Publications
177 found
Show per page
Lotter, Dominik et al. (2024) ‘Photoinduced Energy Transfer via an Atropisomeric Molecular Bridge’, Helvetica Chimica Acta. 04.12.2024, p. Online ahead of print. Available at: https://doi.org/10.1002/hlca.202400163.
Pfund, B. et al. (2024) ‘Picosecond reactions of excited radical ion super-reductants’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-49006-5.
Trippmacher, S. et al. (2024) ‘Ferromagnetically Coupled Chromium(III) Dimer Shows Luminescence and Sensitizes Photon Upconversion’, Chemistry - A European Journal, 30(31). Available at: https://doi.org/10.1002/chem.202400856.
Doeven, E.H. et al. (2024) ‘Electrochemiluminescence of a First-Row d6 Transition Metal Complex’, Angewandte Chemie - International Edition, 63(21). Available at: https://doi.org/10.1002/anie.202319047.
Jin, Tao, Wagner, Dorothee and Wenger, Oliver S. (2024) ‘Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines’, Angewandte Chemie. 27.10.2023, 136(10). Available at: https://doi.org/10.1002/ange.202314475.
Wegeberg, Christina et al. (2024) ‘Controlling the Photophysical Properties of a Series of Isostructural d6Complexes Based on Cr(0), Mn(I), and Fe(II)’, Journal of the American Chemical Society, 146(7), pp. 4605–4619. Available at: https://doi.org/10.1021/jacs.3c11580.
Blom, Steven J. et al. (2024) ‘Redox mediated enhancement and quenching of co-reactant electrochemiluminescence by iridium(III) complexes’, Electrochimica Acta. 14.02.2024, 484. Available at: https://doi.org/10.1016/j.electacta.2024.143957.
Bharti, Jaya et al. (2024) ‘Correction to “Visible-Light-Driven CO2 Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways”’, Journal of the American Chemical Society. 28.12.2023, 146(1), p. 1208. Available at: https://doi.org/10.1021/jacs.3c14220.
Franz, J. et al. (2024) ‘Bifurcation of Excited-State Population Leads to Anti-Kasha Luminescence in a Disulfide-Decorated Organometallic Rhenium Photosensitizer’, Journal of the American Chemical Society [Preprint]. Available at: https://doi.org/10.1021/jacs.4c00548.
Wang, C. et al. (2024) ‘Cage escape governs photoredox reaction rates and quantum yields’, Nature Chemistry [Preprint]. Available at: https://doi.org/10.1038/s41557-024-01482-4.
Ye, Yating et al. (2023) ‘Luminescence and Excited-State Reactivity in a Heteroleptic Tricyanido Fe(III) Complex’, Journal of the American Chemical Society. 29.12.2023, 146(1), pp. 954–960. Available at: https://doi.org/10.1021/jacs.3c11517.
Bharti, Jaya et al. (2023) ‘Visible-Light-Driven CO² Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways’, Journal of the American Chemical Society. 10.11.2023, 145(46), pp. 25195–25202. Available at: https://doi.org/10.1021/jacs.3c07799.
Jin, Tao, Wagner, Dorothee and Wenger, Oliver S. (2023) ‘Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines’, Angewandte Chemie International Edition. 27.10.2023, 63(10). Available at: https://doi.org/10.1002/anie.202314475.
Yaltseva, Polina and Wenger, Oliver S. (2023) ‘Photocatalysis gets energized by abundant metals’, Science. 12.10.2023, 382(6667), pp. 153–154. Available at: https://doi.org/10.1126/science.adk5923.
Ogawa, T. and Wenger, O.S. (2023) ‘Nickel(II) Analogues of Phosphorescent Platinum(II) Complexes with Picosecond Excited‐State Decay’, Angewandte Chemie International Edition. 13.11.2023, 62(46). Available at: https://doi.org/10.1002/anie.202312851.
Wang, C., Wegeberg, C. and Wenger, O.S. (2023) ‘First-Row d⁶ Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light’, Angewandte Chemie International Edition. 08.09.2023, 62(43). Available at: https://doi.org/10.1002/anie.202311470.
Dehnen, Stefanie et al. (2023) ‘We Glow Together: A Dialogue on Luminescent Compounds’, Crystal Growth & Design. 08.09.2023, 23(10), pp. 6993–6997. Available at: https://doi.org/10.1021/acs.cgd.3c00987.
Sinha, N. et al. (2023) ‘Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes’, Nature Chemistry. 14.08.2023, 15(12), pp. 1730–1736. Available at: https://doi.org/10.1038/s41557-023-01297-9.
Bürgin, T.H., Ogawa, T. and Wenger, O.S. (2023) ‘Better Covalent Connection in a Molecular Triad Enables More Efficient Photochemical Energy Storage’, Inorganic Chemistry. 10.08.2023, 62(33), pp. 13597–13607. Available at: https://doi.org/10.1021/acs.inorgchem.3c02008.
Næsborg, Line, Pieber, Bartholomäus and Wenger, Oliver S. (2023) ‘Special Collection: Photocatalytic Synthesis’, ChemCatChem. 08.09.2023, 15(17). Available at: https://doi.org/10.1002/cctc.202300683.
Li, H. et al. (2023) ‘Metal–Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions’, Journal of the American Chemical Society. 15.05.2023, 145(20), pp. 11402–11414. Available at: https://doi.org/10.1021/jacs.3c02609.
Sinha, N., Yaltseva, P. and Wenger, O.S. (2023) ‘The Nephelauxetic Effect Becomes an Important Design Factor for Photoactive First‐Row Transition Metal Complexes’, Angewandte Chemie International Edition. 14.04.2023, 62(30). Available at: https://doi.org/10.1002/anie.202303864.
Bens, T. et al. (2023) ‘Impact of Bidentate Pyridyl-Mesoionic Carbene Ligands: Structural, (Spectro)Electrochemical, Photophysical, and Theoretical Investigations on Ruthenium(II) Complexes’, ACS Organic & Inorganic Au. 03.05.2023, 3(4), pp. 184–198. Available at: https://doi.org/10.1021/acsorginorgau.3c00005.
Dietzek‐Ivansic, Benjamin et al. (2023) ‘Trendbericht: Photochemie’, Nachrichten aus der Chemie. 31.03.2023, 71(4), pp. 56–63. Available at: https://doi.org/10.1002/nadc.20234132821.
Mrózek, O. et al. (2023) ‘An Air‐ and Moisture‐stable Zinc(II) Carbene Dithiolate Dimer Showing Fast Thermally Activated Delayed Fluorescence and Dexter Energy Transfer Catalysis’, Chemistry – A European Journal. 21.04.2023, 29(23). Available at: https://doi.org/10.1002/chem.202203980.
Sinha, N. and Wenger, O.S. (2023) ‘Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d⁶ Complexes with Cr⁰, MnI, FeII, and CoIII’, Journal of the American Chemical Society. 21.02.2023, 145(9), pp. 4903–4920. Available at: https://doi.org/10.1021/jacs.2c13432.
Schreier, M.R. et al. (2023) ‘Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes’, Inorganic Chemistry. 02.02.2023, 62(20), pp. 7636–7643. Available at: https://doi.org/10.1021/acs.inorgchem.2c03100.
Delley, Murielle F. and Wenger, Oliver S. (2023) ‘A Farewell Symposium to the Retiring Professors Catherine E. Housecroft and Edwin C. Constable’, Chimia. 28.06.2023, 77(6), pp. 452–453. Available at: https://doi.org/10.2533/chimia.2023.452.
Glaser, Felix and Wenger, Oliver S. (2023) ‘Sensitizer-controlled photochemical reactivity via upconversion of red light’, Chemical Science, 14(1), pp. 149–161. Available at: https://doi.org/10.1039/d2sc05229f.
Jökel, J. et al. (2023) ‘A CuICoII cryptate for the visible light-driven reduction of CO2’, Chemical Science. 27.10.2023, 14(44), pp. 12774–12783. Available at: https://doi.org/10.1039/d3sc02679e.
Pfund, B. et al. (2023) ‘Isoacridone dyes with parallel reactivity from both singlet and triplet excited states for biphotonic catalysis and upconversion’, Chemical Science. 02.10.2023, 14(40), pp. 11180–11191. Available at: https://doi.org/10.1039/d3sc02768f.
Bürgin, Tobias H., Glaser, Felix and Wenger, Oliver S. (2022) ‘Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a CrIII Polypyridine Complex and Their Use in Photoredox Catalysis’, Journal of the American Chemical Society, 144(31), pp. 14181–14194. Available at: https://doi.org/10.1021/jacs.2c04465.
Glaser, Felix and Wenger, Oliver S. (2022) ‘Red Light-Based Dual Photoredox Strategy Resembling the Z‑Scheme of Natural Photosynthesis’, JACS Au, 2(6), pp. 1488–1503. Available at: https://doi.org/10.1021/jacsau.2c00265.
Herr, Patrick et al. (2022) ‘Deep-Red Luminescent Molybdenum(0) Complexes with Bi- and Tridentate Isocyanide Chelate Ligands’, Chemphotochem, 6(8), p. e202200052. Available at: https://doi.org/10.1002/cptc.202200052.
Kübler, Jasmin A., Pfund, Björn and Wenger, Oliver S. (2022) ‘Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion’, JACS Au, 2(10), pp. 2367–2380. Available at: https://doi.org/10.1021/jacsau.2c00442.
Li, Han and Wenger, Oliver S. (2022) ‘Photophysics of perylene diimide dianions and their application in photoredox catalysis’, Angewandte Chemie International Edition, 61(5), p. e202110491. Available at: https://doi.org/10.1002/anie.202110491.
Oelschlegel, Manuel et al. (2022) ‘Luminescent Iridium Complexes with a Sulfurated Bipyridine Ligand: PCET Thermochemistry of the Disulfide Unit and Photophysical Properties’, Inorganic Chemistry, 61(35), pp. 13944–13955. Available at: https://doi.org/10.1021/acs.inorgchem.2c01930.
Ogawa, Tomohiro et al. (2022) ‘Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes’, Journal of the American Chemical Society, 144(48), pp. 21948–21960. Available at: https://doi.org/10.1021/jacs.2c08838.
Ossinger, Sascha et al. (2022) ‘Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence’, Inorganic Chemistry, 61(27), pp. 10533–10547. Available at: https://doi.org/10.1021/acs.inorgchem.2c01438.
Remke, Stephanie C. et al. (2022) ‘Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution’, Water Research, 213, p. 118095. Available at: https://doi.org/10.1016/j.watres.2022.118095.
Schmid, Lucius et al. (2022) ‘Borylation in the Second Coordination Sphere of Fe(II) Cyanido Complexes and Its Impact on Their Electronic Structures and Excited-State Dynamics’, Inorganic Chemistry, 61(40), pp. 15853–15863. Available at: https://doi.org/10.1021/acs.inorgchem.2c01667.
Schmid, Lucius et al. (2022) ‘Accumulation of Four Electrons on a Terphenyl (Bis)disulfide’, Chemistry - A European Journal, 28(72), p. e202202386. Available at: https://doi.org/10.1002/chem.202202386.
Schmid, Lucius et al. (2022) ‘High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis’, Journal of the American Chemical Society, 144(2), pp. 963–976. Available at: https://doi.org/10.1021/jacs.1c11667.
Schreier, Mirjam R. et al. (2022) ‘Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry’, Accounts of Chemical Research, 55(9), pp. 1290–1300. Available at: https://doi.org/10.1021/acs.accounts.2c00075.
Sinha, Narayan et al. (2022) ‘Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds’, Journal of the American Chemical Society, 144(22), pp. 9859–9873. Available at: https://doi.org/10.1021/jacs.2c02592.
Wegeberg, Christina and Wenger, Oliver S. (2022) ‘Luminescent chromium(0) and manganese(i) complexes’, Dalton Transactions, 51(4), pp. 1297–1302. Available at: https://doi.org/10.1039/d1dt03763c.
Zhang, Lei et al. (2022) ‘Oxidase-Type C-H/C-H Coupling Using an Isoquinoline-Derived Organic Photocatalyst’, Angewandte Chemie International Edition, 61(20), p. e202202649. Available at: https://doi.org/10.1002/anie.202202649.
Sinha, Narayan et al. (2021) ‘Back Cover: A Near‐Infrared‐II Emissive Chromium(III) Complex (Angew. Chem. Int. Ed. 44/2021)’, Angewandte Chemie International Edition. 06.09.2021, 60(44), pp. 23920–23920. Available at: https://doi.org/10.1002/anie.202111510.
Bilger, Jakob B. et al. (2021) ‘A Photorobust Mo(0) Complex Mimicking [Os(2,2′-bipyridine)3]2+ and its Application in Red-to-Blue Upconversion’, Journal of the American Chemical Society, 143(3), pp. 1651–1663. Available at: https://doi.org/10.1021/jacs.0c12805.
Bürgin, Tobias H. and Wenger, Oliver S. (2021) ‘Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review’, Energy and Fuels, 35(23), pp. 18848–18856. Available at: https://doi.org/10.1021/acs.energyfuels.1c02073.
Glaser, Felix, Kerzig, Christoph and Wenger, Oliver S. (2021) ‘Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications’, Chemical Science, 12(29), pp. 9922–9933. Available at: https://doi.org/10.1039/d1sc02085d.
Herr, Patrick et al. (2021) ‘Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity’, Nature Chemistry, 13(10), pp. 956–962. Available at: https://doi.org/10.1038/s41557-021-00744-9.
Neumann, Svenja, Wenger, Oliver S. and Kerzig, Christoph (2021) ‘Controlling Spin-Correlated Radical Pairs with Donor-Acceptor Dyads: A New Concept to Generate Reduced Metal Complexes for More Efficient Photocatalysis’, Chemistry - A European Journal, 27(12), pp. 4115–4123. Available at: https://doi.org/10.1002/chem.202004638.
Schmid, Lucius et al. (2021) ‘Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis’, JACS Au, 1(6), pp. 819–832. Available at: https://doi.org/10.1021/jacsau.1c00137.
Sinha, Narayan et al. (2021) ‘A Near-Infrared-II Emissive Chromium(III) Complex’, Angewandte Chemie International Edition, 60(44), pp. 23722–23728. Available at: https://doi.org/10.1002/anie.202106398.
Wegeberg, Christina, Häussinger, Daniel and Wenger, Oliver S. (2021) ‘Pyrene-Decoration of a Chromium(0) Tris(diisocyanide) Enhances Excited State Delocalization: A Strategy to Improve the Photoluminescence of 3d6 Metal Complexes’, Journal of the American Chemical Society, 143(38), pp. 15800–15811. Available at: https://doi.org/10.1021/jacs.1c07345.
Wegeberg, Christina and Wenger, Oliver S. (2021) ‘Luminescent First-Row Transition Metal Complexes’, JACS Au, 1(11), pp. 1860–1876. Available at: https://doi.org/10.1021/jacsau.1c00353.
Wenger, Oliver S. (2021) ‘Photoactive nickel complexes in cross coupling catalysis’, Chemistry - A European Journal, 27(7), pp. 2270–2278. Available at: https://doi.org/10.1002/chem.202003974.
Heinze, K. and Wenger, O.S. (2020) ‘Light-Controlled Reactivity of Metal Complexes’, Inorganic Chemistry, 59(20), pp. 14627–14628. Available at: https://doi.org/10.1021/acs.inorgchem.0c02791.
Glaser, Felix, Kerzig, Christoph and Wenger, Oliver S. (2020) ‘Multiphotonen‐Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden’, Angewandte Chemie. 16.01.2020, 132(26), pp. 10350–10370. Available at: https://doi.org/10.1002/ange.201915762.
Brandl, Thomas et al. (2020) ‘Improved Photostability of a CuI Complex by Macrocyclization of the Phenanthroline Ligands’, Chemistry - A European Journal, 26(14), pp. 3119–3128. Available at: https://doi.org/10.1002/chem.201904754.
Fischer, Christian et al. (2020) ‘Modulation of Acridinium Organophotoredox Catalysts Guided by Photophysical Studies’, ACS Catalysis, 10(1), pp. 210–215. Available at: https://doi.org/10.1021/acscatal.9b03606.
García‐López, Victor et al. (2020) ‘Stimuli‐Responsive Resorcin[4]arene Cavitands: Toward Visible‐Light‐Activated Molecular Grippers’, Chemistry - A European Journal, 26(50), pp. 11451–11461. Available at: https://doi.org/10.1002/chem.202001788.
Glaser, Felix, Kerzig, Christoph and Wenger, Oliver S. (2020) ‘Multi‐Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods’, Angewandte Chemie International Edition, 59(26), pp. 10266–10284. Available at: https://doi.org/10.1002/anie.201915762.
Glaser, Felix et al. (2020) ‘Aryl dechlorination and defluorination with an organic super-photoreductant’, Photochemical and Photobiological Sciences, 19(8), pp. 1035–1041. Available at: https://doi.org/10.1039/d0pp00127a.
Glaser, Felix and Wenger, Oliver S. (2020) ‘Recent progress in the development of transition-metal based photoredox catalysts’, Coordination chemistry reviews, 405, p. 213129. Available at: https://doi.org/10.1016/j.ccr.2019.213129.
Herr, Patrick and Wenger, Oliver S. (2020) ‘Excited-State Relaxation in Luminescent Molybdenum(0) Complexes with Isocyanide Chelate Ligands’, Inorganics, 8(2), p. 14. Available at: https://doi.org/10.3390/inorganics8020014.
Hörmann, Fabian M. et al. (2020) ‘Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition’, Angewandte Chemie International Edition, 59(24), pp. 9659–9668. Available at: https://doi.org/10.1002/anie.202001634.
Hua, Shao-Ann et al. (2020) ‘Electrochemical and Photophysical Properties of Ruthenium(II) Complexes Equipped with Sulfurated Bipyridine Ligands’, Inorganic Chemistry, 59(7), pp. 4972–4984. Available at: https://doi.org/10.1021/acs.inorgchem.0c00220.
Larsen, Christopher B. et al. (2020) ‘Solvent-Mediated Activation/Deactivation of Photoinduced Electron-Transfer in a Molecular Dyad’, Inorganic Chemistry, 59(15), pp. 10430–10438. Available at: https://doi.org/10.1021/acs.inorgchem.0c00679.
Pfund, Björn et al. (2020) ‘UV Light Generation and Challenging Photoreactions Enabled by Upconversion in Water’, Journal of the American Chemical Society, 142(23), pp. 10468–10476. Available at: https://doi.org/10.1021/jacs.0c02835.
Schreier, Mirjam R. et al. (2020) ‘Photo-triggered hydrogen atom transfer from an iridium hydride complex to unactivated olefins’, Chemical Science, 11(32), pp. 8582–8594. Available at: https://doi.org/10.1039/d0sc01820a.
Wenger, Oliver S. (2020) ‘A bright future for photosensitizers’, Nature Chemistry, 12(4), pp. 323–324. Available at: https://doi.org/10.1038/s41557-020-0448-x.
Castrogiovanni, Alessandro et al. (2019) ‘Shortcuts for Electron-Transfer through the Secondary Structure of Helical Oligo-1,2-Naphthylenes’, Chemistry - A European Journal, 25, pp. 16748–16754. Available at: https://doi.org/10.1002/chem.201904771.
Herr, Patrick et al. (2019) ‘Long-Lived, Strongly Emissive, and Highly Reducing Excited States in Mo(0) Complexes with Chelating Isocyanides’, Journal of the American Chemical Society, 141(36), pp. 14394–14402. Available at: https://doi.org/10.1021/jacs.9b07373.
Irmler, Peter et al. (2019) ‘Four different emissions from a Pt(Bodipy)(PEt3)(2)(S-Pyrene) dyad’, Dalton Transactions, 48(4), pp. 1171–1174. Available at: https://doi.org/10.1039/c8dt04823a.
Irmler, Peter et al. (2019) ‘Directing energy transfer in Pt(bodipy)(mercaptopyrene) dyads’, Dalton Transactions, 48(31), pp. 11690–11705. Available at: https://doi.org/10.1039/c9dt01737b.
Kerzig, Christoph, Guo, Xingwei and Wenger, Oliver S. (2019) ‘Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis’, Journal of the American Chemical Society, 141(5), pp. 2122–2127. Available at: https://doi.org/10.1021/jacs.8b12223.
Kerzig, Christoph and Wenger, Oliver S. (2019) ‘Reactivity control of a photocatalytic system by changing the light intensity’, Chemical Science, 10(48), pp. 11023–11029. Available at: https://doi.org/10.1039/c9sc04584h.
Malzkuhn, Sabine et al. (2019) ‘Electron Transfer across o-Phenylene Wires’, Journal of Physical Chemistry A, 123(1), pp. 96–102. Available at: https://doi.org/10.1021/acs.jpca.8b11236.
Nemann, Svenja and Wenger, Oliver S. (2019) ‘Fundamentally Different Distance Dependences of Electron-Transfer Rates for Low and High Driving Forces’, Inorganic Chemistry, 58(1), pp. 855–860. Available at: https://doi.org/10.1021/acs.inorgchem.8b02973.
Neumann, Svenja, Kerzig, Christoph and Wenger, Oliver S. (2019) ‘Quantitative Insights into Charge-Separated States from One- and Two-Pulse Laser Experiments Relevant for Artificial Photosynthesis’, Chemical Science, 10(21), pp. 5624–5633. Available at: https://doi.org/10.1039/c9sc01381d.
Pannwitz, Andrea and Wenger, Oliver S. (2019) ‘Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis’, Chemical communications, 55(28), pp. 4004–4014. Available at: https://doi.org/10.1039/c9cc00821g.
Pannwitz, Andrea and Wenger, Oliver S. (2019) ‘Recent Advances in Bioinspired Proton-Coupled Electron Transfer’, Dalton Transactions, 48(18), pp. 5861–5868. Available at: https://doi.org/10.1039/c8dt04373f.
Skaisgirski, Michael et al. (2019) ‘Stepwise Photoinduced Electron Transfer in a Tetrathiafulvalene-Phenothiazine-Ruthenium Triad’, European Journal of Inorganic Chemistry, 2019(39-40), pp. 4256–4262. Available at: https://doi.org/10.1002/ejic.201900453.
Wenger, Oliver S. (2019) ‘Is Iron the New Ruthenium?’, Chemistry - A European Journal, 25(24), pp. 6043–6052. Available at: https://doi.org/10.1002/chem.201806148.
Suntrup, L. et al. (2018) ‘Influence of Mesoionic Carbenes on Electro- and Photoactive Ru and Os Complexes: A Combined (Spectro-)Electrochemical, Photochemical, and Computational Study’, Inorganic Chemistry, 57(21), pp. 13973–13984. Available at: https://doi.org/10.1021/acs.inorgchem.8b02551.
Schmidt, Hauke C., Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Back Cover: Electron Transfer around a Molecular Corner (Angew. Chem. Int. Ed. 22/2018)’, Angewandte Chemie International Edition. 17.04.2018, 57(22), pp. 6706–6706. Available at: https://doi.org/10.1002/anie.201803955.
Schmidt, Hauke C., Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Rücktitelbild: Elektronentransfer um eine molekulare Ecke (Angew. Chem. 22/2018)’, Angewandte Chemie. 17.04.2018, 130(22), pp. 6818–6818. Available at: https://doi.org/10.1002/ange.201803955.
Schmidt, Hauke C., Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Elektronentransfer um eine molekulare Ecke’, Angewandte Chemie. 27.02.2018, 130(22), pp. 6806–6810. Available at: https://doi.org/10.1002/ange.201800396.
Milić, J. et al. (2018) ‘Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding’, Chemistry - A European Journal, 24(6), pp. 1431–1440. Available at: https://doi.org/10.1002/chem.201704788.
Guo, Xingwei and Wenger, Oliver S. (2018) ‘Reduktive Aminierung durch Photoredoxkatalyse über polaritätsangepassten Wasserstoffatomtransfer’, Angewandte Chemie. 14.12.2017, 130(9), pp. 2494–2498. Available at: https://doi.org/10.1002/ange.201711467.
Guo, Xingwei et al. (2018) ‘Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network’, Chemical Science, 9, pp. 5052–5056. Available at: https://doi.org/10.1039/c8sc01561a.
Guo, Xingwei and Wenger, Oliver S. (2018) ‘Reductive Amination by Photoredox Catalysis and Polarity-Matched Hydrogen Atom Transfer’, Angewandte Chemie International Edition, 57(9), pp. 2469–2473. Available at: https://doi.org/10.1002/anie.201711467.
Kerzig, Christoph and Wenger, Oliver S. (2018) ‘Sensitized Triplet-Triplet Annihilation Upconversion in Water and its Application to Photochemical Transformations’, Chemical Science, 9(32), pp. 6670–6678. Available at: https://doi.org/10.1039/c8sc01829d.
Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements’, Chemistry - A European Journal, 24(9), pp. 2039–2058. Available at: https://doi.org/10.1002/chem.201703602.
Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Circular Photoinduced Electron Transfer in a Donor-Acceptor- Acceptor Triad’, Angewandte Chemie International Edition, 57(3), pp. 841–845. Available at: https://doi.org/10.1002/anie.201708207.
Larsen, Christopher B. and Wenger, Oliver S. (2018) ‘Photophysics and Photoredox Catalysis of a Homoleptic Rhenium(I) Tris(diisocyanide) Complex’, Inorganic Chemistry, 57(6), pp. 2965–2968. Available at: https://doi.org/10.1021/acs.inorgchem.7b03258.
Malzkuhn, Sabine and Wenger, Oliver S. (2018) ‘Luminescent Ni(0) complexes’, Coordination Chemistry Reviews, 359, pp. 52–56. Available at: https://doi.org/10.1016/j.ccr.2018.01.003.
Nomrowski, Julia, Guo, Xingwei and Wenger, Oliver S. (2018) ‘Charge Accumulation and Multi-Electron Potoredox Chemistry with a Sensitizer-Catalyst-Sensitizer Triad’, Chemistry - A European Journal, 24(53), pp. 14084–14087. Available at: https://doi.org/10.1002/chem.201804037.