Anorganische Chemie (Wenger)
Publications
177 found
Show per page
Lotter, Dominik et al. (2024) ‘Photoinduced Energy Transfer via an Atropisomeric Molecular Bridge’, Helvetica Chimica Acta. 04.12.2024, p. Online ahead of print. Available at: https://doi.org/10.1002/hlca.202400163.
Lotter, Dominik et al. (2024) ‘Photoinduced Energy Transfer via an Atropisomeric Molecular Bridge’, Helvetica Chimica Acta. 04.12.2024, p. Online ahead of print. Available at: https://doi.org/10.1002/hlca.202400163.
Pfund, B. et al. (2024) ‘Picosecond reactions of excited radical ion super-reductants’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49006-5.
Pfund, B. et al. (2024) ‘Picosecond reactions of excited radical ion super-reductants’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49006-5.
Trippmacher, S. et al. (2024) ‘Ferromagnetically Coupled Chromium(III) Dimer Shows Luminescence and Sensitizes Photon Upconversion’, Chemistry - A European Journal, 30(31). Available at: https://doi.org/10.1002/chem.202400856.
Trippmacher, S. et al. (2024) ‘Ferromagnetically Coupled Chromium(III) Dimer Shows Luminescence and Sensitizes Photon Upconversion’, Chemistry - A European Journal, 30(31). Available at: https://doi.org/10.1002/chem.202400856.
Doeven, E.H. et al. (2024) ‘Electrochemiluminescence of a First-Row d6 Transition Metal Complex’, Angewandte Chemie - International Edition, 63(21). Available at: https://doi.org/10.1002/anie.202319047.
Doeven, E.H. et al. (2024) ‘Electrochemiluminescence of a First-Row d6 Transition Metal Complex’, Angewandte Chemie - International Edition, 63(21). Available at: https://doi.org/10.1002/anie.202319047.
Jin, Tao, Wagner, Dorothee and Wenger, Oliver S. (2024) ‘Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines’, Angewandte Chemie. 27.10.2023, 136(10). Available at: https://doi.org/10.1002/ange.202314475.
Jin, Tao, Wagner, Dorothee and Wenger, Oliver S. (2024) ‘Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines’, Angewandte Chemie. 27.10.2023, 136(10). Available at: https://doi.org/10.1002/ange.202314475.
Wegeberg, Christina et al. (2024) ‘Controlling the Photophysical Properties of a Series of Isostructural d6Complexes Based on Cr(0), Mn(I), and Fe(II)’, Journal of the American Chemical Society, 146(7), pp. 4605–4619. Available at: https://doi.org/10.1021/jacs.3c11580.
Wegeberg, Christina et al. (2024) ‘Controlling the Photophysical Properties of a Series of Isostructural d6Complexes Based on Cr(0), Mn(I), and Fe(II)’, Journal of the American Chemical Society, 146(7), pp. 4605–4619. Available at: https://doi.org/10.1021/jacs.3c11580.
Blom, Steven J. et al. (2024) ‘Redox mediated enhancement and quenching of co-reactant electrochemiluminescence by iridium(III) complexes’, Electrochimica Acta. 14.02.2024, 484. Available at: https://doi.org/10.1016/j.electacta.2024.143957.
Blom, Steven J. et al. (2024) ‘Redox mediated enhancement and quenching of co-reactant electrochemiluminescence by iridium(III) complexes’, Electrochimica Acta. 14.02.2024, 484. Available at: https://doi.org/10.1016/j.electacta.2024.143957.
Bharti, Jaya et al. (2024) ‘Correction to “Visible-Light-Driven CO2 Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways”’, Journal of the American Chemical Society. 28.12.2023, 146(1), p. 1208. Available at: https://doi.org/10.1021/jacs.3c14220.
Bharti, Jaya et al. (2024) ‘Correction to “Visible-Light-Driven CO2 Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways”’, Journal of the American Chemical Society. 28.12.2023, 146(1), p. 1208. Available at: https://doi.org/10.1021/jacs.3c14220.
Franz, J. et al. (2024) ‘Bifurcation of Excited-State Population Leads to Anti-Kasha Luminescence in a Disulfide-Decorated Organometallic Rhenium Photosensitizer’, Journal of the American Chemical Society [Preprint]. Available at: https://doi.org/10.1021/jacs.4c00548.
Franz, J. et al. (2024) ‘Bifurcation of Excited-State Population Leads to Anti-Kasha Luminescence in a Disulfide-Decorated Organometallic Rhenium Photosensitizer’, Journal of the American Chemical Society [Preprint]. Available at: https://doi.org/10.1021/jacs.4c00548.
Wang, C. et al. (2024) ‘Cage escape governs photoredox reaction rates and quantum yields’, Nature Chemistry [Preprint]. Available at: https://doi.org/10.1038/s41557-024-01482-4.
Wang, C. et al. (2024) ‘Cage escape governs photoredox reaction rates and quantum yields’, Nature Chemistry [Preprint]. Available at: https://doi.org/10.1038/s41557-024-01482-4.
Ye, Yating et al. (2023) ‘Luminescence and Excited-State Reactivity in a Heteroleptic Tricyanido Fe(III) Complex’, Journal of the American Chemical Society. 29.12.2023, 146(1), pp. 954–960. Available at: https://doi.org/10.1021/jacs.3c11517.
Ye, Yating et al. (2023) ‘Luminescence and Excited-State Reactivity in a Heteroleptic Tricyanido Fe(III) Complex’, Journal of the American Chemical Society. 29.12.2023, 146(1), pp. 954–960. Available at: https://doi.org/10.1021/jacs.3c11517.
Bharti, Jaya et al. (2023) ‘Visible-Light-Driven CO² Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways’, Journal of the American Chemical Society. 10.11.2023, 145(46), pp. 25195–25202. Available at: https://doi.org/10.1021/jacs.3c07799.
Bharti, Jaya et al. (2023) ‘Visible-Light-Driven CO² Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways’, Journal of the American Chemical Society. 10.11.2023, 145(46), pp. 25195–25202. Available at: https://doi.org/10.1021/jacs.3c07799.
Jin, Tao, Wagner, Dorothee and Wenger, Oliver S. (2023) ‘Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines’, Angewandte Chemie International Edition. 27.10.2023, 63(10). Available at: https://doi.org/10.1002/anie.202314475.
Jin, Tao, Wagner, Dorothee and Wenger, Oliver S. (2023) ‘Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines’, Angewandte Chemie International Edition. 27.10.2023, 63(10). Available at: https://doi.org/10.1002/anie.202314475.
Yaltseva, Polina and Wenger, Oliver S. (2023) ‘Photocatalysis gets energized by abundant metals’, Science. 12.10.2023, 382(6667), pp. 153–154. Available at: https://doi.org/10.1126/science.adk5923.
Yaltseva, Polina and Wenger, Oliver S. (2023) ‘Photocatalysis gets energized by abundant metals’, Science. 12.10.2023, 382(6667), pp. 153–154. Available at: https://doi.org/10.1126/science.adk5923.
Ogawa, T. and Wenger, O.S. (2023) ‘Nickel(II) Analogues of Phosphorescent Platinum(II) Complexes with Picosecond Excited‐State Decay’, Angewandte Chemie International Edition. 13.11.2023, 62(46). Available at: https://doi.org/10.1002/anie.202312851.
Ogawa, T. and Wenger, O.S. (2023) ‘Nickel(II) Analogues of Phosphorescent Platinum(II) Complexes with Picosecond Excited‐State Decay’, Angewandte Chemie International Edition. 13.11.2023, 62(46). Available at: https://doi.org/10.1002/anie.202312851.
Wang, C., Wegeberg, C. and Wenger, O.S. (2023) ‘First-Row d⁶ Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light’, Angewandte Chemie International Edition. 08.09.2023, 62(43). Available at: https://doi.org/10.1002/anie.202311470.
Wang, C., Wegeberg, C. and Wenger, O.S. (2023) ‘First-Row d⁶ Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light’, Angewandte Chemie International Edition. 08.09.2023, 62(43). Available at: https://doi.org/10.1002/anie.202311470.
Dehnen, Stefanie et al. (2023) ‘We Glow Together: A Dialogue on Luminescent Compounds’, Crystal Growth & Design. 08.09.2023, 23(10), pp. 6993–6997. Available at: https://doi.org/10.1021/acs.cgd.3c00987.
Dehnen, Stefanie et al. (2023) ‘We Glow Together: A Dialogue on Luminescent Compounds’, Crystal Growth & Design. 08.09.2023, 23(10), pp. 6993–6997. Available at: https://doi.org/10.1021/acs.cgd.3c00987.
Sinha, N. et al. (2023) ‘Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes’, Nature Chemistry. 14.08.2023, 15(12), pp. 1730–1736. Available at: https://doi.org/10.1038/s41557-023-01297-9.
Sinha, N. et al. (2023) ‘Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes’, Nature Chemistry. 14.08.2023, 15(12), pp. 1730–1736. Available at: https://doi.org/10.1038/s41557-023-01297-9.
Bürgin, T.H., Ogawa, T. and Wenger, O.S. (2023) ‘Better Covalent Connection in a Molecular Triad Enables More Efficient Photochemical Energy Storage’, Inorganic Chemistry. 10.08.2023, 62(33), pp. 13597–13607. Available at: https://doi.org/10.1021/acs.inorgchem.3c02008.
Bürgin, T.H., Ogawa, T. and Wenger, O.S. (2023) ‘Better Covalent Connection in a Molecular Triad Enables More Efficient Photochemical Energy Storage’, Inorganic Chemistry. 10.08.2023, 62(33), pp. 13597–13607. Available at: https://doi.org/10.1021/acs.inorgchem.3c02008.
Næsborg, Line, Pieber, Bartholomäus and Wenger, Oliver S. (2023) ‘Special Collection: Photocatalytic Synthesis’, ChemCatChem. 08.09.2023, 15(17). Available at: https://doi.org/10.1002/cctc.202300683.
Næsborg, Line, Pieber, Bartholomäus and Wenger, Oliver S. (2023) ‘Special Collection: Photocatalytic Synthesis’, ChemCatChem. 08.09.2023, 15(17). Available at: https://doi.org/10.1002/cctc.202300683.
Li, H. et al. (2023) ‘Metal–Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions’, Journal of the American Chemical Society. 15.05.2023, 145(20), pp. 11402–11414. Available at: https://doi.org/10.1021/jacs.3c02609.
Li, H. et al. (2023) ‘Metal–Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions’, Journal of the American Chemical Society. 15.05.2023, 145(20), pp. 11402–11414. Available at: https://doi.org/10.1021/jacs.3c02609.
Sinha, N., Yaltseva, P. and Wenger, O.S. (2023) ‘The Nephelauxetic Effect Becomes an Important Design Factor for Photoactive First‐Row Transition Metal Complexes’, Angewandte Chemie International Edition. 14.04.2023, 62(30). Available at: https://doi.org/10.1002/anie.202303864.
Sinha, N., Yaltseva, P. and Wenger, O.S. (2023) ‘The Nephelauxetic Effect Becomes an Important Design Factor for Photoactive First‐Row Transition Metal Complexes’, Angewandte Chemie International Edition. 14.04.2023, 62(30). Available at: https://doi.org/10.1002/anie.202303864.
Bens, T. et al. (2023) ‘Impact of Bidentate Pyridyl-Mesoionic Carbene Ligands: Structural, (Spectro)Electrochemical, Photophysical, and Theoretical Investigations on Ruthenium(II) Complexes’, ACS Organic & Inorganic Au. 03.05.2023, 3(4), pp. 184–198. Available at: https://doi.org/10.1021/acsorginorgau.3c00005.
Bens, T. et al. (2023) ‘Impact of Bidentate Pyridyl-Mesoionic Carbene Ligands: Structural, (Spectro)Electrochemical, Photophysical, and Theoretical Investigations on Ruthenium(II) Complexes’, ACS Organic & Inorganic Au. 03.05.2023, 3(4), pp. 184–198. Available at: https://doi.org/10.1021/acsorginorgau.3c00005.
Dietzek‐Ivansic, Benjamin et al. (2023) ‘Trendbericht: Photochemie’, Nachrichten aus der Chemie. 31.03.2023, 71(4), pp. 56–63. Available at: https://doi.org/10.1002/nadc.20234132821.
Dietzek‐Ivansic, Benjamin et al. (2023) ‘Trendbericht: Photochemie’, Nachrichten aus der Chemie. 31.03.2023, 71(4), pp. 56–63. Available at: https://doi.org/10.1002/nadc.20234132821.
Mrózek, O. et al. (2023) ‘An Air‐ and Moisture‐stable Zinc(II) Carbene Dithiolate Dimer Showing Fast Thermally Activated Delayed Fluorescence and Dexter Energy Transfer Catalysis’, Chemistry – A European Journal. 21.04.2023, 29(23). Available at: https://doi.org/10.1002/chem.202203980.
Mrózek, O. et al. (2023) ‘An Air‐ and Moisture‐stable Zinc(II) Carbene Dithiolate Dimer Showing Fast Thermally Activated Delayed Fluorescence and Dexter Energy Transfer Catalysis’, Chemistry – A European Journal. 21.04.2023, 29(23). Available at: https://doi.org/10.1002/chem.202203980.
Sinha, N. and Wenger, O.S. (2023) ‘Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d⁶ Complexes with Cr⁰, MnI, FeII, and CoIII’, Journal of the American Chemical Society. 21.02.2023, 145(9), pp. 4903–4920. Available at: https://doi.org/10.1021/jacs.2c13432.
Sinha, N. and Wenger, O.S. (2023) ‘Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d⁶ Complexes with Cr⁰, MnI, FeII, and CoIII’, Journal of the American Chemical Society. 21.02.2023, 145(9), pp. 4903–4920. Available at: https://doi.org/10.1021/jacs.2c13432.
Schreier, M.R. et al. (2023) ‘Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes’, Inorganic Chemistry. 02.02.2023, 62(20), pp. 7636–7643. Available at: https://doi.org/10.1021/acs.inorgchem.2c03100.
Schreier, M.R. et al. (2023) ‘Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes’, Inorganic Chemistry. 02.02.2023, 62(20), pp. 7636–7643. Available at: https://doi.org/10.1021/acs.inorgchem.2c03100.
Delley, Murielle F. and Wenger, Oliver S. (2023) ‘A Farewell Symposium to the Retiring Professors Catherine E. Housecroft and Edwin C. Constable’, Chimia. 28.06.2023, 77(6), pp. 452–453. Available at: https://doi.org/10.2533/chimia.2023.452.
Delley, Murielle F. and Wenger, Oliver S. (2023) ‘A Farewell Symposium to the Retiring Professors Catherine E. Housecroft and Edwin C. Constable’, Chimia. 28.06.2023, 77(6), pp. 452–453. Available at: https://doi.org/10.2533/chimia.2023.452.
Glaser, Felix and Wenger, Oliver S. (2023) ‘Sensitizer-controlled photochemical reactivity via upconversion of red light’, Chemical Science, 14(1), pp. 149–161. Available at: https://doi.org/10.1039/d2sc05229f.
Glaser, Felix and Wenger, Oliver S. (2023) ‘Sensitizer-controlled photochemical reactivity via upconversion of red light’, Chemical Science, 14(1), pp. 149–161. Available at: https://doi.org/10.1039/d2sc05229f.
Jökel, J. et al. (2023) ‘A CuICoII cryptate for the visible light-driven reduction of CO2’, Chemical Science. 27.10.2023, 14(44), pp. 12774–12783. Available at: https://doi.org/10.1039/d3sc02679e.
Jökel, J. et al. (2023) ‘A CuICoII cryptate for the visible light-driven reduction of CO2’, Chemical Science. 27.10.2023, 14(44), pp. 12774–12783. Available at: https://doi.org/10.1039/d3sc02679e.
Pfund, B. et al. (2023) ‘Isoacridone dyes with parallel reactivity from both singlet and triplet excited states for biphotonic catalysis and upconversion’, Chemical Science. 02.10.2023, 14(40), pp. 11180–11191. Available at: https://doi.org/10.1039/d3sc02768f.
Pfund, B. et al. (2023) ‘Isoacridone dyes with parallel reactivity from both singlet and triplet excited states for biphotonic catalysis and upconversion’, Chemical Science. 02.10.2023, 14(40), pp. 11180–11191. Available at: https://doi.org/10.1039/d3sc02768f.
Bürgin, Tobias H., Glaser, Felix and Wenger, Oliver S. (2022) ‘Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a CrIII Polypyridine Complex and Their Use in Photoredox Catalysis’, Journal of the American Chemical Society, 144(31), pp. 14181–14194. Available at: https://doi.org/10.1021/jacs.2c04465.
Bürgin, Tobias H., Glaser, Felix and Wenger, Oliver S. (2022) ‘Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a CrIII Polypyridine Complex and Their Use in Photoredox Catalysis’, Journal of the American Chemical Society, 144(31), pp. 14181–14194. Available at: https://doi.org/10.1021/jacs.2c04465.
Glaser, Felix and Wenger, Oliver S. (2022) ‘Red Light-Based Dual Photoredox Strategy Resembling the Z‑Scheme of Natural Photosynthesis’, JACS Au, 2(6), pp. 1488–1503. Available at: https://doi.org/10.1021/jacsau.2c00265.
Glaser, Felix and Wenger, Oliver S. (2022) ‘Red Light-Based Dual Photoredox Strategy Resembling the Z‑Scheme of Natural Photosynthesis’, JACS Au, 2(6), pp. 1488–1503. Available at: https://doi.org/10.1021/jacsau.2c00265.
Herr, Patrick et al. (2022) ‘Deep-Red Luminescent Molybdenum(0) Complexes with Bi- and Tridentate Isocyanide Chelate Ligands’, Chemphotochem, 6(8), p. e202200052. Available at: https://doi.org/10.1002/cptc.202200052.
Herr, Patrick et al. (2022) ‘Deep-Red Luminescent Molybdenum(0) Complexes with Bi- and Tridentate Isocyanide Chelate Ligands’, Chemphotochem, 6(8), p. e202200052. Available at: https://doi.org/10.1002/cptc.202200052.
Kübler, Jasmin A., Pfund, Björn and Wenger, Oliver S. (2022) ‘Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion’, JACS Au, 2(10), pp. 2367–2380. Available at: https://doi.org/10.1021/jacsau.2c00442.
Kübler, Jasmin A., Pfund, Björn and Wenger, Oliver S. (2022) ‘Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion’, JACS Au, 2(10), pp. 2367–2380. Available at: https://doi.org/10.1021/jacsau.2c00442.
Li, Han and Wenger, Oliver S. (2022) ‘Photophysics of perylene diimide dianions and their application in photoredox catalysis’, Angewandte Chemie International Edition, 61(5), p. e202110491. Available at: https://doi.org/10.1002/anie.202110491.
Li, Han and Wenger, Oliver S. (2022) ‘Photophysics of perylene diimide dianions and their application in photoredox catalysis’, Angewandte Chemie International Edition, 61(5), p. e202110491. Available at: https://doi.org/10.1002/anie.202110491.
Oelschlegel, Manuel et al. (2022) ‘Luminescent Iridium Complexes with a Sulfurated Bipyridine Ligand: PCET Thermochemistry of the Disulfide Unit and Photophysical Properties’, Inorganic Chemistry, 61(35), pp. 13944–13955. Available at: https://doi.org/10.1021/acs.inorgchem.2c01930.
Oelschlegel, Manuel et al. (2022) ‘Luminescent Iridium Complexes with a Sulfurated Bipyridine Ligand: PCET Thermochemistry of the Disulfide Unit and Photophysical Properties’, Inorganic Chemistry, 61(35), pp. 13944–13955. Available at: https://doi.org/10.1021/acs.inorgchem.2c01930.
Ogawa, Tomohiro et al. (2022) ‘Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes’, Journal of the American Chemical Society, 144(48), pp. 21948–21960. Available at: https://doi.org/10.1021/jacs.2c08838.
Ogawa, Tomohiro et al. (2022) ‘Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes’, Journal of the American Chemical Society, 144(48), pp. 21948–21960. Available at: https://doi.org/10.1021/jacs.2c08838.
Ossinger, Sascha et al. (2022) ‘Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence’, Inorganic Chemistry, 61(27), pp. 10533–10547. Available at: https://doi.org/10.1021/acs.inorgchem.2c01438.
Ossinger, Sascha et al. (2022) ‘Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence’, Inorganic Chemistry, 61(27), pp. 10533–10547. Available at: https://doi.org/10.1021/acs.inorgchem.2c01438.
Remke, Stephanie C. et al. (2022) ‘Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution’, Water Research, 213, p. 118095. Available at: https://doi.org/10.1016/j.watres.2022.118095.
Remke, Stephanie C. et al. (2022) ‘Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution’, Water Research, 213, p. 118095. Available at: https://doi.org/10.1016/j.watres.2022.118095.
Schmid, Lucius et al. (2022) ‘Borylation in the Second Coordination Sphere of Fe(II) Cyanido Complexes and Its Impact on Their Electronic Structures and Excited-State Dynamics’, Inorganic Chemistry, 61(40), pp. 15853–15863. Available at: https://doi.org/10.1021/acs.inorgchem.2c01667.
Schmid, Lucius et al. (2022) ‘Borylation in the Second Coordination Sphere of Fe(II) Cyanido Complexes and Its Impact on Their Electronic Structures and Excited-State Dynamics’, Inorganic Chemistry, 61(40), pp. 15853–15863. Available at: https://doi.org/10.1021/acs.inorgchem.2c01667.
Schmid, Lucius et al. (2022) ‘Accumulation of Four Electrons on a Terphenyl (Bis)disulfide’, Chemistry - A European Journal, 28(72), p. e202202386. Available at: https://doi.org/10.1002/chem.202202386.
Schmid, Lucius et al. (2022) ‘Accumulation of Four Electrons on a Terphenyl (Bis)disulfide’, Chemistry - A European Journal, 28(72), p. e202202386. Available at: https://doi.org/10.1002/chem.202202386.
Schmid, Lucius et al. (2022) ‘High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis’, Journal of the American Chemical Society, 144(2), pp. 963–976. Available at: https://doi.org/10.1021/jacs.1c11667.
Schmid, Lucius et al. (2022) ‘High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis’, Journal of the American Chemical Society, 144(2), pp. 963–976. Available at: https://doi.org/10.1021/jacs.1c11667.
Schreier, Mirjam R. et al. (2022) ‘Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry’, Accounts of Chemical Research, 55(9), pp. 1290–1300. Available at: https://doi.org/10.1021/acs.accounts.2c00075.
Schreier, Mirjam R. et al. (2022) ‘Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry’, Accounts of Chemical Research, 55(9), pp. 1290–1300. Available at: https://doi.org/10.1021/acs.accounts.2c00075.
Sinha, Narayan et al. (2022) ‘Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds’, Journal of the American Chemical Society, 144(22), pp. 9859–9873. Available at: https://doi.org/10.1021/jacs.2c02592.
Sinha, Narayan et al. (2022) ‘Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds’, Journal of the American Chemical Society, 144(22), pp. 9859–9873. Available at: https://doi.org/10.1021/jacs.2c02592.
Wegeberg, Christina and Wenger, Oliver S. (2022) ‘Luminescent chromium(0) and manganese(i) complexes’, Dalton Transactions, 51(4), pp. 1297–1302. Available at: https://doi.org/10.1039/d1dt03763c.
Wegeberg, Christina and Wenger, Oliver S. (2022) ‘Luminescent chromium(0) and manganese(i) complexes’, Dalton Transactions, 51(4), pp. 1297–1302. Available at: https://doi.org/10.1039/d1dt03763c.
Zhang, Lei et al. (2022) ‘Oxidase-Type C-H/C-H Coupling Using an Isoquinoline-Derived Organic Photocatalyst’, Angewandte Chemie International Edition, 61(20), p. e202202649. Available at: https://doi.org/10.1002/anie.202202649.
Zhang, Lei et al. (2022) ‘Oxidase-Type C-H/C-H Coupling Using an Isoquinoline-Derived Organic Photocatalyst’, Angewandte Chemie International Edition, 61(20), p. e202202649. Available at: https://doi.org/10.1002/anie.202202649.
Sinha, Narayan et al. (2021) ‘Back Cover: A Near‐Infrared‐II Emissive Chromium(III) Complex (Angew. Chem. Int. Ed. 44/2021)’, Angewandte Chemie International Edition. 06.09.2021, 60(44), pp. 23920–23920. Available at: https://doi.org/10.1002/anie.202111510.
Sinha, Narayan et al. (2021) ‘Back Cover: A Near‐Infrared‐II Emissive Chromium(III) Complex (Angew. Chem. Int. Ed. 44/2021)’, Angewandte Chemie International Edition. 06.09.2021, 60(44), pp. 23920–23920. Available at: https://doi.org/10.1002/anie.202111510.
Bilger, Jakob B. et al. (2021) ‘A Photorobust Mo(0) Complex Mimicking [Os(2,2′-bipyridine)3]2+ and its Application in Red-to-Blue Upconversion’, Journal of the American Chemical Society, 143(3), pp. 1651–1663. Available at: https://doi.org/10.1021/jacs.0c12805.
Bilger, Jakob B. et al. (2021) ‘A Photorobust Mo(0) Complex Mimicking [Os(2,2′-bipyridine)3]2+ and its Application in Red-to-Blue Upconversion’, Journal of the American Chemical Society, 143(3), pp. 1651–1663. Available at: https://doi.org/10.1021/jacs.0c12805.
Bürgin, Tobias H. and Wenger, Oliver S. (2021) ‘Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review’, Energy and Fuels, 35(23), pp. 18848–18856. Available at: https://doi.org/10.1021/acs.energyfuels.1c02073.
Bürgin, Tobias H. and Wenger, Oliver S. (2021) ‘Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review’, Energy and Fuels, 35(23), pp. 18848–18856. Available at: https://doi.org/10.1021/acs.energyfuels.1c02073.
Glaser, Felix, Kerzig, Christoph and Wenger, Oliver S. (2021) ‘Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications’, Chemical Science, 12(29), pp. 9922–9933. Available at: https://doi.org/10.1039/d1sc02085d.
Glaser, Felix, Kerzig, Christoph and Wenger, Oliver S. (2021) ‘Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications’, Chemical Science, 12(29), pp. 9922–9933. Available at: https://doi.org/10.1039/d1sc02085d.
Herr, Patrick et al. (2021) ‘Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity’, Nature Chemistry, 13(10), pp. 956–962. Available at: https://doi.org/10.1038/s41557-021-00744-9.
Herr, Patrick et al. (2021) ‘Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity’, Nature Chemistry, 13(10), pp. 956–962. Available at: https://doi.org/10.1038/s41557-021-00744-9.
Neumann, Svenja, Wenger, Oliver S. and Kerzig, Christoph (2021) ‘Controlling Spin-Correlated Radical Pairs with Donor-Acceptor Dyads: A New Concept to Generate Reduced Metal Complexes for More Efficient Photocatalysis’, Chemistry - A European Journal, 27(12), pp. 4115–4123. Available at: https://doi.org/10.1002/chem.202004638.
Neumann, Svenja, Wenger, Oliver S. and Kerzig, Christoph (2021) ‘Controlling Spin-Correlated Radical Pairs with Donor-Acceptor Dyads: A New Concept to Generate Reduced Metal Complexes for More Efficient Photocatalysis’, Chemistry - A European Journal, 27(12), pp. 4115–4123. Available at: https://doi.org/10.1002/chem.202004638.
Schmid, Lucius et al. (2021) ‘Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis’, JACS Au, 1(6), pp. 819–832. Available at: https://doi.org/10.1021/jacsau.1c00137.
Schmid, Lucius et al. (2021) ‘Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis’, JACS Au, 1(6), pp. 819–832. Available at: https://doi.org/10.1021/jacsau.1c00137.
Sinha, Narayan et al. (2021) ‘A Near-Infrared-II Emissive Chromium(III) Complex’, Angewandte Chemie International Edition, 60(44), pp. 23722–23728. Available at: https://doi.org/10.1002/anie.202106398.
Sinha, Narayan et al. (2021) ‘A Near-Infrared-II Emissive Chromium(III) Complex’, Angewandte Chemie International Edition, 60(44), pp. 23722–23728. Available at: https://doi.org/10.1002/anie.202106398.
Wegeberg, Christina, Häussinger, Daniel and Wenger, Oliver S. (2021) ‘Pyrene-Decoration of a Chromium(0) Tris(diisocyanide) Enhances Excited State Delocalization: A Strategy to Improve the Photoluminescence of 3d6 Metal Complexes’, Journal of the American Chemical Society, 143(38), pp. 15800–15811. Available at: https://doi.org/10.1021/jacs.1c07345.
Wegeberg, Christina, Häussinger, Daniel and Wenger, Oliver S. (2021) ‘Pyrene-Decoration of a Chromium(0) Tris(diisocyanide) Enhances Excited State Delocalization: A Strategy to Improve the Photoluminescence of 3d6 Metal Complexes’, Journal of the American Chemical Society, 143(38), pp. 15800–15811. Available at: https://doi.org/10.1021/jacs.1c07345.
Wegeberg, Christina and Wenger, Oliver S. (2021) ‘Luminescent First-Row Transition Metal Complexes’, JACS Au, 1(11), pp. 1860–1876. Available at: https://doi.org/10.1021/jacsau.1c00353.
Wegeberg, Christina and Wenger, Oliver S. (2021) ‘Luminescent First-Row Transition Metal Complexes’, JACS Au, 1(11), pp. 1860–1876. Available at: https://doi.org/10.1021/jacsau.1c00353.
Wenger, Oliver S. (2021) ‘Photoactive nickel complexes in cross coupling catalysis’, Chemistry - A European Journal, 27(7), pp. 2270–2278. Available at: https://doi.org/10.1002/chem.202003974.
Wenger, Oliver S. (2021) ‘Photoactive nickel complexes in cross coupling catalysis’, Chemistry - A European Journal, 27(7), pp. 2270–2278. Available at: https://doi.org/10.1002/chem.202003974.
Heinze, K. and Wenger, O.S. (2020) ‘Light-Controlled Reactivity of Metal Complexes’, Inorganic Chemistry, 59(20), pp. 14627–14628. Available at: https://doi.org/10.1021/acs.inorgchem.0c02791.
Heinze, K. and Wenger, O.S. (2020) ‘Light-Controlled Reactivity of Metal Complexes’, Inorganic Chemistry, 59(20), pp. 14627–14628. Available at: https://doi.org/10.1021/acs.inorgchem.0c02791.
Glaser, Felix, Kerzig, Christoph and Wenger, Oliver S. (2020) ‘Multiphotonen‐Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden’, Angewandte Chemie. 16.01.2020, 132(26), pp. 10350–10370. Available at: https://doi.org/10.1002/ange.201915762.
Glaser, Felix, Kerzig, Christoph and Wenger, Oliver S. (2020) ‘Multiphotonen‐Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden’, Angewandte Chemie. 16.01.2020, 132(26), pp. 10350–10370. Available at: https://doi.org/10.1002/ange.201915762.
Brandl, Thomas et al. (2020) ‘Improved Photostability of a CuI Complex by Macrocyclization of the Phenanthroline Ligands’, Chemistry - A European Journal, 26(14), pp. 3119–3128. Available at: https://doi.org/10.1002/chem.201904754.
Brandl, Thomas et al. (2020) ‘Improved Photostability of a CuI Complex by Macrocyclization of the Phenanthroline Ligands’, Chemistry - A European Journal, 26(14), pp. 3119–3128. Available at: https://doi.org/10.1002/chem.201904754.
Fischer, Christian et al. (2020) ‘Modulation of Acridinium Organophotoredox Catalysts Guided by Photophysical Studies’, ACS Catalysis, 10(1), pp. 210–215. Available at: https://doi.org/10.1021/acscatal.9b03606.
Fischer, Christian et al. (2020) ‘Modulation of Acridinium Organophotoredox Catalysts Guided by Photophysical Studies’, ACS Catalysis, 10(1), pp. 210–215. Available at: https://doi.org/10.1021/acscatal.9b03606.
García‐López, Victor et al. (2020) ‘Stimuli‐Responsive Resorcin[4]arene Cavitands: Toward Visible‐Light‐Activated Molecular Grippers’, Chemistry - A European Journal, 26(50), pp. 11451–11461. Available at: https://doi.org/10.1002/chem.202001788.
García‐López, Victor et al. (2020) ‘Stimuli‐Responsive Resorcin[4]arene Cavitands: Toward Visible‐Light‐Activated Molecular Grippers’, Chemistry - A European Journal, 26(50), pp. 11451–11461. Available at: https://doi.org/10.1002/chem.202001788.
Glaser, Felix, Kerzig, Christoph and Wenger, Oliver S. (2020) ‘Multi‐Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods’, Angewandte Chemie International Edition, 59(26), pp. 10266–10284. Available at: https://doi.org/10.1002/anie.201915762.
Glaser, Felix, Kerzig, Christoph and Wenger, Oliver S. (2020) ‘Multi‐Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods’, Angewandte Chemie International Edition, 59(26), pp. 10266–10284. Available at: https://doi.org/10.1002/anie.201915762.
Glaser, Felix et al. (2020) ‘Aryl dechlorination and defluorination with an organic super-photoreductant’, Photochemical and Photobiological Sciences, 19(8), pp. 1035–1041. Available at: https://doi.org/10.1039/d0pp00127a.
Glaser, Felix et al. (2020) ‘Aryl dechlorination and defluorination with an organic super-photoreductant’, Photochemical and Photobiological Sciences, 19(8), pp. 1035–1041. Available at: https://doi.org/10.1039/d0pp00127a.
Glaser, Felix and Wenger, Oliver S. (2020) ‘Recent progress in the development of transition-metal based photoredox catalysts’, Coordination chemistry reviews, 405, p. 213129. Available at: https://doi.org/10.1016/j.ccr.2019.213129.
Glaser, Felix and Wenger, Oliver S. (2020) ‘Recent progress in the development of transition-metal based photoredox catalysts’, Coordination chemistry reviews, 405, p. 213129. Available at: https://doi.org/10.1016/j.ccr.2019.213129.
Herr, Patrick and Wenger, Oliver S. (2020) ‘Excited-State Relaxation in Luminescent Molybdenum(0) Complexes with Isocyanide Chelate Ligands’, Inorganics, 8(2), p. 14. Available at: https://doi.org/10.3390/inorganics8020014.
Herr, Patrick and Wenger, Oliver S. (2020) ‘Excited-State Relaxation in Luminescent Molybdenum(0) Complexes with Isocyanide Chelate Ligands’, Inorganics, 8(2), p. 14. Available at: https://doi.org/10.3390/inorganics8020014.
Hörmann, Fabian M. et al. (2020) ‘Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition’, Angewandte Chemie International Edition, 59(24), pp. 9659–9668. Available at: https://doi.org/10.1002/anie.202001634.
Hörmann, Fabian M. et al. (2020) ‘Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition’, Angewandte Chemie International Edition, 59(24), pp. 9659–9668. Available at: https://doi.org/10.1002/anie.202001634.
Hua, Shao-Ann et al. (2020) ‘Electrochemical and Photophysical Properties of Ruthenium(II) Complexes Equipped with Sulfurated Bipyridine Ligands’, Inorganic Chemistry, 59(7), pp. 4972–4984. Available at: https://doi.org/10.1021/acs.inorgchem.0c00220.
Hua, Shao-Ann et al. (2020) ‘Electrochemical and Photophysical Properties of Ruthenium(II) Complexes Equipped with Sulfurated Bipyridine Ligands’, Inorganic Chemistry, 59(7), pp. 4972–4984. Available at: https://doi.org/10.1021/acs.inorgchem.0c00220.
Larsen, Christopher B. et al. (2020) ‘Solvent-Mediated Activation/Deactivation of Photoinduced Electron-Transfer in a Molecular Dyad’, Inorganic Chemistry, 59(15), pp. 10430–10438. Available at: https://doi.org/10.1021/acs.inorgchem.0c00679.
Larsen, Christopher B. et al. (2020) ‘Solvent-Mediated Activation/Deactivation of Photoinduced Electron-Transfer in a Molecular Dyad’, Inorganic Chemistry, 59(15), pp. 10430–10438. Available at: https://doi.org/10.1021/acs.inorgchem.0c00679.
Pfund, Björn et al. (2020) ‘UV Light Generation and Challenging Photoreactions Enabled by Upconversion in Water’, Journal of the American Chemical Society, 142(23), pp. 10468–10476. Available at: https://doi.org/10.1021/jacs.0c02835.
Pfund, Björn et al. (2020) ‘UV Light Generation and Challenging Photoreactions Enabled by Upconversion in Water’, Journal of the American Chemical Society, 142(23), pp. 10468–10476. Available at: https://doi.org/10.1021/jacs.0c02835.
Schreier, Mirjam R. et al. (2020) ‘Photo-triggered hydrogen atom transfer from an iridium hydride complex to unactivated olefins’, Chemical Science, 11(32), pp. 8582–8594. Available at: https://doi.org/10.1039/d0sc01820a.
Schreier, Mirjam R. et al. (2020) ‘Photo-triggered hydrogen atom transfer from an iridium hydride complex to unactivated olefins’, Chemical Science, 11(32), pp. 8582–8594. Available at: https://doi.org/10.1039/d0sc01820a.
Wenger, Oliver S. (2020) ‘A bright future for photosensitizers’, Nature Chemistry, 12(4), pp. 323–324. Available at: https://doi.org/10.1038/s41557-020-0448-x.
Wenger, Oliver S. (2020) ‘A bright future for photosensitizers’, Nature Chemistry, 12(4), pp. 323–324. Available at: https://doi.org/10.1038/s41557-020-0448-x.
Castrogiovanni, Alessandro et al. (2019) ‘Shortcuts for Electron-Transfer through the Secondary Structure of Helical Oligo-1,2-Naphthylenes’, Chemistry - A European Journal, 25, pp. 16748–16754. Available at: https://doi.org/10.1002/chem.201904771.
Castrogiovanni, Alessandro et al. (2019) ‘Shortcuts for Electron-Transfer through the Secondary Structure of Helical Oligo-1,2-Naphthylenes’, Chemistry - A European Journal, 25, pp. 16748–16754. Available at: https://doi.org/10.1002/chem.201904771.
Herr, Patrick et al. (2019) ‘Long-Lived, Strongly Emissive, and Highly Reducing Excited States in Mo(0) Complexes with Chelating Isocyanides’, Journal of the American Chemical Society, 141(36), pp. 14394–14402. Available at: https://doi.org/10.1021/jacs.9b07373.
Herr, Patrick et al. (2019) ‘Long-Lived, Strongly Emissive, and Highly Reducing Excited States in Mo(0) Complexes with Chelating Isocyanides’, Journal of the American Chemical Society, 141(36), pp. 14394–14402. Available at: https://doi.org/10.1021/jacs.9b07373.
Irmler, Peter et al. (2019) ‘Four different emissions from a Pt(Bodipy)(PEt3)(2)(S-Pyrene) dyad’, Dalton Transactions, 48(4), pp. 1171–1174. Available at: https://doi.org/10.1039/c8dt04823a.
Irmler, Peter et al. (2019) ‘Four different emissions from a Pt(Bodipy)(PEt3)(2)(S-Pyrene) dyad’, Dalton Transactions, 48(4), pp. 1171–1174. Available at: https://doi.org/10.1039/c8dt04823a.
Irmler, Peter et al. (2019) ‘Directing energy transfer in Pt(bodipy)(mercaptopyrene) dyads’, Dalton Transactions, 48(31), pp. 11690–11705. Available at: https://doi.org/10.1039/c9dt01737b.
Irmler, Peter et al. (2019) ‘Directing energy transfer in Pt(bodipy)(mercaptopyrene) dyads’, Dalton Transactions, 48(31), pp. 11690–11705. Available at: https://doi.org/10.1039/c9dt01737b.
Kerzig, Christoph, Guo, Xingwei and Wenger, Oliver S. (2019) ‘Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis’, Journal of the American Chemical Society, 141(5), pp. 2122–2127. Available at: https://doi.org/10.1021/jacs.8b12223.
Kerzig, Christoph, Guo, Xingwei and Wenger, Oliver S. (2019) ‘Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis’, Journal of the American Chemical Society, 141(5), pp. 2122–2127. Available at: https://doi.org/10.1021/jacs.8b12223.
Kerzig, Christoph and Wenger, Oliver S. (2019) ‘Reactivity control of a photocatalytic system by changing the light intensity’, Chemical Science, 10(48), pp. 11023–11029. Available at: https://doi.org/10.1039/c9sc04584h.
Kerzig, Christoph and Wenger, Oliver S. (2019) ‘Reactivity control of a photocatalytic system by changing the light intensity’, Chemical Science, 10(48), pp. 11023–11029. Available at: https://doi.org/10.1039/c9sc04584h.
Malzkuhn, Sabine et al. (2019) ‘Electron Transfer across o-Phenylene Wires’, Journal of Physical Chemistry A, 123(1), pp. 96–102. Available at: https://doi.org/10.1021/acs.jpca.8b11236.
Malzkuhn, Sabine et al. (2019) ‘Electron Transfer across o-Phenylene Wires’, Journal of Physical Chemistry A, 123(1), pp. 96–102. Available at: https://doi.org/10.1021/acs.jpca.8b11236.
Nemann, Svenja and Wenger, Oliver S. (2019) ‘Fundamentally Different Distance Dependences of Electron-Transfer Rates for Low and High Driving Forces’, Inorganic Chemistry, 58(1), pp. 855–860. Available at: https://doi.org/10.1021/acs.inorgchem.8b02973.
Nemann, Svenja and Wenger, Oliver S. (2019) ‘Fundamentally Different Distance Dependences of Electron-Transfer Rates for Low and High Driving Forces’, Inorganic Chemistry, 58(1), pp. 855–860. Available at: https://doi.org/10.1021/acs.inorgchem.8b02973.
Neumann, Svenja, Kerzig, Christoph and Wenger, Oliver S. (2019) ‘Quantitative Insights into Charge-Separated States from One- and Two-Pulse Laser Experiments Relevant for Artificial Photosynthesis’, Chemical Science, 10(21), pp. 5624–5633. Available at: https://doi.org/10.1039/c9sc01381d.
Neumann, Svenja, Kerzig, Christoph and Wenger, Oliver S. (2019) ‘Quantitative Insights into Charge-Separated States from One- and Two-Pulse Laser Experiments Relevant for Artificial Photosynthesis’, Chemical Science, 10(21), pp. 5624–5633. Available at: https://doi.org/10.1039/c9sc01381d.
Pannwitz, Andrea and Wenger, Oliver S. (2019) ‘Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis’, Chemical communications, 55(28), pp. 4004–4014. Available at: https://doi.org/10.1039/c9cc00821g.
Pannwitz, Andrea and Wenger, Oliver S. (2019) ‘Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis’, Chemical communications, 55(28), pp. 4004–4014. Available at: https://doi.org/10.1039/c9cc00821g.
Pannwitz, Andrea and Wenger, Oliver S. (2019) ‘Recent Advances in Bioinspired Proton-Coupled Electron Transfer’, Dalton Transactions, 48(18), pp. 5861–5868. Available at: https://doi.org/10.1039/c8dt04373f.
Pannwitz, Andrea and Wenger, Oliver S. (2019) ‘Recent Advances in Bioinspired Proton-Coupled Electron Transfer’, Dalton Transactions, 48(18), pp. 5861–5868. Available at: https://doi.org/10.1039/c8dt04373f.
Skaisgirski, Michael et al. (2019) ‘Stepwise Photoinduced Electron Transfer in a Tetrathiafulvalene-Phenothiazine-Ruthenium Triad’, European Journal of Inorganic Chemistry, 2019(39-40), pp. 4256–4262. Available at: https://doi.org/10.1002/ejic.201900453.
Skaisgirski, Michael et al. (2019) ‘Stepwise Photoinduced Electron Transfer in a Tetrathiafulvalene-Phenothiazine-Ruthenium Triad’, European Journal of Inorganic Chemistry, 2019(39-40), pp. 4256–4262. Available at: https://doi.org/10.1002/ejic.201900453.
Wenger, Oliver S. (2019) ‘Is Iron the New Ruthenium?’, Chemistry - A European Journal, 25(24), pp. 6043–6052. Available at: https://doi.org/10.1002/chem.201806148.
Wenger, Oliver S. (2019) ‘Is Iron the New Ruthenium?’, Chemistry - A European Journal, 25(24), pp. 6043–6052. Available at: https://doi.org/10.1002/chem.201806148.
Suntrup, L. et al. (2018) ‘Influence of Mesoionic Carbenes on Electro- and Photoactive Ru and Os Complexes: A Combined (Spectro-)Electrochemical, Photochemical, and Computational Study’, Inorganic Chemistry, 57(21), pp. 13973–13984. Available at: https://doi.org/10.1021/acs.inorgchem.8b02551.
Suntrup, L. et al. (2018) ‘Influence of Mesoionic Carbenes on Electro- and Photoactive Ru and Os Complexes: A Combined (Spectro-)Electrochemical, Photochemical, and Computational Study’, Inorganic Chemistry, 57(21), pp. 13973–13984. Available at: https://doi.org/10.1021/acs.inorgchem.8b02551.
Schmidt, Hauke C., Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Back Cover: Electron Transfer around a Molecular Corner (Angew. Chem. Int. Ed. 22/2018)’, Angewandte Chemie International Edition. 17.04.2018, 57(22), pp. 6706–6706. Available at: https://doi.org/10.1002/anie.201803955.
Schmidt, Hauke C., Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Back Cover: Electron Transfer around a Molecular Corner (Angew. Chem. Int. Ed. 22/2018)’, Angewandte Chemie International Edition. 17.04.2018, 57(22), pp. 6706–6706. Available at: https://doi.org/10.1002/anie.201803955.
Schmidt, Hauke C., Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Rücktitelbild: Elektronentransfer um eine molekulare Ecke (Angew. Chem. 22/2018)’, Angewandte Chemie. 17.04.2018, 130(22), pp. 6818–6818. Available at: https://doi.org/10.1002/ange.201803955.
Schmidt, Hauke C., Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Rücktitelbild: Elektronentransfer um eine molekulare Ecke (Angew. Chem. 22/2018)’, Angewandte Chemie. 17.04.2018, 130(22), pp. 6818–6818. Available at: https://doi.org/10.1002/ange.201803955.
Schmidt, Hauke C., Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Elektronentransfer um eine molekulare Ecke’, Angewandte Chemie. 27.02.2018, 130(22), pp. 6806–6810. Available at: https://doi.org/10.1002/ange.201800396.
Schmidt, Hauke C., Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Elektronentransfer um eine molekulare Ecke’, Angewandte Chemie. 27.02.2018, 130(22), pp. 6806–6810. Available at: https://doi.org/10.1002/ange.201800396.
Milić, J. et al. (2018) ‘Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding’, Chemistry - A European Journal, 24(6), pp. 1431–1440. Available at: https://doi.org/10.1002/chem.201704788.
Milić, J. et al. (2018) ‘Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding’, Chemistry - A European Journal, 24(6), pp. 1431–1440. Available at: https://doi.org/10.1002/chem.201704788.
Guo, Xingwei and Wenger, Oliver S. (2018) ‘Reduktive Aminierung durch Photoredoxkatalyse über polaritätsangepassten Wasserstoffatomtransfer’, Angewandte Chemie. 14.12.2017, 130(9), pp. 2494–2498. Available at: https://doi.org/10.1002/ange.201711467.
Guo, Xingwei and Wenger, Oliver S. (2018) ‘Reduktive Aminierung durch Photoredoxkatalyse über polaritätsangepassten Wasserstoffatomtransfer’, Angewandte Chemie. 14.12.2017, 130(9), pp. 2494–2498. Available at: https://doi.org/10.1002/ange.201711467.
Guo, Xingwei et al. (2018) ‘Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network’, Chemical Science, 9, pp. 5052–5056. Available at: https://doi.org/10.1039/c8sc01561a.
Guo, Xingwei et al. (2018) ‘Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network’, Chemical Science, 9, pp. 5052–5056. Available at: https://doi.org/10.1039/c8sc01561a.
Guo, Xingwei and Wenger, Oliver S. (2018) ‘Reductive Amination by Photoredox Catalysis and Polarity-Matched Hydrogen Atom Transfer’, Angewandte Chemie International Edition, 57(9), pp. 2469–2473. Available at: https://doi.org/10.1002/anie.201711467.
Guo, Xingwei and Wenger, Oliver S. (2018) ‘Reductive Amination by Photoredox Catalysis and Polarity-Matched Hydrogen Atom Transfer’, Angewandte Chemie International Edition, 57(9), pp. 2469–2473. Available at: https://doi.org/10.1002/anie.201711467.
Kerzig, Christoph and Wenger, Oliver S. (2018) ‘Sensitized Triplet-Triplet Annihilation Upconversion in Water and its Application to Photochemical Transformations’, Chemical Science, 9(32), pp. 6670–6678. Available at: https://doi.org/10.1039/c8sc01829d.
Kerzig, Christoph and Wenger, Oliver S. (2018) ‘Sensitized Triplet-Triplet Annihilation Upconversion in Water and its Application to Photochemical Transformations’, Chemical Science, 9(32), pp. 6670–6678. Available at: https://doi.org/10.1039/c8sc01829d.
Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements’, Chemistry - A European Journal, 24(9), pp. 2039–2058. Available at: https://doi.org/10.1002/chem.201703602.
Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements’, Chemistry - A European Journal, 24(9), pp. 2039–2058. Available at: https://doi.org/10.1002/chem.201703602.
Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Circular Photoinduced Electron Transfer in a Donor-Acceptor- Acceptor Triad’, Angewandte Chemie International Edition, 57(3), pp. 841–845. Available at: https://doi.org/10.1002/anie.201708207.
Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Circular Photoinduced Electron Transfer in a Donor-Acceptor- Acceptor Triad’, Angewandte Chemie International Edition, 57(3), pp. 841–845. Available at: https://doi.org/10.1002/anie.201708207.
Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Photophysics and Photoredox Catalysis of a Homoleptic Rhenium(I) Tris(diisocyanide) Complex’, Inorganic Chemistry, 57(6), pp. 2965–2968. Available at: https://doi.org/10.1021/acs.inorgchem.7b03258.
Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Photophysics and Photoredox Catalysis of a Homoleptic Rhenium(I) Tris(diisocyanide) Complex’, Inorganic Chemistry, 57(6), pp. 2965–2968. Available at: https://doi.org/10.1021/acs.inorgchem.7b03258.
Malzkuhn, Sabine and Wenger, Oliver S. (2018) ‘Luminescent Ni(0) complexes’, Coordination Chemistry Reviews, 359, pp. 52–56. Available at: https://doi.org/10.1016/j.ccr.2018.01.003.
Malzkuhn, Sabine and Wenger, Oliver S. (2018) ‘Luminescent Ni(0) complexes’, Coordination Chemistry Reviews, 359, pp. 52–56. Available at: https://doi.org/10.1016/j.ccr.2018.01.003.
Nomrowski, Julia, Guo, Xingwei and Wenger, Oliver S. (2018) ‘Charge Accumulation and Multi-Electron Potoredox Chemistry with a Sensitizer-Catalyst-Sensitizer Triad’, Chemistry - A European Journal, 24(53), pp. 14084–14087. Available at: https://doi.org/10.1002/chem.201804037.
Nomrowski, Julia, Guo, Xingwei and Wenger, Oliver S. (2018) ‘Charge Accumulation and Multi-Electron Potoredox Chemistry with a Sensitizer-Catalyst-Sensitizer Triad’, Chemistry - A European Journal, 24(53), pp. 14084–14087. Available at: https://doi.org/10.1002/chem.201804037.