Molecular Devices and Materials (Mayor)
Publications
277 found
Show per page
Rybakova, Olga et al. (2025) ‘Photocleavable Porphyrin Derivatives for Quantum Optics’, Helvetica Chimica Acta. 26.03.2025, p. Online ahead of print. Available at: https://doi.org/10.1002/hlca.202500022.
Rybakova, Olga et al. (2025) ‘Photocleavable Porphyrin Derivatives for Quantum Optics’, Helvetica Chimica Acta. 26.03.2025, p. Online ahead of print. Available at: https://doi.org/10.1002/hlca.202500022.
Kroonen, C.C.E. (2025) Weaving on molecular-scale: exploring the potential of a cross-shaped covalent template.
Kroonen, C.C.E. (2025) Weaving on molecular-scale: exploring the potential of a cross-shaped covalent template.
Kroonen, Camiel C. E. et al. (2024) ‘A cross-shaped organic framework: a multi-functional template arranging chromophores’, Organic Chemistry Frontiers. 04.12.2024, 12(5), pp. 1399–1408. Available at: https://doi.org/10.1039/d4qo01808g.
Kroonen, Camiel C. E. et al. (2024) ‘A cross-shaped organic framework: a multi-functional template arranging chromophores’, Organic Chemistry Frontiers. 04.12.2024, 12(5), pp. 1399–1408. Available at: https://doi.org/10.1039/d4qo01808g.
Kroonen, Camiel C. E. et al. (2024) ‘Toward Molecular Textiles: Synthesis and Characterization of Molecular Patches’, Chemistry – A European Journal. 26.09.2024, 30(69). Available at: https://doi.org/10.1002/chem.202402866.
Kroonen, Camiel C. E. et al. (2024) ‘Toward Molecular Textiles: Synthesis and Characterization of Molecular Patches’, Chemistry – A European Journal. 26.09.2024, 30(69). Available at: https://doi.org/10.1002/chem.202402866.
Abdel-Haq, W. (2024) Chemical vapour transport in open systems: a technique for the ‘in situ’ control of crystal morphologies in iron- and cobald silicides .
Abdel-Haq, W. (2024) Chemical vapour transport in open systems: a technique for the ‘in situ’ control of crystal morphologies in iron- and cobald silicides .
Hua, Y. (2024) Charge control of biomolecules by photocleavage in high vacuum.
Hua, Y. (2024) Charge control of biomolecules by photocleavage in high vacuum.
Hugo, M. (2024) Synthesis towards spherical molecules.
Hugo, M. (2024) Synthesis towards spherical molecules.
Kress, C. (2024) Intermolecular interactions of macrocyclic, supramolecular, and mechanically interlocked structures accessible via 1,3-butadiyne synthesis.
Kress, C. (2024) Intermolecular interactions of macrocyclic, supramolecular, and mechanically interlocked structures accessible via 1,3-butadiyne synthesis.
Reznikova, K. (2024) Tailor-made structures for molecular junctions:
from linear wires to molecular loops.
Reznikova, K. (2024) Tailor-made structures for molecular junctions:
from linear wires to molecular loops.
Vogel, D. (2024) Small molecules for interface engineering: tuning molecular transport characteristics and adhesion mechanisms
.
Vogel, D. (2024) Small molecules for interface engineering: tuning molecular transport characteristics and adhesion mechanisms
.
Lüder, L. (2023) Biochemical sensing based on metal-organic architectures.
Lüder, L. (2023) Biochemical sensing based on metal-organic architectures.
Ochs, Maximilian et al. (2023) ‘Site-selective functionalization of in-plane nanoelectrode-antennas’, Nanoscale, 15(11), pp. 5249–5256. Available at: https://doi.org/10.1039/d2nr06343c.
Ochs, Maximilian et al. (2023) ‘Site-selective functionalization of in-plane nanoelectrode-antennas’, Nanoscale, 15(11), pp. 5249–5256. Available at: https://doi.org/10.1039/d2nr06343c.
Peters, E.H. (2023) Monofunctionalized gold nanoparticles via branched thioether-based ligands .
Peters, E.H. (2023) Monofunctionalized gold nanoparticles via branched thioether-based ligands .
Peters, Erich Henrik and Mayor, Marcel (2023) ‘An organic cage controlling the dimension and stability of gold nanoparticles’, Chemical Communications, 59(33), pp. 4895–4898. Available at: https://doi.org/10.1039/d3cc00277b.
Peters, Erich Henrik and Mayor, Marcel (2023) ‘An organic cage controlling the dimension and stability of gold nanoparticles’, Chemical Communications, 59(33), pp. 4895–4898. Available at: https://doi.org/10.1039/d3cc00277b.
Prone, G. (2023) All-Dielectric Metasurfaces for Sensing Applications.
Prone, G. (2023) All-Dielectric Metasurfaces for Sensing Applications.
Sidler, E. (2023) The Power of Macrocyclic Chemistry: Delving into Unexplored Structures of Conjugated Rings.
Sidler, E. (2023) The Power of Macrocyclic Chemistry: Delving into Unexplored Structures of Conjugated Rings.
Bürgin, T.H. (2022) Photodriven Electron Transfer Processes with MLCT and Spin-Flip Excited States of d$^6$ and d$^3$ Polypyridine Complexes.
Bürgin, T.H. (2022) Photodriven Electron Transfer Processes with MLCT and Spin-Flip Excited States of d$^6$ and d$^3$ Polypyridine Complexes.
Daaoub, Abdalghani et al. (2022) ‘Engineering Transport Orbitals in Single-Molecule Junctions’, Journal of Physical Chemistry Letters, 13(39), pp. 9156–9164. Available at: https://doi.org/10.1021/acs.jpclett.2c01851.
Daaoub, Abdalghani et al. (2022) ‘Engineering Transport Orbitals in Single-Molecule Junctions’, Journal of Physical Chemistry Letters, 13(39), pp. 9156–9164. Available at: https://doi.org/10.1021/acs.jpclett.2c01851.
D’Addio, Adriano et al. (2022) ‘Geländer Molecules with Orthogonal Joints: Synthesis of Macrocyclic Dimers’, Chemistry - A European Journal, 28(56), p. e202201678. Available at: https://doi.org/10.1002/chem.202201678.
D’Addio, Adriano et al. (2022) ‘Geländer Molecules with Orthogonal Joints: Synthesis of Macrocyclic Dimers’, Chemistry - A European Journal, 28(56), p. e202201678. Available at: https://doi.org/10.1002/chem.202201678.
Degen, F. (2022) Twisted naphthyl ethynes for molecular conductance measurements.
Degen, F. (2022) Twisted naphthyl ethynes for molecular conductance measurements.
Hsu, Chunwei et al. (2022) ‘Magnetic-Field Universality of the Kondo Effect Revealed by Thermocurrent Spectroscopy’, Physical Review Letters, 128(14), p. 147701. Available at: https://doi.org/10.1103/physrevlett.128.147701.
Hsu, Chunwei et al. (2022) ‘Magnetic-Field Universality of the Kondo Effect Revealed by Thermocurrent Spectroscopy’, Physical Review Letters, 128(14), p. 147701. Available at: https://doi.org/10.1103/physrevlett.128.147701.
Hsu, Chunwei et al. (2022) ‘Mechanical compression in cofacial porphyrin cyclophane pincers’, Chemical Science, 13(27), pp. 8017–8024. Available at: https://doi.org/10.1039/d2sc00937d.
Hsu, Chunwei et al. (2022) ‘Mechanical compression in cofacial porphyrin cyclophane pincers’, Chemical Science, 13(27), pp. 8017–8024. Available at: https://doi.org/10.1039/d2sc00937d.
Huang, H.-H. (2022) Chiral Redox-Active Covalent Organic Cages.
Huang, H.-H. (2022) Chiral Redox-Active Covalent Organic Cages.
Jucker, L. (2022) Mechanically Interlocked Chromophores: Rotaxanes for Electrostatic Field Induced Supramolecular Translation.
Jucker, L. (2022) Mechanically Interlocked Chromophores: Rotaxanes for Electrostatic Field Induced Supramolecular Translation.
Jucker, Laurent et al. (2022) ‘Development of Rotaxanes as E-Field-Sensitive Superstructures in Plasmonic Nano-Antennas’, Organic Materials, 4(3), pp. 127–136. Available at: https://doi.org/10.1055/a-1927-8947.
Jucker, Laurent et al. (2022) ‘Development of Rotaxanes as E-Field-Sensitive Superstructures in Plasmonic Nano-Antennas’, Organic Materials, 4(3), pp. 127–136. Available at: https://doi.org/10.1055/a-1927-8947.
Malinčík, J. (2022) Chiral carbon nanohoops: topology, luminescence and aromaticity.
Malinčík, J. (2022) Chiral carbon nanohoops: topology, luminescence and aromaticity.
Malinčík, Juraj et al. (2022) ‘Circularly Polarized Luminescence in a Möbius Helicene Carbon Nanohoop’, Angewandte Chemie International Edition, 61(37), p. e202208591. Available at: https://doi.org/10.1002/anie.202208591.
Malinčík, Juraj et al. (2022) ‘Circularly Polarized Luminescence in a Möbius Helicene Carbon Nanohoop’, Angewandte Chemie International Edition, 61(37), p. e202208591. Available at: https://doi.org/10.1002/anie.202208591.
Prone, Giulia et al. (2022) ‘Scalable, Nanometer-Accurate Fabrication of All-Dielectric Metasurfaces with Narrow Resonances Tunable from Near Infrared to Visible Wavelengths’, Advanced Photonics Research, 3(9), p. 2200014. Available at: https://doi.org/10.1002/adpr.202200014.
Prone, Giulia et al. (2022) ‘Scalable, Nanometer-Accurate Fabrication of All-Dielectric Metasurfaces with Narrow Resonances Tunable from Near Infrared to Visible Wavelengths’, Advanced Photonics Research, 3(9), p. 2200014. Available at: https://doi.org/10.1002/adpr.202200014.
Schmid, L. (2022) Isocyanoborato Complexes of d6 Metals: Photophysics, Electronic Structures and Challenging Applications in Photocatalysis.
Schmid, L. (2022) Isocyanoborato Complexes of d6 Metals: Photophysics, Electronic Structures and Challenging Applications in Photocatalysis.
Schosser, Werner M. et al. (2022) ‘Mechanical conductance tunability of a porphyrin-cyclophane single-molecule junction’, Nanoscale, 14(3), pp. 984–992. Available at: https://doi.org/10.1039/d1nr06484c.
Schosser, Werner M. et al. (2022) ‘Mechanical conductance tunability of a porphyrin-cyclophane single-molecule junction’, Nanoscale, 14(3), pp. 984–992. Available at: https://doi.org/10.1039/d1nr06484c.
Sidler, Eric et al. (2022) ‘Intense Molar Circular Dichroism in Fully Conjugated All-Carbon Macrocyclic 1,3-Butadiyne Linked pseudo-meta [2.2]Paracyclophanes’, Chemistry - A European Journal, 28(53), p. e202201764. Available at: https://doi.org/10.1002/chem.202201764.
Sidler, Eric et al. (2022) ‘Intense Molar Circular Dichroism in Fully Conjugated All-Carbon Macrocyclic 1,3-Butadiyne Linked pseudo-meta [2.2]Paracyclophanes’, Chemistry - A European Journal, 28(53), p. e202201764. Available at: https://doi.org/10.1002/chem.202201764.
Vogel, David et al. (2022) ‘2,5-Diaryl 6-hydroxyphenalenones for Single-Molecule Junctions’, Organic Materials, 4(3), pp. 102–126. Available at: https://doi.org/10.1055/a-1926-6340.
Vogel, David et al. (2022) ‘2,5-Diaryl 6-hydroxyphenalenones for Single-Molecule Junctions’, Organic Materials, 4(3), pp. 102–126. Available at: https://doi.org/10.1055/a-1926-6340.
Balzer, N. (2021) Design, Synthesis and Evolution of Functional Tripodal Platforms for Single Molecule Devices.
Balzer, N. (2021) Design, Synthesis and Evolution of Functional Tripodal Platforms for Single Molecule Devices.
Balzer, Nico et al. (2021) ‘Synthesis and Surface Behaviour of NDI Chromophores Mounted on a Tripodal Scaffold: Towards Self-Decoupled Chromophores for Single-Molecule Electroluminescence’, Chemistry - A European Journal, 27(47), pp. 12144–12155. Available at: https://doi.org/10.1002/chem.202101264.
Balzer, Nico et al. (2021) ‘Synthesis and Surface Behaviour of NDI Chromophores Mounted on a Tripodal Scaffold: Towards Self-Decoupled Chromophores for Single-Molecule Electroluminescence’, Chemistry - A European Journal, 27(47), pp. 12144–12155. Available at: https://doi.org/10.1002/chem.202101264.
Bannwart, Linda Maria et al. (2021) ‘Bicyclic Phenyl-Ethynyl Architectures: Synthesis of a 1,4-Bis(phenylbuta-1,3-diyn-1-yl) Benzene Banister’, Chemistry - A European Journal, 27(20), pp. 6295–6307. Available at: https://doi.org/10.1002/chem.202005207.
Bannwart, Linda Maria et al. (2021) ‘Bicyclic Phenyl-Ethynyl Architectures: Synthesis of a 1,4-Bis(phenylbuta-1,3-diyn-1-yl) Benzene Banister’, Chemistry - A European Journal, 27(20), pp. 6295–6307. Available at: https://doi.org/10.1002/chem.202005207.
Dekkiche, Hervé et al. (2021) ‘An Ortho-Tetraphenylene-Based ‘Geländer’ Architecture Consisting Exclusively of 52 sp2-Hybridized C Atoms’, Chemistry - A European Journal, 27(52), pp. 13258–13267. Available at: https://doi.org/10.1002/chem.202101968.
Dekkiche, Hervé et al. (2021) ‘An Ortho-Tetraphenylene-Based ‘Geländer’ Architecture Consisting Exclusively of 52 sp2-Hybridized C Atoms’, Chemistry - A European Journal, 27(52), pp. 13258–13267. Available at: https://doi.org/10.1002/chem.202101968.
Di Silvestro, A. (2021) Weaving and Carrying:The Versatility of Tailored Transition-Metal Based Polypyridyl Complexes.
Di Silvestro, A. (2021) Weaving and Carrying:The Versatility of Tailored Transition-Metal Based Polypyridyl Complexes.
Frauhammer, Timo et al. (2021) ‘Addressing a lattice of rotatable molecular dipoles with the electric field of an STM tip’, Physical Chemistry Chemical Physics, 23(8), pp. 4874–4881. Available at: https://doi.org/10.1039/d0cp06146h.
Frauhammer, Timo et al. (2021) ‘Addressing a lattice of rotatable molecular dipoles with the electric field of an STM tip’, Physical Chemistry Chemical Physics, 23(8), pp. 4874–4881. Available at: https://doi.org/10.1039/d0cp06146h.
Jucker, Laurent, Aeschi, Yves and Mayor, Marcel (2021) ‘Aqueous assembly of a (pseudo)rotaxane with a donor-pi-acceptor axis formed by a Knoevenagel condensation’, Organic Chemistry Frontiers, 8(16), pp. 4399–4407. Available at: https://doi.org/10.1039/d1qo00643f.
Jucker, Laurent, Aeschi, Yves and Mayor, Marcel (2021) ‘Aqueous assembly of a (pseudo)rotaxane with a donor-pi-acceptor axis formed by a Knoevenagel condensation’, Organic Chemistry Frontiers, 8(16), pp. 4399–4407. Available at: https://doi.org/10.1039/d1qo00643f.
Mannancherry, Rajesh et al. (2021) ‘Sulfone ‘Geländer’ Helices: Revealing Unexpected Parameters Controlling the Enantiomerization Process’, Journal of Organic Chemistry, 86(8), pp. 5431–5442. Available at: https://doi.org/10.1021/acs.joc.0c03016.
Mannancherry, Rajesh et al. (2021) ‘Sulfone ‘Geländer’ Helices: Revealing Unexpected Parameters Controlling the Enantiomerization Process’, Journal of Organic Chemistry, 86(8), pp. 5431–5442. Available at: https://doi.org/10.1021/acs.joc.0c03016.
Peters, E. Henrik and Mayor, Marcel (2021) ‘Monofunctionalized Gold Nanoparticles: Fabrication and Applications’, Chimia, 75(5), pp. 414–426. Available at: https://doi.org/10.2533/chimia.2021.414.
Peters, E. Henrik and Mayor, Marcel (2021) ‘Monofunctionalized Gold Nanoparticles: Fabrication and Applications’, Chimia, 75(5), pp. 414–426. Available at: https://doi.org/10.2533/chimia.2021.414.
Pyurbeeva, Eugenia et al. (2021) ‘Controlling the Entropy of a Single-Molecule Junction’, Nano Letters, 21(22), pp. 9715–9719. Available at: https://doi.org/10.1021/acs.nanolett.1c03591.
Pyurbeeva, Eugenia et al. (2021) ‘Controlling the Entropy of a Single-Molecule Junction’, Nano Letters, 21(22), pp. 9715–9719. Available at: https://doi.org/10.1021/acs.nanolett.1c03591.
Reznikova, Ksenia et al. (2021) ‘Substitution Pattern Controlled Quantum Interference in [2.2]Paracyclophane-Based Single-Molecule Junctions’, Journal of the American Chemical Society, 143(34), pp. 13944–13951. Available at: https://doi.org/10.1021/jacs.1c06966.
Reznikova, Ksenia et al. (2021) ‘Substitution Pattern Controlled Quantum Interference in [2.2]Paracyclophane-Based Single-Molecule Junctions’, Journal of the American Chemical Society, 143(34), pp. 13944–13951. Available at: https://doi.org/10.1021/jacs.1c06966.
Scherrer, D. (2021) Silicon-based Plasmonic Surfaces and Flow Microreactors.
Scherrer, D. (2021) Silicon-based Plasmonic Surfaces and Flow Microreactors.
Scherrer, Dominik et al. (2021) ‘Monitoring Solid-Phase Reactions in Self-Assembled Monolayers by Surface-Enhanced Raman Spectroscopy’, Angewandte Chemie International Edition, 60(33), pp. 17981–17988. Available at: https://doi.org/10.1002/anie.202102319.
Scherrer, Dominik et al. (2021) ‘Monitoring Solid-Phase Reactions in Self-Assembled Monolayers by Surface-Enhanced Raman Spectroscopy’, Angewandte Chemie International Edition, 60(33), pp. 17981–17988. Available at: https://doi.org/10.1002/anie.202102319.
Sidler, Eric et al. (2021) ‘Induced axial chirality by a tight belt: naphthalene chromophores fixed in a 2,5-substituted cofacial para-phenylene-ethynylene framework’, Journal of materials chemistry C, 9(45), pp. 16199–16207. Available at: https://doi.org/10.1039/d1tc02180j.
Sidler, Eric et al. (2021) ‘Induced axial chirality by a tight belt: naphthalene chromophores fixed in a 2,5-substituted cofacial para-phenylene-ethynylene framework’, Journal of materials chemistry C, 9(45), pp. 16199–16207. Available at: https://doi.org/10.1039/d1tc02180j.
Xu, Liang et al. (2021) ‘Degradable Fluorene- and Carbazole-Based Copolymers for Selective Extraction of Semiconducting Single-Walled Carbon Nanotubes’, Macromolecules, 54(9), pp. 4363–4374. Available at: https://doi.org/10.1021/acs.macromol.1c00465.
Xu, Liang et al. (2021) ‘Degradable Fluorene- and Carbazole-Based Copolymers for Selective Extraction of Semiconducting Single-Walled Carbon Nanotubes’, Macromolecules, 54(9), pp. 4363–4374. Available at: https://doi.org/10.1021/acs.macromol.1c00465.
Xu, Liang et al. (2021) ‘Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene’, ACS Nano, 15(3), pp. 4699–4709. Available at: https://doi.org/10.1021/acsnano.0c09235.
Xu, Liang et al. (2021) ‘Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene’, ACS Nano, 15(3), pp. 4699–4709. Available at: https://doi.org/10.1021/acsnano.0c09235.
Zwick, P. (2021) Porphyrin Cyclophanes for Mechanosensitive Single-Molecule Junctions.
Zwick, P. (2021) Porphyrin Cyclophanes for Mechanosensitive Single-Molecule Junctions.
Zwick, Patrick et al. (2021) ‘Porphyrins as building blocks for single-molecule devices’, Nanoscale, 13(37), pp. 15500–15525. Available at: https://doi.org/10.1039/d1nr04523g.
Zwick, Patrick et al. (2021) ‘Porphyrins as building blocks for single-molecule devices’, Nanoscale, 13(37), pp. 15500–15525. Available at: https://doi.org/10.1039/d1nr04523g.
Aeschi, Y. (2020) Mechanically Interlocked Superstructures in Aqueous Solution: Daisy Chains and Rotaxanes.
Aeschi, Y. (2020) Mechanically Interlocked Superstructures in Aqueous Solution: Daisy Chains and Rotaxanes.
Bi, Hai et al. (2020) ‘Electron-Phonon Coupling in Current-Driven Single-Molecule Junctions’, Journal of the American Chemical Society, 142(7), pp. 3384–3391. Available at: https://doi.org/10.1021/jacs.9b07757.
Bi, Hai et al. (2020) ‘Electron-Phonon Coupling in Current-Driven Single-Molecule Junctions’, Journal of the American Chemical Society, 142(7), pp. 3384–3391. Available at: https://doi.org/10.1021/jacs.9b07757.
Brandl, T. (2020) Coordination sphere stabilization by macrocyclization of polypyridyl ligands. Available at: https://doi.org/10.5451/unibas-007229263.
Brandl, T. (2020) Coordination sphere stabilization by macrocyclization of polypyridyl ligands. Available at: https://doi.org/10.5451/unibas-007229263.
Brandl, Thomas et al. (2020) ‘Iron in a Cage: Fixation of a Fe(II)tpy2 Complex by Fourfold Interlinking’, Angewandte Chemie International Edition, 59(37), pp. 15947–15952. Available at: https://doi.org/10.1002/anie.202006340.
Brandl, Thomas et al. (2020) ‘Iron in a Cage: Fixation of a Fe(II)tpy2 Complex by Fourfold Interlinking’, Angewandte Chemie International Edition, 59(37), pp. 15947–15952. Available at: https://doi.org/10.1002/anie.202006340.
Brandl, Thomas et al. (2020) ‘Improved Photostability of a CuI Complex by Macrocyclization of the Phenanthroline Ligands’, Chemistry - A European Journal, 26(14), pp. 3119–3128. Available at: https://doi.org/10.1002/chem.201904754.
Brandl, Thomas et al. (2020) ‘Improved Photostability of a CuI Complex by Macrocyclization of the Phenanthroline Ligands’, Chemistry - A European Journal, 26(14), pp. 3119–3128. Available at: https://doi.org/10.1002/chem.201904754.
Delarue Bizzini, Lorenzo, Bürgi, Thomas and Mayor, Marcel (2020) ‘The Enantiomers of Trinorbornane and Derivatives Thereof’, Helvetica Chimica Acta, 103(3), p. e2000019. Available at: https://doi.org/10.1002/hlca.202000019.
Delarue Bizzini, Lorenzo, Bürgi, Thomas and Mayor, Marcel (2020) ‘The Enantiomers of Trinorbornane and Derivatives Thereof’, Helvetica Chimica Acta, 103(3), p. e2000019. Available at: https://doi.org/10.1002/hlca.202000019.
Jimenez, Vicente G. et al. (2020) ‘Dibenzocycloheptatriene as end-group of Thiele and tetrabenzo-Chichibabin hydrocarbons’, Chemical Communications, 56(84), pp. 12813–12816. Available at: https://doi.org/10.1039/d0cc04489j.
Jimenez, Vicente G. et al. (2020) ‘Dibenzocycloheptatriene as end-group of Thiele and tetrabenzo-Chichibabin hydrocarbons’, Chemical Communications, 56(84), pp. 12813–12816. Available at: https://doi.org/10.1039/d0cc04489j.
Peters, Erich Henrik and Mayor, Marcel (2020) ‘Alkyne-Monofunctionalized Gold Nanoparticles as Massive Molecular Building Blocks’, European Journal of Inorganic Chemistry, 2020(24), pp. 2325–2334. Available at: https://doi.org/10.1002/ejic.202000273.
Peters, Erich Henrik and Mayor, Marcel (2020) ‘Alkyne-Monofunctionalized Gold Nanoparticles as Massive Molecular Building Blocks’, European Journal of Inorganic Chemistry, 2020(24), pp. 2325–2334. Available at: https://doi.org/10.1002/ejic.202000273.
Prabodh, Amrutha et al. (2020) ‘Chirality sensing of terpenes, steroids, amino acids, peptides and drugs with acyclic cucurbit[n]urils and molecular tweezers’, Chemical Communications, 56(34), pp. 4652–4655. Available at: https://doi.org/10.1039/d0cc00707b.
Prabodh, Amrutha et al. (2020) ‘Chirality sensing of terpenes, steroids, amino acids, peptides and drugs with acyclic cucurbit[n]urils and molecular tweezers’, Chemical Communications, 56(34), pp. 4652–4655. Available at: https://doi.org/10.1039/d0cc00707b.
Schätti, Jonas et al. (2020) ‘Matter-wave interference and deflection of tripeptides decorated with fluorinated alkyl chains’, Journal of Mass Spectrometry, 55(6), p. e4514. Available at: https://doi.org/10.1002/jms.4514.
Schätti, Jonas et al. (2020) ‘Matter-wave interference and deflection of tripeptides decorated with fluorinated alkyl chains’, Journal of Mass Spectrometry, 55(6), p. e4514. Available at: https://doi.org/10.1002/jms.4514.
Xu, L. (2020) Degradable Fluorene-based Polymers for Highly Selective Sorting of Semiconducting Single-walled Carbon Nanotubes.
Xu, L. (2020) Degradable Fluorene-based Polymers for Highly Selective Sorting of Semiconducting Single-walled Carbon Nanotubes.
Zwick, Patrick et al. (2020) ‘Synthesis and Transport Studies of a Cofacial Porphyrin Cyclophane’, Journal of Organic Chemistry, 85(23), pp. 15072–15081. Available at: https://doi.org/10.1021/acs.joc.0c01957.
Zwick, Patrick et al. (2020) ‘Synthesis and Transport Studies of a Cofacial Porphyrin Cyclophane’, Journal of Organic Chemistry, 85(23), pp. 15072–15081. Available at: https://doi.org/10.1021/acs.joc.0c01957.
Zwick, Patrick et al. (2020) ‘Mechanical Fixation by Porphyrin Connection: Synthesis and Transport Studies of a Bicyclic Dimer’, Journal of Organic Chemistry, 85(1), pp. 118–128. Available at: https://doi.org/10.1021/acs.joc.9b02327.
Zwick, Patrick et al. (2020) ‘Mechanical Fixation by Porphyrin Connection: Synthesis and Transport Studies of a Bicyclic Dimer’, Journal of Organic Chemistry, 85(1), pp. 118–128. Available at: https://doi.org/10.1021/acs.joc.9b02327.
Aeschi, Yves et al. (2019) ‘Aqueous Assembly of Zwitterionic Daisy Chains’, Chemistry - A European Journal, 25(1), pp. 285–295. Available at: https://doi.org/10.1002/chem.201803944.
Aeschi, Yves et al. (2019) ‘Aqueous Assembly of Zwitterionic Daisy Chains’, Chemistry - A European Journal, 25(1), pp. 285–295. Available at: https://doi.org/10.1002/chem.201803944.
Aeschi, Yves et al. (2019) ‘Slow Formation of Pseudorotaxanes in Water’, European Journal of Organic Chemistry, 2019(21), pp. 3384–3390. Available at: https://doi.org/10.1002/ejoc.201801864.
Aeschi, Yves et al. (2019) ‘Slow Formation of Pseudorotaxanes in Water’, European Journal of Organic Chemistry, 2019(21), pp. 3384–3390. Available at: https://doi.org/10.1002/ejoc.201801864.
Bannwart, L.M. (2019) From Structural Beauty to Chemical Fragility: Diacetylene Bridged “Geländer” Oligomers.
Bannwart, L.M. (2019) From Structural Beauty to Chemical Fragility: Diacetylene Bridged “Geländer” Oligomers.
Bannwart, Linda M., Rieder, Pascal S. and Mayor, Marcel (2019) ‘2-(3-Cyanopropyldimethylsilyl)ethyl as a Polar Sulfur Protecting Group’, Synthesis, 51(22), pp. 4153–4164. Available at: https://doi.org/10.1055/s-0039-1690184.
Bannwart, Linda M., Rieder, Pascal S. and Mayor, Marcel (2019) ‘2-(3-Cyanopropyldimethylsilyl)ethyl as a Polar Sulfur Protecting Group’, Synthesis, 51(22), pp. 4153–4164. Available at: https://doi.org/10.1055/s-0039-1690184.
Brandl, Thomas et al. (2019) ‘Enhanced Separation Concept (ESC): Removing the Functional Subunit from the Electrode by Molecular Design’, European Journal of Organic Chemistry, 2019(31-32), pp. 5334–5343. Available at: https://doi.org/10.1002/ejoc.201900432.
Brandl, Thomas et al. (2019) ‘Enhanced Separation Concept (ESC): Removing the Functional Subunit from the Electrode by Molecular Design’, European Journal of Organic Chemistry, 2019(31-32), pp. 5334–5343. Available at: https://doi.org/10.1002/ejoc.201900432.
Delarue Bizzini, L. (2019) Polycyclic- and sulfurcontaining-compounds: from polycyclic hydrocarbons to thiaspherophane. Available at: https://doi.org/10.5451/unibas-007177103.
Delarue Bizzini, L. (2019) Polycyclic- and sulfurcontaining-compounds: from polycyclic hydrocarbons to thiaspherophane. Available at: https://doi.org/10.5451/unibas-007177103.
Delarue Bizzini, Lorenzo, Zwick, Patrick and Mayor, Marcel (2019) ‘Preparation of Unsymmetrical Disulfides from Thioacetates and Thiosulfonates’, European Journal of Organic Chemistry, 2019(41), pp. 6956–6960. Available at: https://doi.org/10.1002/ejoc.201901283.
Delarue Bizzini, Lorenzo, Zwick, Patrick and Mayor, Marcel (2019) ‘Preparation of Unsymmetrical Disulfides from Thioacetates and Thiosulfonates’, European Journal of Organic Chemistry, 2019(41), pp. 6956–6960. Available at: https://doi.org/10.1002/ejoc.201901283.
Di Silvestro, Alfredo and Mayor, Marcel (2019) ‘From the Loom to the Laboratory: Molecular Textiles’, Chimia, 73(6), pp. 455–461. Available at: https://doi.org/10.2533/chimia.2019.455.
Di Silvestro, Alfredo and Mayor, Marcel (2019) ‘From the Loom to the Laboratory: Molecular Textiles’, Chimia, 73(6), pp. 455–461. Available at: https://doi.org/10.2533/chimia.2019.455.
El Abbassi, Maria et al. (2019) ‘Unravelling the conductance path through single-porphyrin junctions’, Nanoscale, 10(36), pp. 8299–8305. Available at: https://doi.org/10.1039/c9sc02497b.
El Abbassi, Maria et al. (2019) ‘Unravelling the conductance path through single-porphyrin junctions’, Nanoscale, 10(36), pp. 8299–8305. Available at: https://doi.org/10.1039/c9sc02497b.
Fein, Yaakov Y. et al. (2019) ‘Quantum superposition of molecules beyond 25 kDa’, Nature Physics, 15(12), p. 1242–+. Available at: https://doi.org/10.1038/s41567-019-0663-9.
Fein, Yaakov Y. et al. (2019) ‘Quantum superposition of molecules beyond 25 kDa’, Nature Physics, 15(12), p. 1242–+. Available at: https://doi.org/10.1038/s41567-019-0663-9.
Galanti, Agostino et al. (2019) ‘A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes’, Journal of the American Chemical Society, 141(23), pp. 9273–9283. Available at: https://doi.org/10.1021/jacs.9b02544.
Galanti, Agostino et al. (2019) ‘A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes’, Journal of the American Chemical Society, 141(23), pp. 9273–9283. Available at: https://doi.org/10.1021/jacs.9b02544.
Hellstern, Manuel et al. (2019) ‘Electrochemical Multiplexing: Control over Surface Functionalization by Combining a Redox-Sensitive Alkyne Protection Group with ‘Click’-Chemistry’, Advanced Materials Interfaces, 6(5), p. 1801917. Available at: https://doi.org/10.1002/admi.201801917.
Hellstern, Manuel et al. (2019) ‘Electrochemical Multiplexing: Control over Surface Functionalization by Combining a Redox-Sensitive Alkyne Protection Group with ‘Click’-Chemistry’, Advanced Materials Interfaces, 6(5), p. 1801917. Available at: https://doi.org/10.1002/admi.201801917.
Homberg, Jan et al. (2019) ‘Six state molecular revolver mounted on a rigid platform’, Nanoscale, 11(18), pp. 9015–9022. Available at: https://doi.org/10.1039/c9nr00259f.
Homberg, Jan et al. (2019) ‘Six state molecular revolver mounted on a rigid platform’, Nanoscale, 11(18), pp. 9015–9022. Available at: https://doi.org/10.1039/c9nr00259f.
Hou, Ian Cheng-Yi et al. (2019) ‘Photomodulation of Two-Dimensional Self-Assembly of Azobenzene-Hexa-peri-hexabenzocoronene-Azobenzene Triads’, Chemistry of Materials, 31(17), pp. 6979–6985. Available at: https://doi.org/10.1021/acs.chemmater.9b01535.
Hou, Ian Cheng-Yi et al. (2019) ‘Photomodulation of Two-Dimensional Self-Assembly of Azobenzene-Hexa-peri-hexabenzocoronene-Azobenzene Triads’, Chemistry of Materials, 31(17), pp. 6979–6985. Available at: https://doi.org/10.1021/acs.chemmater.9b01535.
Knaak, Thomas et al. (2019) ‘Fragmentation and Distortion of Terpyridine-Based Spin-Crossover Complexes on Au(111)’, Journal of Physical Chemistry C, 123(7), pp. 4178–4185. Available at: https://doi.org/10.1021/acs.jpcc.8b11242.
Knaak, Thomas et al. (2019) ‘Fragmentation and Distortion of Terpyridine-Based Spin-Crossover Complexes on Au(111)’, Journal of Physical Chemistry C, 123(7), pp. 4178–4185. Available at: https://doi.org/10.1021/acs.jpcc.8b11242.
Kolivoška, Viliam et al. (2019) ‘Probabilistic mapping of single molecule junction configurations as a tool to achieve the desired geometry of asymmetric tripodal molecules’, Chemical Communications, 55(23), pp. 3351–3354. Available at: https://doi.org/10.1039/c8cc09681c.
Kolivoška, Viliam et al. (2019) ‘Probabilistic mapping of single molecule junction configurations as a tool to achieve the desired geometry of asymmetric tripodal molecules’, Chemical Communications, 55(23), pp. 3351–3354. Available at: https://doi.org/10.1039/c8cc09681c.
Luo, Yu-Cheng et al. (2019) ‘Heterogenization of Photochemical Molecular Devices: Embedding a Metal-Organic Cage into a ZIF-8-Derived Matrix To Promote Proton and Electron Transfer’, Journal of the American Chemical Society, 141(33), pp. 13057–13065. Available at: https://doi.org/10.1021/jacs.9b03981.
Luo, Yu-Cheng et al. (2019) ‘Heterogenization of Photochemical Molecular Devices: Embedding a Metal-Organic Cage into a ZIF-8-Derived Matrix To Promote Proton and Electron Transfer’, Journal of the American Chemical Society, 141(33), pp. 13057–13065. Available at: https://doi.org/10.1021/jacs.9b03981.
Mannancherry, R. (2019) Chiral carbon-rich architectures: from ‘Geländer’ molecules to pyrenophanes. Available at: https://doi.org/10.5451/unibas-007176523.
Mannancherry, R. (2019) Chiral carbon-rich architectures: from ‘Geländer’ molecules to pyrenophanes. Available at: https://doi.org/10.5451/unibas-007176523.
Mannancherry, Rajesh et al. (2019) ‘Molecular Ansa-Basket: Synthesis of Inherently Chiral All-Carbon [12](1,6)Pyrenophane’, Journal of Organic Chemistry, 84(9), pp. 5271–5276. Available at: https://doi.org/10.1021/acs.joc.9b00255.
Mannancherry, Rajesh et al. (2019) ‘Molecular Ansa-Basket: Synthesis of Inherently Chiral All-Carbon [12](1,6)Pyrenophane’, Journal of Organic Chemistry, 84(9), pp. 5271–5276. Available at: https://doi.org/10.1021/acs.joc.9b00255.
Ravat, Prince, Solomek, Tomas and Juricek, Michal (2019) ‘Helicenes as Chiroptical Photoswitches’, Chemphotochem, 3(4), pp. 180–186. Available at: https://doi.org/10.1002/cptc.201800229.
Ravat, Prince, Solomek, Tomas and Juricek, Michal (2019) ‘Helicenes as Chiroptical Photoswitches’, Chemphotochem, 3(4), pp. 180–186. Available at: https://doi.org/10.1002/cptc.201800229.
Ribar, P. (2019) Synthesis and study of molecules based on triangular graphene fragments. Available at: https://doi.org/10.5451/unibas-007176817.
Ribar, P. (2019) Synthesis and study of molecules based on triangular graphene fragments. Available at: https://doi.org/10.5451/unibas-007176817.
Ribar, Peter, Solomek, Tomas and Juricek, Michal (2019) ‘Gram-Scale Synthesis and Supramolecular Complex of Precursors of Clar’s Hydrocarbon Triangulene’, Organic Letters, 21(17), pp. 7124–7128. Available at: https://doi.org/10.1021/acs.orglett.9b02683.
Ribar, Peter, Solomek, Tomas and Juricek, Michal (2019) ‘Gram-Scale Synthesis and Supramolecular Complex of Precursors of Clar’s Hydrocarbon Triangulene’, Organic Letters, 21(17), pp. 7124–7128. Available at: https://doi.org/10.1021/acs.orglett.9b02683.
Santoro, J. (2019) Multi-photochromic systems based on azobenzene units: towards 2D and 3D photoresponsive materials. Available at: https://doi.org/10.5451/unibas-007134150.
Santoro, J. (2019) Multi-photochromic systems based on azobenzene units: towards 2D and 3D photoresponsive materials. Available at: https://doi.org/10.5451/unibas-007134150.
Schätti, J. (2019) Towards matter-wave experiments with biomolecules : generation and detection of neutral biomolecular beams. Available at: https://doi.org/10.5451/unibas-007156189.
Schätti, J. (2019) Towards matter-wave experiments with biomolecules : generation and detection of neutral biomolecular beams. Available at: https://doi.org/10.5451/unibas-007156189.
Sebera, Jakub et al. (2019) ‘Tuning the contact conductance of anchoring groups in single molecule junctions by molecular design’, Nanoscale, 11(27), pp. 12959–12964. Available at: https://doi.org/10.1039/c9nr04071d.
Sebera, Jakub et al. (2019) ‘Tuning the contact conductance of anchoring groups in single molecule junctions by molecular design’, Nanoscale, 11(27), pp. 12959–12964. Available at: https://doi.org/10.1039/c9nr04071d.
Weiland, Kevin J. et al. (2019) ‘Mechanical Stabilization of Helical Chirality in a Macrocyclic Oligothiophene’, Journal of the American Chemical Society, 141(5), pp. 2104–2110. Available at: https://doi.org/10.1021/jacs.8b11797.
Weiland, Kevin J. et al. (2019) ‘Mechanical Stabilization of Helical Chirality in a Macrocyclic Oligothiophene’, Journal of the American Chemical Society, 141(5), pp. 2104–2110. Available at: https://doi.org/10.1021/jacs.8b11797.
Weiland, Kevin J., Gallego, Almudena and Mayor, Marcel (2019) ‘Beyond Simple Substitution Patterns âEuro’ Symmetrically Tetrasubstituted [2.2]Paracyclophanes as 3D Functional Materials’, European Journal of Organic Chemistry, 2019(20), pp. 3073–3085. Available at: https://doi.org/10.1002/ejoc.201900061.
Weiland, Kevin J., Gallego, Almudena and Mayor, Marcel (2019) ‘Beyond Simple Substitution Patterns âEuro’ Symmetrically Tetrasubstituted [2.2]Paracyclophanes as 3D Functional Materials’, European Journal of Organic Chemistry, 2019(20), pp. 3073–3085. Available at: https://doi.org/10.1002/ejoc.201900061.
Weiland, Kevin J. et al. (2019) ‘A Chiral Macrocyclic Oligothiophene with Broken Conjugation âEuro’ Rapid Racemization through Internal Rotation’, Helvetica Chimica Acta, 102(1), p. e1800205. Available at: https://doi.org/10.1002/hlca.201800205.
Weiland, Kevin J. et al. (2019) ‘A Chiral Macrocyclic Oligothiophene with Broken Conjugation âEuro’ Rapid Racemization through Internal Rotation’, Helvetica Chimica Acta, 102(1), p. e1800205. Available at: https://doi.org/10.1002/hlca.201800205.
Bannwart, Linda Maria et al. (2018) ‘A Phenyl-Ethynyl-Macrocycle: A Model Compound for ‘Geländer’ Oligomers Comprising Reactive Conjugated Banisters’, European Journal of Organic Chemistry, 2018(26), pp. 3391–3402. Available at: https://doi.org/10.1002/ejoc.201800586.
Bannwart, Linda Maria et al. (2018) ‘A Phenyl-Ethynyl-Macrocycle: A Model Compound for ‘Geländer’ Oligomers Comprising Reactive Conjugated Banisters’, European Journal of Organic Chemistry, 2018(26), pp. 3391–3402. Available at: https://doi.org/10.1002/ejoc.201800586.
Bi, Hai et al. (2018) ‘Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction’, Journal of the American Chemical Society, 140(14), pp. 4835–4840. Available at: https://doi.org/10.1021/jacs.7b12818.
Bi, Hai et al. (2018) ‘Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction’, Journal of the American Chemical Society, 140(14), pp. 4835–4840. Available at: https://doi.org/10.1021/jacs.7b12818.
Brandl, Thomas et al. (2018) ‘Chiral macrocyclic terpyridine complexes’, Chemical Science, 9(15), pp. 3837–3843. Available at: https://doi.org/10.1039/c7sc05285e.
Brandl, Thomas et al. (2018) ‘Chiral macrocyclic terpyridine complexes’, Chemical Science, 9(15), pp. 3837–3843. Available at: https://doi.org/10.1039/c7sc05285e.
Debiossac, M. et al. (2018) ‘Tailored photocleavable peptides: fragmentation and neutralization pathways in high vacuum’, Physical Chemistry Chemical Physics, 20(16), pp. 11412–11417. Available at: https://doi.org/10.1039/c8cp01058g.
Debiossac, M. et al. (2018) ‘Tailored photocleavable peptides: fragmentation and neutralization pathways in high vacuum’, Physical Chemistry Chemical Physics, 20(16), pp. 11412–11417. Available at: https://doi.org/10.1039/c8cp01058g.
Galanti, Agostino et al. (2018) ‘Electronic Decoupling in C; 3; -Symmetrical Light-Responsive Tris(Azobenzene) Scaffolds: Self-Assembly and Multiphotochromism’, Journal of American Chemical Society, 140(47), pp. 16062–16070. Available at: https://doi.org/10.1021/jacs.8b06324.
Galanti, Agostino et al. (2018) ‘Electronic Decoupling in C; 3; -Symmetrical Light-Responsive Tris(Azobenzene) Scaffolds: Self-Assembly and Multiphotochromism’, Journal of American Chemical Society, 140(47), pp. 16062–16070. Available at: https://doi.org/10.1021/jacs.8b06324.
Mannancherry, Rajesh et al. (2018) ‘Molecular dynamic staircases: all-carbon axial chiral ‘Geländer’ structures’, Chemical Science, 9(26), pp. 5758–5766. Available at: https://doi.org/10.1039/c8sc01707g.
Mannancherry, Rajesh et al. (2018) ‘Molecular dynamic staircases: all-carbon axial chiral ‘Geländer’ structures’, Chemical Science, 9(26), pp. 5758–5766. Available at: https://doi.org/10.1039/c8sc01707g.
Peters, Erich Henrik, Lehmann, Mario and Mayor, Marcel (2018) ‘Gold Nanoparticles Stabilized by Single Tripodal Ligands’, Particle & Particle Systems Characterization, 35(4), p. 1800015. Available at: https://doi.org/10.1002/ppsc.201800015.
Peters, Erich Henrik, Lehmann, Mario and Mayor, Marcel (2018) ‘Gold Nanoparticles Stabilized by Single Tripodal Ligands’, Particle & Particle Systems Characterization, 35(4), p. 1800015. Available at: https://doi.org/10.1002/ppsc.201800015.
Puebla-Hellmann, Gabriel et al. (2018) ‘Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices’, Nature, 559(7713), pp. 232–235. Available at: https://doi.org/10.1038/s41586-018-0275-z.
Puebla-Hellmann, Gabriel et al. (2018) ‘Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices’, Nature, 559(7713), pp. 232–235. Available at: https://doi.org/10.1038/s41586-018-0275-z.
Rodewald, Jonas et al. (2018) ‘Isotope-selective high-order interferometry with large organic molecules in free fall’, New journal of physics, 20(3), p. 033016. Available at: https://doi.org/10.1088/1367-2630/aaade2.
Rodewald, Jonas et al. (2018) ‘Isotope-selective high-order interferometry with large organic molecules in free fall’, New journal of physics, 20(3), p. 033016. Available at: https://doi.org/10.1088/1367-2630/aaade2.