Publications
142 found
Show per page
Boillat, Marc-Aurèle and Hauser, Peter C. (2024) ‘High Impedance Active Probe for High Voltages’, Hardware. 08.10.2024, 2(4), pp. 273–278. Available at: https://doi.org/10.3390/hardware2040013.
Boillat, Marc-Aurèle and Hauser, Peter C. (2024) ‘Study of a microwave induced plasma as a universal ion source for inorganic and organic mass spectrometry’, Analyst. 30.05.2024, 149(16), p. 4213–4221 . Available at: https://doi.org/10.1039/d4an00356j.
Raucci, A. et al. (2024) ‘Technical Evaluation of a Paper-Based Electrochemical Strip to Measure Nitrite Ions in the Forensic Field’, ACS Measurement Science Au, 4(1), pp. 136–143. Available at: https://doi.org/10.1021/acsmeasuresciau.3c00050.
Pigaiani, Nicola et al. (2024) ‘Post‐mortem formation of ethanol: Is 1‐propanol a reliable marker? A proof‐of‐concept study using an in vitro putrefactive environment setup’, Journal of Forensic Sciences. 06.02.2024, 69(3), pp. 974–985. Available at: https://doi.org/10.1111/1556-4029.15479.
Porpiglia, N.M. et al. (2024) ‘Chitosan derivatives as dynamic coatings for transferrin glycoform separation in capillary electrophoresis’, International Journal of Biological Macromolecules, 254. Available at: https://doi.org/10.1016/j.ijbiomac.2023.127888.
Obma, Apinya et al. (2023) ‘Measurement of sweat lactate levels in exercise and non-exercise activities using capillary electrophoresis system with contactless conductivity detection and cyclodextrin-modified buffer’, Arabian Journal of Chemistry, 16(11), p. 105255. Available at: https://doi.org/10.1016/j.arabjc.2023.105255.
Tagliaro, I. et al. (2023) ‘Chitosan Film Sensor for Ammonia Detection in Microdiffusion Analytical Devices’, Polymers, 15(21), p. 4238. Available at: https://doi.org/10.3390/polym15214238.
Boillat, Marc-Aurèle, Rakus, Julian M. and Hauser, Peter C. (2023) ‘Electrospray Ion Mobility Spectrometer Based on Flexible Printed-Circuit Board Electrodes with Improved Resolving Power’, Analytical Chemistry. 05.07.2023, 95(28), pp. 10777–10784. Available at: https://doi.org/10.1021/acs.analchem.3c01898.
Musile, G. et al. (2023) ‘Application of Paper-Based Microfluidic Analytical Devices (µPAD) in Forensic and Clinical Toxicology: A Review’, Biosensors, 13(7). Available at: https://doi.org/10.3390/bios13070743.
Musile, G. et al. (2023) ‘An origami microfluidic paper device for on-site assessment of urine tampering. First use of Nessler’s reagent for the colorimetric determination of creatinine’, Analytica Chimica Acta, 1237. Available at: https://doi.org/10.1016/j.aca.2022.340610.
Musile, G. et al. (2023) ‘Development and Validation of a Rapid Method for Identification of New Synthetic Cannabinoids in Hair Based on High-Performance Liquid Chromatography–Ion Trap Mass Spectrometry Using a Simplified User Interface’, Journal of Analytical Toxicology, 47(1), pp. 72–80. Available at: https://doi.org/10.1093/jat/bkac027.
Barreto, Diandra Nunes et al. (2022) ‘Reagent-less and sub-minute quantification of sulfite in food samples using substrate-integrated hollow waveguide gas sensors coupled to deep-UV LED’, Analytica Chimica Acta, 1236, p. 340596. Available at: https://doi.org/10.1016/j.aca.2022.340596.
Boillat, Marc-Aurèle and Hauser, Peter C. (2022) ‘CO2-measuring dongle’, HardwareX, 12, p. e00338. Available at: https://doi.org/10.1016/j.ohx.2022.e00338.
Chantipmanee, Nattapong, Boillat, Marc-Aurèle and Hauser, Peter C. (2022) ‘High voltage pulser for ion shutters in ion mobility spectrometry based on an optocoupler’, Review of Scientific Instruments, 93(7), p. 074703. Available at: https://doi.org/10.1063/5.0093479.
Chantipmanee, Nattapong, Furter, Jasmine S. and Hauser, Peter C. (2022) ‘Ambient ionization source based on a dielectric barrier discharge for direct testing of pharmaceuticals using ion mobility spectrometry’, Analytica Chimica Acta, 1195, p. 339432. Available at: https://doi.org/10.1016/j.aca.2022.339432.
Chantipmanee, Nattapong and Hauser, Peter C. (2022) ‘Determination of tobramycin in eye drops with an open-source hardware ion mobility spectrometer’, Analytical and Bioanalytical Chemistry, 414(14), pp. 4059–4066. Available at: https://doi.org/10.1007/s00216-022-04050-2.
Keeratirawee, Kanchalar, Furter, Jasmine S. and Hauser, Peter C. (2022) ‘Low-cost electronic circuitry for photoacoustic gas sensing’, HardwareX, 11, p. e00280. Available at: https://doi.org/10.1016/j.ohx.2022.e00280.
Keeratirawee, Kanchalar and Hauser, Peter C. (2022) ‘Determination of Binary Gas Mixtures by Measuring the Resonance Frequency in a Piezoelectric Tube’, Sensors, 22(4), p. 1691. Available at: https://doi.org/10.3390/s22041691.
Chantipmanee, Nattapong and Hauser, Peter C. (2021) ‘Development of simple drift tube design for ion mobility spectrometry based on flexible printed circuit board material’, ANALYTICA CHIMICA ACTA, 1170, p. 338626. Available at: https://doi.org/10.1016/j.aca.2021.338626.
Fukana, Nutnaree et al. (2021) ‘Contactless conductivity sensor as detector for microfluidic paper-based analytical device with application to unique rapid method for quantifying sulfite preservative’, Sensors and Actuators B: Chemical, 339. Available at: https://doi.org/10.1016/j.snb.2021.129838.
Furter, Jasmine S. and Hauser, Peter C. (2021) ‘Compact automated capillary electrophoresis instrument for coupling with mass spectrometry by using sheathless electrospray ionization’, JOURNAL OF CHROMATOGRAPHY A, 1656, p. 462533. Available at: https://doi.org/10.1016/j.chroma.2021.462533.
Hutanu, Andrei et al. (2021) ‘Methionine oxidation of proteins analyzed by affinity capillary electrophoresis in presence of silver(I) and gold(III) ions’, ELECTROPHORESIS, 42(11), pp. 1209–1216. Available at: https://doi.org/10.1002/elps.202000355.
Keeratirawee, Kanchalar and Hauser, Peter C. (2021) ‘Piezoelectric tube as resonant transducer for gas-phase photoacoustics’, ANALYTICA CHIMICA ACTA, 1147, pp. 165–169. Available at: https://doi.org/10.1016/j.aca.2020.12.063.
Keeratirawee, Kanchalar and Hauser, Peter C. (2021) ‘Photoacoustic detection of ozone with a red laser diode’, TALANTA, 223(Pt 2), p. 121890. Available at: https://doi.org/10.1016/j.talanta.2020.121890.
Chantipmanee, Nattapong and Hauser, Peter C. (2020) ‘Determination of ethylene by field asymmetric ion mobility spectrometry’, International journal for ion mobility spectrometry, 23(2), pp. 161–166. Available at: https://doi.org/10.1007/s12127-020-00267-y.
Chantipmanee, Nattapong et al. (2020) ‘Contactless conductivity detector from printed circuit board for paper-based analytical systems’, Talanta, 206, p. 120227. Available at: https://doi.org/10.1016/j.talanta.2019.120227.
Furter, Jasmine S., Boillat, Marc-Aurele and Hauser, Peter C. (2020) ‘Low-cost automated capillary electrophoresis instrument assembled from commercially available parts’, Electrophoresis, 41(24), pp. 2075–2082. Available at: https://doi.org/10.1002/elps.202000211.
Hauser, Peter C. and Kuban, Pavel (2020) ‘Capacitively coupled contactless conductivity detection for analytical techniques - Developments from 2018 to 2020’, Journal of Chromatography A, 1632, p. 461616. Available at: https://doi.org/10.1016/j.chroma.2020.461616.
Le, Thai Binh et al. (2020) ‘Low-cost and versatile analytical tool with purpose-made capillary electrophoresis coupled to contactless conductivity detection: Application to antibiotics quality control in Vietnam’, Electrophoresis, 41(23), pp. 1980–1990. Available at: https://doi.org/10.1002/elps.202000163.
Lienard-Mayor, Theo et al. (2020) ‘Modular instrumentation for capillary electrophoresis with laser induced fluorescence detection using plug-and-play microfluidic, electrophoretic and optic modules’, Analytica Chimica Acta, 1135, pp. 47–54. Available at: https://doi.org/10.1016/j.aca.2020.08.025.
Mantim, Thitirat et al. (2020) ‘Dual-Purpose Photometric-Conductivity Detector for Simultaneous and Sequential Measurements in Flow Analysis’, Molecules, 25(10), p. ARTN 2284. Available at: https://doi.org/10.3390/molecules25102284.
Pham, Thi Ngoc Mai et al. (2020) ‘Determination of carbapenem antibiotics using a purpose-made capillary electrophoresis instrument with contactless conductivity detection’, Journal of Pharmaceutical and Biomedical Analysis, 178, p. 112906. Available at: https://doi.org/10.1016/j.jpba.2019.112906.
Sonsa-ard, Thitaporn et al. (2020) ‘Contactless conductivity sensor employing moist paper as absorbent for in-situ detection of generated carbon dioxide gas’, Analytica Chimica Acta, 1118, pp. 44–51. Available at: https://doi.org/10.1016/j.aca.2020.04.044.
Fuiko, Roland et al. (2019) ‘Capillary electrophoresis for continuous nitrogen quantification in wastewater treatment processes’, Talanta, 195, pp. 366–371. Available at: https://doi.org/10.1016/j.talanta.2018.11.056.
Furter, Jasmine S. and Hauser, Peter C. (2019) ‘Interactive control of purpose built analytical instruments with Forth on microcontrollers - A tutorial’, Analytica chimica acta, 1058, pp. 18–28. Available at: https://doi.org/10.1016/j.aca.2018.10.071.
Furter, Jasmine S. and Hauser, Peter C. (2019) ‘Injection system for fast capillary electrophoresis based on pressure regulation with flow restrictors’, Electrophoresis, 40(3), pp. 410–413. Available at: https://doi.org/10.1002/elps.201800250.
Kuban, Pavel and Hauser, Peter C. (2019) ‘Contactless conductivity detection for analytical techniques: Developments from 2016 to 2018’, Electrophoresis, 40(1), pp. 124–139. Available at: https://doi.org/10.1002/elps.201800248.
Mai, Thanh Duc et al. (2019) ‘In-capillary immuno-preconcentration with circulating bio-functionalized magnetic beads for capillary electrophoresis’, ANALYTICA CHIMICA ACTA, 1062, pp. 156–164. Available at: https://doi.org/10.1016/j.aca.2019.02.006.
Nguyen, Thi Anh Huong et al. (2019) ‘Cost-effective capillary electrophoresis with contactless conductivity detection for quality control of beta-lactam antibiotics’, Journal of Chromatography A, 1605, p. 360356. Available at: https://doi.org/10.1016/j.chroma.2019.07.010.
da Silveira Petruci, Joao Flavio, Hauser, Peter C. and Cardoso, Arnaldo Alves (2018) ‘Colorimetric paper-based device for gaseous hydrogen cyanide quantification based on absorbance measurements’, Sensors and actuators. B, Chemical, 268, pp. 392–397. Available at: https://doi.org/10.1016/j.snb.2018.04.101.
Furter, Jasmine S. and Hauser, Peter C. (2018) ‘A low-cost ambient desorption/ionization source for mass-spectrometry based on a dielectric barrier discharge’, Analytical Methods, 10(23), pp. 2701–2711. Available at: https://doi.org/10.1039/c8ay00446c.
Kuban, Pavel and Hauser, Peter C. (2018) ‘20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis’, Trends in Analytical Chemistry, 102, pp. 311–321. Available at: https://doi.org/10.1016/j.trac.2018.03.007.
See, Hong Heng, Mamat, Nor Akma and Hauser, Peter C. (2018) ‘Flow Injection Analysis with Direct UV Detection Following Electric Field Driven Membrane Extraction’, Molecules, 23(5), p. 1000. Available at: https://doi.org/10.3390/molecules23051000.
Steinsberger, Thomas et al. (2018) ‘A portable low cost coulometric micro-titrator for the determination of alkalinity in lake and sediment porewaters’, Sensors and Actuators B: Chemical, 255, pp. 3558–3563. Available at: https://doi.org/10.1016/j.snb.2017.09.191.
Bui, Duy Anh, Kraiczek, Karsten G. and Hauser, Peter C. (2017) ‘Molecular absorption measurements with an optical fibre coupled array of ultra-violet light-emitting diodes’, Analytica Chimica Acta, 986, pp. 95–100. Available at: https://doi.org/10.1016/j.aca.2017.07.007.
Koenka, Israel Joel and Hauser, Peter C. (2017) ‘Background conductivity independent counter flow preconcentration method for capillary electrophoresis’, Electrophoresis, 38(21), pp. 2721–2724. Available at: https://doi.org/10.1002/elps.201700071.
Kuban, Pavel and Hauser, Peter C. (2017) ‘Contactless conductivity detection for analytical techniques Developments from 2014 to 2016’, Electrophoresis, 38(1), pp. 95–114. Available at: https://doi.org/10.1002/elps.201600280.
Petruci, Joao Flavio da Silveira et al. (2017) ‘Absorbance detector for high performance liquid chromatography based on a deep-UV light-emitting diode at 235 nm’, Journal of Chromatography A, 1512, pp. 143–146. Available at: https://doi.org/10.1016/j.chroma.2017.07.029.
Vu, Anh Phuong et al. (2017) ‘Clinical screening of paraquat in plasma samples using capillary electrophoresis with contactless conductivity detection: Towards rapid diagnosis and therapeutic treatment of acute paraquat poisoning in Vietnam’, Journal of Chromatography B, 1060, pp. 111–117. Available at: https://doi.org/10.1016/j.jchromb.2017.06.010.
Hauser, Peter C. (2017) ‘Analytical Methods for the Determination of Lead in the Environment’, in Sigel, Astrid; Sigel, Helmut; Sigel, Roland K. O. (ed.) Lead: Its Effects on Environment and Health. Berlin: De Gruyter (Metal Ions in Life Sciences), pp. 49–59. Available at: https://doi.org/10.1515/9783110434330-003.
Caslavska, Jitka et al. (2016) ‘Validation of CE modeling with a contactless conductivity array detector’, Electrophoresis, 37(5-6), pp. 699–710. Available at: https://doi.org/10.1002/elps.201500424.
Duy Anh Bui and Hauser, Peter C. (2016) ‘A deep-UV light-emitting diode-based absorption detector for benzene, toluene, ethylbenzene, and the xylene compounds’, Sensors and Actuators B: Chemical, 235, pp. 622–626. Available at: https://doi.org/10.1016/j.snb.2016.05.122.
Koenka, Israel Joel et al. (2016) ‘Thermostatted dual-channel portable capillary electrophoresis instrument’, Electrophoresis, 37(17-18), pp. 2368–75. Available at: https://doi.org/10.1002/elps.201600235.
Koenka, Israel Joel et al. (2016) ‘Simultaneous separation of cations and anions in capillary electrophoresis - recent applications’, Analytical Methods, 8(7), pp. 1452–1456. Available at: https://doi.org/10.1039/c5ay02917a.
Koenka, Israel Joel et al. (2016) ‘Microfluidic Breadboard Approach to Capillary Electrophoresis’, Analytical Chemistry, 88(7), pp. 3761–7. Available at: https://doi.org/10.1021/acs.analchem.5b04666.
Mai, Thanh Duc et al. (2016) ‘Triple-channel portable capillary electrophoresis instrument with individual background electrolytes for the concurrent separations of anionic and cationic species’, Analytica Chimica Acta, 911, pp. 121–8. Available at: https://doi.org/10.1016/j.aca.2016.01.029.
Nguyen, Thi Anh Huong et al. (2016) ‘Simultaneous determination of rare earth elements in ore and anti-corrosion coating samples using a portable capillary electrophoresis instrument with contactless conductivity detection’, Journal of Chromatography A, 1457, pp. 151–8. Available at: https://doi.org/10.1016/j.chroma.2016.06.050.
Torres, Natascha T. et al. (2016) ‘A Novel Method to Quantify Bioavailable Elements and Mobile ATP on Rock Surfaces and Lichens’, AIMS Geosciences, 2(3), pp. 245–258. Available at: https://doi.org/10.3934/geosci.2016.3.245.
Hauser, Peter C. (2016) ‘Determination of Alkali Ions in Biological and Environmental Samples’, in Sigel, A.; Sigel, H.; Sigel, R. K. O. (ed.) Alkali Metal Ions: Their Role for Life. Berlin: Springer (Metal Ions in Life Sciences), pp. 11–25. Available at: https://doi.org/10.1007/978-3-319-21756-7_2.
Bui, D. A. and Hauser, P. C. (2015) ‘Analytical devices based on light-emitting diodes - a review of the state-of-the-art’, Analytica chimica acta, 853, pp. 46–58. Available at: https://doi.org/10.1016/j.aca.2014.09.044.
Bui, Duy Anh and Hauser, Peter C (2015) ‘Deep UV-LED Based Absorbance Detectors for Narrow-Bore HPLC and Capillary Electrophoresis’, Chimia, 69(12), p. 806. Available at: https://doi.org/10.2533/chimia.2015.806.
Bui, Duy Anh and Hauser, Peter C (2015) ‘Absorbance detector for capillary electrophoresis based on light-emitting diodes and photodiodes for the deep-ultraviolet range’, Journal of Chromatography A, 1421, pp. 203–8. Available at: https://doi.org/10.1016/j.chroma.2015.06.005.
Duong, H. A. et al. (2015) ‘In-house-made capillary electrophoresis instruments coupled with contactless conductivity detection as a simple and inexpensive solution for water analysis: a case study in Vietnam’, Environmental Science: Processes & Impacts, 17(11), pp. 1941–51. Available at: https://doi.org/10.1039/c5em00362h.
Koenka, Israel Joel, Sáiz, Jorge and Hauser, Peter C (2015) ‘Instrumentino: An Open-Source Software for Scientific Instruments’, Chimia, 69(4), pp. 172–5. Available at: https://doi.org/10.2533/chimia.2015.172.
Kuban, P. and Hauser, P. C. (2015) ‘Contactless conductivity detection for analytical techniques-Developments from 2012 to 2014’, Electrophoresis, pp. 195–211. Available at: https://doi.org/10.1002/elps.201400336.
Nguyen, Thi Anh Huong et al. (2015) ‘Screening determination of four amphetamine-type drugs in street-grade illegal tablets and urine samples by portable capillary electrophoresis with contactless conductivity detection’, Science & justice, 55(6), pp. 481–6. Available at: https://doi.org/10.1016/j.scijus.2015.09.001.
Saiz, J. et al. (2015) ‘Micro-injector for capillary electrophoresis’, Electrophoresis, 36(16), pp. 1941–1944. Available at: https://doi.org/10.1002/elps.201400589.
Seitz, Peter et al. (2015) ‘4th International Symposium on Sensor Science (I3S2015): Conference Report’, Sensors, 15(9), pp. 24458–65. Available at: https://doi.org/10.3390/s150924458.
Torres, Natascha Tamara (2015) Applications of a portable capillary electrophoresis instrument in environmental science. . Translated by Hauser Peter C. Dissertation. Universität Basel.
Vontobel, S. F. et al. (2015) ‘Corneal Penetration of Polyhexamethylene Biguanide and Chlorhexidine Digluconate’, Journal of Clinical & Experimental Ophthalmology, p. 1000430. Available at: https://doi.org/10.4172/2155-9570.1000430.
Koenka, Israel Joel, Saiz, Jorge and Hauser, Peter C. (2014) ‘Instrumentino: An open-source modular Python framework for controlling Arduino based experimental instruments’, Computer physics communications, 185(10), pp. 2724–2729. Available at: https://doi.org/10.1016/j.cpc.2014.06.007.
Sáiz, Jorge et al. (2014) ‘Concurrent determination of anions and cations in consumer fireworks with a portable dual-capillary electrophoresis system’, Journal of chromatography A, 1372C, pp. 245–252. Available at: https://doi.org/10.1016/j.chroma.2014.10.085.
Saiz, Jorge et al. (2014) ‘Simultaneous separation of cations and anions in capillary electrophoresis’, Trends in Analytical Chemistry, 62, pp. 162–172. Available at: https://doi.org/10.1016/j.trac.2014.07.015.
See, Hong Heng and Hauser, Peter C (2014) ‘Automated Electric-Field-Driven Membrane Extraction System Coupled to Liquid Chromatography-Mass Spectrometry’, Analytical chemistry, 86(17), pp. 8665–70. Available at: https://doi.org/10.1021/ac5015589.
See, Hong Heng and Hauser, Peter C. (2014) ‘Electro-driven extraction of low levels of lipophilic organic anions and cations across plasticized cellulose triacetate membranes : effect of the membrane composition’, Journal of membrane science, 450, pp. 147–152. Available at: https://doi.org/10.1016/j.memsci.2013.08.043.
Stojkovic, Marko et al. (2014) ‘Contactless conductivity detector array for capillary electrophoresis’, Electrophoresis, 35(4), pp. 482–486. Available at: https://doi.org/10.1002/elps.201300457.
Thi Anh Huong Nguyen et al. (2014) ‘Simple semi-automated portable capillary electrophoresis instrument with contactless conductivity detection for the determination of beta-agonists in pharmaceutical and pig-feed samples’, Journal of chromatography A, 1360, pp. 305–311. Available at: https://doi.org/10.1016/j.chroma.2014.07.074.
Thi Thanh Thuy Pham et al. (2014) ‘Automated dual capillary electrophoresis system with hydrodynamic injeciton for the concurrent determination of cations and anions’, Analytica chimica acta, 841, pp. 77–83. Available at: https://doi.org/10.1016/j.aca.2014.05.046.
Torres, Natascha T. et al. (2014) ‘Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia’, Environmental Science : processes & impacts, 16(4), pp. 879–889. Available at: https://doi.org/10.1039/c3em00676j.
Anh Bui, Duy and Hauser, Peter C (2013) ‘Absorbance measurements with light-emitting diodes as sources: Silicon photodiodes or light-emitting diodes as detectors?’, Talanta, 116, pp. 1073–8. Available at: https://doi.org/10.1016/j.talanta.2013.08.007.
Ansari, Kambiz et al. (2013) ‘A portable lab-on-a-chip instrument based on MCE with dual topbottom capacitive coupled contactless conductivity detector in replaceable cell cartridge’, Electrophoresis, 34(9-10), pp. 1390–1399. Available at: https://doi.org/10.1002/elps.201200592.
Buglione, Lucia, See, Hong Heng and Hauser, Peter C (2013) ‘Rapid separation of fatty acids using a poly(vinyl alcohol) coated capillary in nonaqueous capillary electrophoresis with contactless conductivity detection’, Electrophoresis, 34(14), pp. 2072–7. Available at: https://doi.org/10.1002/elps.201300028.
Buglione, Lucia, See, Hong Heng and Hauser, Peter C (2013) ‘Study on the effects of electrolytes and solvents in the determination of quaternary ammonium ions by nonaqueous capillary electrophoresis with contactless conductivity detection’, Electrophoresis, 34(2), pp. 317–23. Available at: https://doi.org/10.1002/elps.201200397.
Bui, Duy Anh, Bomastyk, Benjamin and Hauser, Peter C (2013) ‘Absorbance detector based on a deep UV light emitting diode for narrow-column HPLC’, Journal of separation science, 36(19), pp. 3152–7. Available at: https://doi.org/10.1002/jssc.201300598.
Kamaruzaman, Sazlinda et al. (2013) ‘A simple microextraction and preconcentration approach based on a mixed matrix membrane’, Analytica chimica acta, 783, pp. 24–30. Available at: https://doi.org/10.1016/j.aca.2013.04.042.
Kubáň, Pavel and Hauser, Peter C (2013) ‘Contactless conductivity detection for analytical techniques : developments from 2010 to 2012’, Electrophoresis, 34(1), pp. 55–69. Available at: https://doi.org/10.1002/elps.201200358.
Mai, Thanh Duc and Hauser, Peter C (2013) ‘Study on the interrelated effects of capillary diameter, background electrolyte concentration, and flow rate in pressure assisted capillary electrophoresis with contactless conductivity detection’, Electrophoresis, 34(12), pp. 1796–803. Available at: https://doi.org/10.1002/elps.201200586.
Mai, Thanh Duc et al. (2013) ‘Portable Capillary Electrophoresis Instrument with Automated Injector and Contactless Conductivity Detection’, Analytical chemistry, 85(4), pp. 2333–9. Available at: https://doi.org/10.1021/ac303328g.
Sáiz, Jorge et al. (2013) ‘Determination of nitrogen mustard degradation products in water samples using a portable capillary electrophoresis instrument’, Electrophoresis, 34(14), pp. 2078–84. Available at: https://doi.org/10.1002/elps.201300054.
Sáiz, Jorge et al. (2013) ‘Rapid determination of scopolamine in evidence of recreational and predatory use’, Science & justice, 53(4), pp. 409–14. Available at: https://doi.org/10.1016/j.scijus.2013.08.001.
Schmidt-Marzinkowski, Julia, See, Hong Heng and Hauser, Peter C. (2013) ‘Electric Field Driven Extraction of Inorganic Anions Across a Polymer Inclusion Membrane’, Electroanalysis, 25(8), pp. 1879–1886. Available at: https://doi.org/10.1002/elan.201300176.
See, Hong Heng, Stratz, Simone and Hauser, Peter C (2013) ‘Electro-driven extraction across a polymer inclusion membrane in a flow-through cell’, Journal of chromatography A, 1300, pp. 79–84. Available at: https://doi.org/10.1016/j.chroma.2013.01.062.
Stojkovic, Marko (2013) Further development and applications of capillary electrophoresis with capacitively coupled contactless conductivity detection and sequential injection analysis in analytical chemistry. . Translated by Hauser Peter C. Dissertation. Universität Basel.
Stojkovic, Marko, Mai, Thanh Duc and Hauser, Peter C (2013) ‘Determination of artificial sweeteners by capillary electrophoresis with contactless conductivity detection optimized by hydrodynamic pumping’, Analytica chimica acta, 787, pp. 254–9. Available at: https://doi.org/10.1016/j.aca.2013.05.039.
Stojkovic, Marko, Schlensky, Boris and Hauser, Peter C. (2013) ‘Referenced Capacitively Coupled Conductivity Detector for Capillary Electrophoresis’, Electroanalysis, 25(12), pp. 2645–2650. Available at: https://doi.org/10.1002/elan.201300413.
Stojkovic, M. et al. (2013) ‘Determination of PCR Products by Capillary Electrophoresis with Contactless Conductivity Detection’, Chimia, 67(6), p. 428. Available at: https://doi.org/10.2533/chimia.2013.428.
Torres, Natascha T et al. (2013) ‘Sediment porewater extraction and analysis combining filter tube samplers and capillary electrophoresis’, Environmental Science, 15(4), pp. 715–20. Available at: https://doi.org/10.1039/c3em00068k.
Mai, Thanh Duc et al. (2012) ‘Automated capillary electrophoresis with on-line preconcentration by solid phase extraction using a sequential injection manifold and contactless conductivity detection’, Analytica Chimica Acta, 727, pp. 1–7. Available at: https://doi.org/10.1016/j.aca.2012.03.035.
Mai, Thanh Duc and Hauser, Peter C (2012) ‘Contactless conductivity detection for electrophoretic microseparation techniques’, The chemical record, 12(1), pp. 106–13. Available at: https://doi.org/10.1002/tcr.201100039.
Mai, Thanh Duc and Hauser, Peter C (2012) ‘Simultaneous separations of cations and anions by capillary electrophoresis with contactless conductivity detection employing a sequential injection analysis manifold for flexible manipulation of sample plugs’, Journal of chromatography A, 1267, pp. 266–72. Available at: https://doi.org/10.1016/j.chroma.2012.04.005.