Leisinger, Florian et al. (2019) ‘Structural and Mechanistic Basis for Anaerobic Ergothioneine Biosynthesis’, Journal of the American Chemical Society, 141(17), pp. 6906–6914. Available at: https://doi.org/10.1021/jacs.8b12596.
Leisinger, Florian et al. (2019) ‘Structural and Mechanistic Basis for Anaerobic Ergothioneine Biosynthesis’, Journal of the American Chemical Society, 141(17), pp. 6906–6914. Available at: https://doi.org/10.1021/jacs.8b12596.
Liao, Cangsong and Seebeck, Florian P. (2019) ‘S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions’, Nature Catalysis, 2(8), pp. 696–701. Available at: https://doi.org/10.1038/s41929-019-0300-0.
Liao, Cangsong and Seebeck, Florian P. (2019) ‘S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions’, Nature Catalysis, 2(8), pp. 696–701. Available at: https://doi.org/10.1038/s41929-019-0300-0.
Liao, Cangsong and Seebeck, Florian Peter (2019) ‘In vitro reconstitution of bacterial DMSP biosynthesis’, Angew. Chemie Int. Ed, 58(11), pp. 3553–3556. Available at: https://doi.org/10.1002/anie.201814662.
Liao, Cangsong and Seebeck, Florian Peter (2019) ‘In vitro reconstitution of bacterial DMSP biosynthesis’, Angew. Chemie Int. Ed, 58(11), pp. 3553–3556. Available at: https://doi.org/10.1002/anie.201814662.
Lim, David, Gründemann, Dirk and Seebeck, Florian P. (2019) ‘Total Synthesis and Functional Characterization of Selenoneine’, Angewandte Chemie International Edition, 58(42), pp. 15026–15030. Available at: https://doi.org/10.1002/anie.201908967.
Lim, David, Gründemann, Dirk and Seebeck, Florian P. (2019) ‘Total Synthesis and Functional Characterization of Selenoneine’, Angewandte Chemie International Edition, 58(42), pp. 15026–15030. Available at: https://doi.org/10.1002/anie.201908967.
Maurer, Alice et al. (2019) ‘Structure and Mechanism of Ergothionase from Treponema denticola’, Chemistry - A European Journal, 25(44), pp. 10298–10303. Available at: https://doi.org/10.1002/chem.201901866.
Maurer, Alice et al. (2019) ‘Structure and Mechanism of Ergothionase from Treponema denticola’, Chemistry - A European Journal, 25(44), pp. 10298–10303. Available at: https://doi.org/10.1002/chem.201901866.
Miarzlou, Dzmitry A. et al. (2019) ‘Structure of formylglycine-generating enzyme in complex with copper and a substrate reveals an acidic pocket for binding and activation of molecular oxygen’, Chemical Science, 10(29), pp. 7049–7058. Available at: https://doi.org/10.1039/c9sc01723b.
Miarzlou, Dzmitry A. et al. (2019) ‘Structure of formylglycine-generating enzyme in complex with copper and a substrate reveals an acidic pocket for binding and activation of molecular oxygen’, Chemical Science, 10(29), pp. 7049–7058. Available at: https://doi.org/10.1039/c9sc01723b.
Stampfli, A.R. (2019) The Diversity of the Iron-dependent Sulfoxide Synthases in Ergothioneine Biosynthesis.
Stampfli, A.R. (2019) The Diversity of the Iron-dependent Sulfoxide Synthases in Ergothioneine Biosynthesis.
Stampfli, Anja R. et al. (2019) ‘An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum’, Journal of American Chemical Society, 141(13), pp. 5275–5285. Available at: https://doi.org/10.1021/jacs.8b13023.
Stampfli, Anja R. et al. (2019) ‘An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum’, Journal of American Chemical Society, 141(13), pp. 5275–5285. Available at: https://doi.org/10.1021/jacs.8b13023.
Castellano, Immacolata and Seebeck, Florian P. (2018) ‘On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential’, Natural Product Reports, 35(12), pp. 1241–1250. Available at: https://doi.org/10.1039/c8np00045j.
Castellano, Immacolata and Seebeck, Florian P. (2018) ‘On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential’, Natural Product Reports, 35(12), pp. 1241–1250. Available at: https://doi.org/10.1039/c8np00045j.
Flückiger, S. (2018) Mechanistic studies of sulfur-carbon bond formation by metal-dependent enzymes. Available at: https://doi.org/10.5451/unibas-007178301.
Flückiger, S. (2018) Mechanistic studies of sulfur-carbon bond formation by metal-dependent enzymes. Available at: https://doi.org/10.5451/unibas-007178301.
Gamage, Akshamal M. et al. (2018) ‘The proteobacterial species Burkholderia pseudomallei produces ergothioneine, which enhances virulence in mammalian infection’, FASEB Journal, 32(12), pp. 6395–6409. Available at: https://doi.org/10.1096/fj.201800716.
Gamage, Akshamal M. et al. (2018) ‘The proteobacterial species Burkholderia pseudomallei produces ergothioneine, which enhances virulence in mammalian infection’, FASEB Journal, 32(12), pp. 6395–6409. Available at: https://doi.org/10.1096/fj.201800716.
Misson, Laëtitia et al. (2018) ‘Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD’, ACS Chemical Biology, 13(5), pp. 1333–1342. Available at: https://doi.org/10.1021/acschembio.8b00127.
Misson, Laëtitia et al. (2018) ‘Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD’, ACS Chemical Biology, 13(5), pp. 1333–1342. Available at: https://doi.org/10.1021/acschembio.8b00127.
Burn, Reto et al. (2017) ‘Anaerobic Origin of Ergothioneine’, Angewandte Chemie International Edition, 56(41), pp. 12508–12511. Available at: https://doi.org/10.1002/anie.201705932.
Burn, Reto et al. (2017) ‘Anaerobic Origin of Ergothioneine’, Angewandte Chemie International Edition, 56(41), pp. 12508–12511. Available at: https://doi.org/10.1002/anie.201705932.
Faponle, Abayomi S., Seebeck, Florian P. and de Visser, Sam P. (2017) ‘Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme’, Journal of the American Chemical Society, 139(27), pp. 9259–9270. Available at: https://doi.org/10.1021/jacs.7b04251.
Faponle, Abayomi S., Seebeck, Florian P. and de Visser, Sam P. (2017) ‘Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme’, Journal of the American Chemical Society, 139(27), pp. 9259–9270. Available at: https://doi.org/10.1021/jacs.7b04251.
Goncharenko, K. (2017) The catalytic mechanism of the iron-dependent sulfoxide synthase EgtB. Available at: https://doi.org/10.5451/unibas-007085306.
Goncharenko, K. (2017) The catalytic mechanism of the iron-dependent sulfoxide synthase EgtB. Available at: https://doi.org/10.5451/unibas-007085306.
Knop, M. (2017) Identification and characterization of a novel copper dependent enzyme. Available at: https://doi.org/10.5451/unibas-006736737.
Knop, M. (2017) Identification and characterization of a novel copper dependent enzyme. Available at: https://doi.org/10.5451/unibas-006736737.
Knop, Matthias et al. (2017) ‘Copper is a Cofactor of the Formylglycine-Generating Enzyme’, ChemBioChem, 18(2), pp. 161–165. Available at: https://doi.org/10.1002/cbic.201600359.
Knop, Matthias et al. (2017) ‘Copper is a Cofactor of the Formylglycine-Generating Enzyme’, ChemBioChem, 18(2), pp. 161–165. Available at: https://doi.org/10.1002/cbic.201600359.
Knop, Matthias, Lemnaru, Roxana and Seebeck, Florian P. (2017) ‘Mutation of Conserved Residues Increases in Vitro Activity of the Formylglycine-Generating Enzyme.’, ChemBioChem, 18(17), pp. 1755–1761. Available at: https://doi.org/10.1002/cbic.201700174.
Knop, Matthias, Lemnaru, Roxana and Seebeck, Florian P. (2017) ‘Mutation of Conserved Residues Increases in Vitro Activity of the Formylglycine-Generating Enzyme.’, ChemBioChem, 18(17), pp. 1755–1761. Available at: https://doi.org/10.1002/cbic.201700174.
Liao, Cangsong and Seebeck, Florian P. (2017) ‘Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria’, ChemBioChem, 18(21), pp. 2115–2118. Available at: https://doi.org/10.1002/cbic.201700354.
Liao, Cangsong and Seebeck, Florian P. (2017) ‘Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria’, ChemBioChem, 18(21), pp. 2115–2118. Available at: https://doi.org/10.1002/cbic.201700354.
Meury, Marcel, Knop, Matthias and Seebeck, Florian P. (2017) ‘Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme’, Angewandte Chemie International Edition, 56(28), pp. 8115–8119. Available at: https://doi.org/10.1002/anie.201702901.
Meury, Marcel, Knop, Matthias and Seebeck, Florian P. (2017) ‘Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme’, Angewandte Chemie International Edition, 56(28), pp. 8115–8119. Available at: https://doi.org/10.1002/anie.201702901.
Goncharenko, Kristina V and Seebeck, Florian P (2016) ‘Conversion of a non-heme iron-dependent sulfoxide synthase into a thiol dioxygenase by a single point mutation.’, Chemical Communications, 52(9), pp. 1945–8. Available at: https://doi.org/10.1039/c5cc07772a.
Goncharenko, Kristina V and Seebeck, Florian P (2016) ‘Conversion of a non-heme iron-dependent sulfoxide synthase into a thiol dioxygenase by a single point mutation.’, Chemical Communications, 52(9), pp. 1945–8. Available at: https://doi.org/10.1039/c5cc07772a.
Lemnaru, Roxana (2016) A chemoenzymatic strategy for protein-nanocellulose conjugates. Dissertation. Universität Basel.
Lemnaru, Roxana (2016) A chemoenzymatic strategy for protein-nanocellulose conjugates. Dissertation. Universität Basel.
Lemnaru, R. (2016) A chemoenzymatic strategy for protein-nanocellulose conjugates. Available at: https://doi.org/10.5451/unibas-006856826.
Lemnaru, R. (2016) A chemoenzymatic strategy for protein-nanocellulose conjugates. Available at: https://doi.org/10.5451/unibas-006856826.
Misson, Laetitia (2016) Insights into the mechansims and regluation of EgtD, a novel histidine methyltransferase from ergothioneine biosynthesis. Dissertation. Universität Basel.
Misson, Laetitia (2016) Insights into the mechansims and regluation of EgtD, a novel histidine methyltransferase from ergothioneine biosynthesis. Dissertation. Universität Basel.
Misson, L. (2016) Insights into the mechanism and regulation of EgtD, a novel histidine methyltransferase from ergothioneine biosynthesis. Available at: https://doi.org/10.5451/unibas-006683670.
Misson, L. (2016) Insights into the mechanism and regulation of EgtD, a novel histidine methyltransferase from ergothioneine biosynthesis. Available at: https://doi.org/10.5451/unibas-006683670.
Goncharenko, Kristina V. et al. (2015) ‘Structure of the Sulfoxide Synthase EgtB from the Ergothioneine Biosynthetic Pathway’, Angewandte Chemie International Edition, 54(9), pp. 2821–4. Available at: https://doi.org/10.1002/anie.201410045.
Goncharenko, Kristina V. et al. (2015) ‘Structure of the Sulfoxide Synthase EgtB from the Ergothioneine Biosynthetic Pathway’, Angewandte Chemie International Edition, 54(9), pp. 2821–4. Available at: https://doi.org/10.1002/anie.201410045.
Knop, Matthias et al. (2015) ‘In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I)’, ChemBioChem, 16(15), pp. 2147–2150. Available at: https://doi.org/10.1002/cbic.201500322.
Knop, Matthias et al. (2015) ‘In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I)’, ChemBioChem, 16(15), pp. 2147–2150. Available at: https://doi.org/10.1002/cbic.201500322.
Vit, Allegra et al. (2015) ‘Structure of the Ergothioneine-Biosynthesis Amidohydrolase EgtC’, ChemBioChem, 16(10), pp. 1490–6. Available at: https://doi.org/10.1002/cbic.201500168.
Vit, Allegra et al. (2015) ‘Structure of the Ergothioneine-Biosynthesis Amidohydrolase EgtC’, ChemBioChem, 16(10), pp. 1490–6. Available at: https://doi.org/10.1002/cbic.201500168.
Vit, Allegra et al. (2015) ‘Ergothioneine Biosynthetic Methyltransferase EgtD Reveals the Structural Basis of Aromatic Amino Acid Betaine Biosynthesis’, ChemBioChem, 16(1), pp. 119–25. Available at: https://doi.org/10.1002/cbic.201402522.
Vit, Allegra et al. (2015) ‘Ergothioneine Biosynthetic Methyltransferase EgtD Reveals the Structural Basis of Aromatic Amino Acid Betaine Biosynthesis’, ChemBioChem, 16(1), pp. 119–25. Available at: https://doi.org/10.1002/cbic.201402522.
Vit, Allegra et al. (2014) ‘Crystallization and preliminary X-ray analysis of the ergothioneine-biosynthetic methyltransferase EgtD’, Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 70(Pt 5), pp. 676–80. Available at: https://doi.org/10.1107/s2053230x1400805x.
Vit, Allegra et al. (2014) ‘Crystallization and preliminary X-ray analysis of the ergothioneine-biosynthetic methyltransferase EgtD’, Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 70(Pt 5), pp. 676–80. Available at: https://doi.org/10.1107/s2053230x1400805x.
Mashabela, Gabriel T M and Seebeck, Florian P (2013) ‘Substrate specificity of an oxygen dependent sulfoxide synthase in ovothiol biosynthesis’, Chemical Communications, 49(70), pp. 7714–6. Available at: https://doi.org/10.1039/c3cc42594k.
Mashabela, Gabriel T M and Seebeck, Florian P (2013) ‘Substrate specificity of an oxygen dependent sulfoxide synthase in ovothiol biosynthesis’, Chemical Communications, 49(70), pp. 7714–6. Available at: https://doi.org/10.1039/c3cc42594k.
Seebeck, Florian (2013) ‘Thiohistidine biosynthesis’, Chimia, 67(5), pp. 333–336. Available at: https://doi.org/10.2533/chimia.2013.333.
Seebeck, Florian (2013) ‘Thiohistidine biosynthesis’, Chimia, 67(5), pp. 333–336. Available at: https://doi.org/10.2533/chimia.2013.333.
Hofmann, Frank T., Szostak, Jack W. and Seebeck, Florian P. (2012) ‘In vitro selection of functional lantipeptides’, Journal of the American Chemical Society, 134(19), pp. 8038–8041. Available at: https://doi.org/10.1021/ja302082d.
Hofmann, Frank T., Szostak, Jack W. and Seebeck, Florian P. (2012) ‘In vitro selection of functional lantipeptides’, Journal of the American Chemical Society, 134(19), pp. 8038–8041. Available at: https://doi.org/10.1021/ja302082d.