Physikalische Chemie (Meuwly)
Publications
212 found
Show per page
Töpfer, Kai et al. (2024) ‘Energy relaxation of N2O in gaseous, supercritical, and liquid xenon and SF6’, The Journal of Chemical Physics. 11.11.2024, 161(18). Available at: https://doi.org/10.1063/5.0235760.
Töpfer, Kai et al. (2024) ‘Energy relaxation of N2O in gaseous, supercritical, and liquid xenon and SF6’, The Journal of Chemical Physics. 11.11.2024, 161(18). Available at: https://doi.org/10.1063/5.0235760.
Töpfer, Kai et al. (2024) ‘Force Fields for Deep Eutectic Mixtures: Application to Structure, Thermodynamics and 2D-Infrared Spectroscopy’, The Journal of Physical Chemistry B. 24.10.2024, 128(44), pp. 10937–10949. Available at: https://doi.org/10.1021/acs.jpcb.4c05480.
Töpfer, Kai et al. (2024) ‘Force Fields for Deep Eutectic Mixtures: Application to Structure, Thermodynamics and 2D-Infrared Spectroscopy’, The Journal of Physical Chemistry B. 24.10.2024, 128(44), pp. 10937–10949. Available at: https://doi.org/10.1021/acs.jpcb.4c05480.
Boittier, Eric et al. (2024) ‘Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations’, Journal of Chemical Theory and Computation. 04.09.2024, 20(18), pp. 8088–8099. Available at: https://doi.org/10.1021/acs.jctc.4c00759.
Boittier, Eric et al. (2024) ‘Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations’, Journal of Chemical Theory and Computation. 04.09.2024, 20(18), pp. 8088–8099. Available at: https://doi.org/10.1021/acs.jctc.4c00759.
Meenu Upadhyay and Markus Meuwly (2024) ‘CO2 and NO2 formation on amorphous solid water’, Astronomy & Astrophysics. 23.09.2024, 689. Available at: https://doi.org/10.1051/0004-6361/202450091.
Meenu Upadhyay and Markus Meuwly (2024) ‘CO2 and NO2 formation on amorphous solid water’, Astronomy & Astrophysics. 23.09.2024, 689. Available at: https://doi.org/10.1051/0004-6361/202450091.
Aydin, Sena et al. (2024) ‘SCN as a local probe of protein structural dynamics’, The Journal of Chemical Physics. 02.08.2024, 161. Available at: https://doi.org/10.1063/5.0216657.
Aydin, Sena et al. (2024) ‘SCN as a local probe of protein structural dynamics’, The Journal of Chemical Physics. 02.08.2024, 161. Available at: https://doi.org/10.1063/5.0216657.
Wang, JingChun, San Vicente Veliz, Juan Carlos and Meuwly, Markus (2024) ‘High-Energy Reaction Dynamics of N 3’, The Journal of Physical Chemistry A. 25.07.2024, 128(39), pp. 8322–8332. Available at: https://doi.org/10.1021/acs.jpca.4c02841.
Wang, JingChun, San Vicente Veliz, Juan Carlos and Meuwly, Markus (2024) ‘High-Energy Reaction Dynamics of N 3’, The Journal of Physical Chemistry A. 25.07.2024, 128(39), pp. 8322–8332. Available at: https://doi.org/10.1021/acs.jpca.4c02841.
Devereux, Mike, Boittier, Eric D. and Meuwly, Markus (2024) ‘Systematic improvement of empirical energy functions in the era of machine learning’, Journal of Computational Chemistry. 02.05.2024, 45(22), pp. 1899–1913. Available at: https://doi.org/10.1002/jcc.27367.
Devereux, Mike, Boittier, Eric D. and Meuwly, Markus (2024) ‘Systematic improvement of empirical energy functions in the era of machine learning’, Journal of Computational Chemistry. 02.05.2024, 45(22), pp. 1899–1913. Available at: https://doi.org/10.1002/jcc.27367.
Käser, S. and Meuwly, M. (2024) ‘Numerical Accuracy Matters: Applications of Machine Learned Potential Energy Surfaces’, Journal of Physical Chemistry Letters, 15(12), pp. 3419–3424. Available at: https://doi.org/10.1021/acs.jpclett.3c03405.
Käser, S. and Meuwly, M. (2024) ‘Numerical Accuracy Matters: Applications of Machine Learned Potential Energy Surfaces’, Journal of Physical Chemistry Letters, 15(12), pp. 3419–3424. Available at: https://doi.org/10.1021/acs.jpclett.3c03405.
Horn, K.P. et al. (2024) ‘Improving potential energy surfaces using measured Feshbach resonance states’, Science Advances, 10(9). Available at: https://doi.org/10.1126/sciadv.adi6462.
Horn, K.P. et al. (2024) ‘Improving potential energy surfaces using measured Feshbach resonance states’, Science Advances, 10(9). Available at: https://doi.org/10.1126/sciadv.adi6462.
Upadhyay, M., Töpfer, K. and Meuwly, M. (2024) ‘Molecular Simulation for Atmospheric Reactions: Non-Equilibrium Dynamics, Roaming, and Glycolaldehyde Formation following Photoinduced Decomposition of syn-Acetaldehyde Oxide’, Journal of Physical Chemistry Letters, 15(1), pp. 90–96. Available at: https://doi.org/10.1021/acs.jpclett.3c03131.
Upadhyay, M., Töpfer, K. and Meuwly, M. (2024) ‘Molecular Simulation for Atmospheric Reactions: Non-Equilibrium Dynamics, Roaming, and Glycolaldehyde Formation following Photoinduced Decomposition of syn-Acetaldehyde Oxide’, Journal of Physical Chemistry Letters, 15(1), pp. 90–96. Available at: https://doi.org/10.1021/acs.jpclett.3c03131.
Boittier, Eric et al. (2024) ‘Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2406.00513.
Boittier, Eric et al. (2024) ‘Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2406.00513.
Hwang, W. et al. (2024) ‘CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed’, Journal of Physical Chemistry B [Preprint]. Available at: https://doi.org/10.1021/acs.jpcb.4c04100.
Hwang, W. et al. (2024) ‘CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed’, Journal of Physical Chemistry B [Preprint]. Available at: https://doi.org/10.1021/acs.jpcb.4c04100.
Song, Kaisheng, Upadhyay, Meenu and Meuwly, Markus (2024) ‘OH-Formation following vibrationally induced reaction dynamics of H₂COO’, Physical Chemistry Chemical Physics. 11.04.2024, 26(16), p. 12698–12708 . Available at: https://doi.org/10.1039/d4cp00739e.
Song, Kaisheng, Upadhyay, Meenu and Meuwly, Markus (2024) ‘OH-Formation following vibrationally induced reaction dynamics of H₂COO’, Physical Chemistry Chemical Physics. 11.04.2024, 26(16), p. 12698–12708 . Available at: https://doi.org/10.1039/d4cp00739e.
Töpfer, Kai et al. (2024) ‘Force Fields for Deep Eutectic Mixtures: Application to Structure and 2D-Infrared Spectroscopy’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.1021/acs.jpcb.4c05480.
Töpfer, Kai et al. (2024) ‘Force Fields for Deep Eutectic Mixtures: Application to Structure and 2D-Infrared Spectroscopy’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.1021/acs.jpcb.4c05480.
Wang, JingChun, San Vicente Veliz, Juan Carlos and Meuwly, Markus (2024) ‘High-Energy Reaction Dynamics of N3’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2404.18877.
Wang, JingChun, San Vicente Veliz, Juan Carlos and Meuwly, Markus (2024) ‘High-Energy Reaction Dynamics of N3’, Arxiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arXiv.2404.18877.
Caracciolo, Adriana et al. (2023) ‘Experimental and Theoretical Studies of Hyperthermal N + O<sub>2</sub> Collisions’, The Journal of Physical Chemistry A. 16.10.2023, 127(42), pp. 8834–8848. Available at: https://doi.org/10.1021/acs.jpca.3c04516.
Caracciolo, Adriana et al. (2023) ‘Experimental and Theoretical Studies of Hyperthermal N + O<sub>2</sub> Collisions’, The Journal of Physical Chemistry A. 16.10.2023, 127(42), pp. 8834–8848. Available at: https://doi.org/10.1021/acs.jpca.3c04516.
Song, K. et al. (2023) ‘PhysNet meets CHARMM: A framework for routine machine learning/molecular mechanics simulations’, Journal of Chemical Physics, 159(2). Available at: https://doi.org/10.1063/5.0155992.
Song, K. et al. (2023) ‘PhysNet meets CHARMM: A framework for routine machine learning/molecular mechanics simulations’, Journal of Chemical Physics, 159(2). Available at: https://doi.org/10.1063/5.0155992.
Käser, S. and Meuwly, M. (2023) ‘Transfer-learned potential energy surfaces: Toward microsecond-scale molecular dynamics simulations in the gas phase at CCSD(T) quality’, Journal of Chemical Physics, 158(21). Available at: https://doi.org/10.1063/5.0151266.
Käser, S. and Meuwly, M. (2023) ‘Transfer-learned potential energy surfaces: Toward microsecond-scale molecular dynamics simulations in the gas phase at CCSD(T) quality’, Journal of Chemical Physics, 158(21). Available at: https://doi.org/10.1063/5.0151266.
Hickson, K.M. et al. (2023) ‘Low-temperature kinetics for the N + NO reaction: experiment guides the way’, Physical Chemistry Chemical Physics, 25(20), pp. 13854–13863. Available at: https://doi.org/10.1039/d3cp00584d.
Hickson, K.M. et al. (2023) ‘Low-temperature kinetics for the N + NO reaction: experiment guides the way’, Physical Chemistry Chemical Physics, 25(20), pp. 13854–13863. Available at: https://doi.org/10.1039/d3cp00584d.
Töpfer, K. et al. (2023) ‘Molecular-level understanding of the rovibrational spectra of N2O in gaseous, supercritical, and liquid SF6and Xe’, Journal of Chemical Physics, 158(14). Available at: https://doi.org/10.1063/5.0143395.
Töpfer, K. et al. (2023) ‘Molecular-level understanding of the rovibrational spectra of N2O in gaseous, supercritical, and liquid SF6and Xe’, Journal of Chemical Physics, 158(14). Available at: https://doi.org/10.1063/5.0143395.
Margulis, B. et al. (2023) ‘Tomography of Feshbach resonance states’, Science, 380(6640), pp. 77–81. Available at: https://doi.org/10.1126/science.adf9888.
Margulis, B. et al. (2023) ‘Tomography of Feshbach resonance states’, Science, 380(6640), pp. 77–81. Available at: https://doi.org/10.1126/science.adf9888.
Turan, H.T., Boittier, E. and Meuwly, M. (2023) ‘Interaction at a distance: Xenon migration in Mb’, Journal of Chemical Physics, 158(12). Available at: https://doi.org/10.1063/5.0124502.
Turan, H.T., Boittier, E. and Meuwly, M. (2023) ‘Interaction at a distance: Xenon migration in Mb’, Journal of Chemical Physics, 158(12). Available at: https://doi.org/10.1063/5.0124502.
Turan, H.T. and Meuwly, M. (2023) ‘Local Hydration Control and Functional Implications Through S-Nitrosylation of Proteins: Kirsten Rat Sarcoma Virus (K-RAS) and Hemoglobin (Hb)’, Journal of Physical Chemistry B, 127(7), pp. 1526–1539. Available at: https://doi.org/10.1021/acs.jpcb.2c07371.
Turan, H.T. and Meuwly, M. (2023) ‘Local Hydration Control and Functional Implications Through S-Nitrosylation of Proteins: Kirsten Rat Sarcoma Virus (K-RAS) and Hemoglobin (Hb)’, Journal of Physical Chemistry B, 127(7), pp. 1526–1539. Available at: https://doi.org/10.1021/acs.jpcb.2c07371.
Käser, S. et al. (2023) ‘Neural network potentials for chemistry: concepts, applications and prospects’, Digital Discovery, 2(1), pp. 28–58. Available at: https://doi.org/10.1039/d2dd00102k.
Käser, S. et al. (2023) ‘Neural network potentials for chemistry: concepts, applications and prospects’, Digital Discovery, 2(1), pp. 28–58. Available at: https://doi.org/10.1039/d2dd00102k.
Salehi, S.M. et al. (2023) ‘Water dynamics around T0vs R4of hemoglobin from local hydrophobicity analysis’, Journal of Chemical Physics, 158(2). Available at: https://doi.org/10.1063/5.0129990.
Salehi, S.M. et al. (2023) ‘Water dynamics around T0vs R4of hemoglobin from local hydrophobicity analysis’, Journal of Chemical Physics, 158(2). Available at: https://doi.org/10.1063/5.0129990.
Boittier, Eric D., Devereux, Mike and Meuwly, Markus (2022) ‘Molecular Dynamics with Conformationally Dependent, Distributed Charges’, Journal of Chemical Theory and Computation. 08.11.2022, 18(12), pp. 7544–7554. Available at: https://doi.org/10.1021/acs.jctc.2c00693.
Boittier, Eric D., Devereux, Mike and Meuwly, Markus (2022) ‘Molecular Dynamics with Conformationally Dependent, Distributed Charges’, Journal of Chemical Theory and Computation. 08.11.2022, 18(12), pp. 7544–7554. Available at: https://doi.org/10.1021/acs.jctc.2c00693.
Goswami, Sugata et al. (2022) ‘Quantum and quasi-classical dynamics of the C(3P) + O2(3Σ −g) → CO(1Σ+) + O(1D) reaction on its electronic ground state’, Physical Chemistry Chemical Physics, 24(38), pp. 23309–23322. Available at: https://doi.org/10.1039/d2cp02840a.
Goswami, Sugata et al. (2022) ‘Quantum and quasi-classical dynamics of the C(3P) + O2(3Σ −g) → CO(1Σ+) + O(1D) reaction on its electronic ground state’, Physical Chemistry Chemical Physics, 24(38), pp. 23309–23322. Available at: https://doi.org/10.1039/d2cp02840a.
Käser, Silvan and Meuwly, Markus (2022) ‘Correction: Transfer Learned Potential Energy Surfaces: Accurate Anharmonic Vibrational Dynamics and Dissociation Energies for the Formic Acid Monomer and Dimer’, Physical Chemistry Chemical Physics, 24(29), p. 17899. Available at: https://doi.org/10.1039/d2cp90126a.
Käser, Silvan and Meuwly, Markus (2022) ‘Correction: Transfer Learned Potential Energy Surfaces: Accurate Anharmonic Vibrational Dynamics and Dissociation Energies for the Formic Acid Monomer and Dimer’, Physical Chemistry Chemical Physics, 24(29), p. 17899. Available at: https://doi.org/10.1039/d2cp90126a.
Käser, Silvan, Richardson, Jeremy O. and Meuwly, Markus (2022) ‘Transfer Learning for Affordable and High Quality Tunneling Splittings from Instanton Calculations’, Journal of Chemical Theory and Computation, 18(11), pp. 6840–6850. Available at: https://doi.org/10.1021/acs.jctc.2c00790.
Käser, Silvan, Richardson, Jeremy O. and Meuwly, Markus (2022) ‘Transfer Learning for Affordable and High Quality Tunneling Splittings from Instanton Calculations’, Journal of Chemical Theory and Computation, 18(11), pp. 6840–6850. Available at: https://doi.org/10.1021/acs.jctc.2c00790.
Meuwly, Markus (2022) ‘Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning - Quo Vadis?’, Journal of Physical Chemistry B, 126(11), pp. 2155–2167. Available at: https://doi.org/10.1021/acs.jpcb.2c00212.
Meuwly, Markus (2022) ‘Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning - Quo Vadis?’, Journal of Physical Chemistry B, 126(11), pp. 2155–2167. Available at: https://doi.org/10.1021/acs.jpcb.2c00212.
Meuwly, Markus (2022) ‘Computational Vibrational Spectroscopy’, Chimia, 76(6), p. 589. Available at: https://doi.org/10.2533/chimia.2022.589.
Meuwly, Markus (2022) ‘Computational Vibrational Spectroscopy’, Chimia, 76(6), p. 589. Available at: https://doi.org/10.2533/chimia.2022.589.
Patra, Sarbani et al. (2022) ‘Photodissociation Dynamics of N⁺₃’, Journal of Clinical Physics, 156(12), p. 124307. Available at: https://doi.org/10.1063/5.0085081.
Patra, Sarbani et al. (2022) ‘Photodissociation Dynamics of N⁺₃’, Journal of Clinical Physics, 156(12), p. 124307. Available at: https://doi.org/10.1063/5.0085081.
Salehi, Seyedeh Maryam et al. (2022) ‘Hydration dynamics and IR spectroscopy of 4-fluorophenol’, Physical Chemistry Chemical Physics, 24(42), pp. 26046–26060. Available at: https://doi.org/10.1039/d2cp02857c.
Salehi, Seyedeh Maryam et al. (2022) ‘Hydration dynamics and IR spectroscopy of 4-fluorophenol’, Physical Chemistry Chemical Physics, 24(42), pp. 26046–26060. Available at: https://doi.org/10.1039/d2cp02857c.
Salehi, Seyedeh Maryam and Meuwly, Markus (2022) ‘Site-Selective Dynamics of Ligand-Free and Ligand-Bound Azidolysozyme’, Journal of Clinical Physics, 156(10), p. 105105. Available at: https://doi.org/10.1063/5.0077361.
Salehi, Seyedeh Maryam and Meuwly, Markus (2022) ‘Site-Selective Dynamics of Ligand-Free and Ligand-Bound Azidolysozyme’, Journal of Clinical Physics, 156(10), p. 105105. Available at: https://doi.org/10.1063/5.0077361.
Salehi, Seyedeh Maryam and Meuwly, Markus (2022) ‘Cross Correlated Motions in Azidolysozyme’, Molecules, 27(3), p. 839. Available at: https://doi.org/10.3390/molecules27030839.
Salehi, Seyedeh Maryam and Meuwly, Markus (2022) ‘Cross Correlated Motions in Azidolysozyme’, Molecules, 27(3), p. 839. Available at: https://doi.org/10.3390/molecules27030839.
Töpfer, Kai et al. (2022) ‘Structure, Organization, and Heterogeneity of Water-Containing Deep Eutectic Solvents’, Journal of the American Chemical Society, 144(31), pp. 14170–14180. Available at: https://doi.org/10.1021/jacs.2c04169.
Töpfer, Kai et al. (2022) ‘Structure, Organization, and Heterogeneity of Water-Containing Deep Eutectic Solvents’, Journal of the American Chemical Society, 144(31), pp. 14170–14180. Available at: https://doi.org/10.1021/jacs.2c04169.
Turan, Haydar Taylan, Brickel, Sebastian and Meuwly, Markus (2022) ‘Solvent Effects on the Menshutkin Reaction’, Journal of Physical Chemistry B, 126(9), pp. 1951–1961. Available at: https://doi.org/10.1021/acs.jpcb.1c09710.
Turan, Haydar Taylan, Brickel, Sebastian and Meuwly, Markus (2022) ‘Solvent Effects on the Menshutkin Reaction’, Journal of Physical Chemistry B, 126(9), pp. 1951–1961. Available at: https://doi.org/10.1021/acs.jpcb.1c09710.
Vazquez-Salazar, Luis Itza, Boittier, Eric D. and Meuwly, Markus (2022) ‘Uncertainty Quantification for Predictions of Atomistic Neural Networks’, Chemical Science, 13(44), pp. 13068–13084. Available at: https://doi.org/10.1039/d2sc04056e.
Vazquez-Salazar, Luis Itza, Boittier, Eric D. and Meuwly, Markus (2022) ‘Uncertainty Quantification for Predictions of Atomistic Neural Networks’, Chemical Science, 13(44), pp. 13068–13084. Available at: https://doi.org/10.1039/d2sc04056e.
Veliz, Juan Carlos San Vicente et al. (2022) ‘Combining Machine Learning and Spectroscopy to Model Reactive Atom + Diatom Collisions’, Journal of Physical Chemistry A, 126(43), pp. 7971–7980. Available at: https://doi.org/10.1021/acs.jpca.2c06267.
Veliz, Juan Carlos San Vicente et al. (2022) ‘Combining Machine Learning and Spectroscopy to Model Reactive Atom + Diatom Collisions’, Journal of Physical Chemistry A, 126(43), pp. 7971–7980. Available at: https://doi.org/10.1021/acs.jpca.2c06267.
Castro-Palacio, J.C., Bemish, R.J. and Meuwly, M. (2021) ‘Erratum: Equilibrium rate coefficients from atomistic simulations: The O(3P) + NO(2Π) → O2(X 3 ς g -) + N(4S) reaction at temperatures relevant to the hypersonic flight regime (J. Chem. Phys. (2015) 142 (091104) DOI: 10.1063/1.4913975)’, Journal of Chemical Physics, 154(8). Available at: https://doi.org/10.1063/5.0046099.
Castro-Palacio, J.C., Bemish, R.J. and Meuwly, M. (2021) ‘Erratum: Equilibrium rate coefficients from atomistic simulations: The O(3P) + NO(2Π) → O2(X 3 ς g -) + N(4S) reaction at temperatures relevant to the hypersonic flight regime (J. Chem. Phys. (2015) 142 (091104) DOI: 10.1063/1.4913975)’, Journal of Chemical Physics, 154(8). Available at: https://doi.org/10.1063/5.0046099.
Castro-Palacio, J.C. et al. (2021) ‘Erratum: Computational study of collisions between O(3P) and NO(2Π) at temperatures relevant to the hypersonic flight regime (J. Chem. Phys. (2014) 141 (164319) DOI: 10.1063/1.4897263)’, Journal of Chemical Physics, 154(8). Available at: https://doi.org/10.1063/5.0046241.
Castro-Palacio, J.C. et al. (2021) ‘Erratum: Computational study of collisions between O(3P) and NO(2Π) at temperatures relevant to the hypersonic flight regime (J. Chem. Phys. (2014) 141 (164319) DOI: 10.1063/1.4897263)’, Journal of Chemical Physics, 154(8). Available at: https://doi.org/10.1063/5.0046241.
Arnold, Julian et al. (2021) ‘Machine Learning Product State Distributions from Initial Reactant States for a Reactive Atom-Diatom Collision System’, Journal of Chemical Physics, 156(3), p. 034301. Available at: https://doi.org/10.1063/5.0078008.
Arnold, Julian et al. (2021) ‘Machine Learning Product State Distributions from Initial Reactant States for a Reactive Atom-Diatom Collision System’, Journal of Chemical Physics, 156(3), p. 034301. Available at: https://doi.org/10.1063/5.0078008.
Kaser, Silvan et al. (2021) ‘Transfer Learning to CCSD (T): Accurate Anharmonic Frequencies from Machine Learning Models’, Journal of Chemical Theory and Computation, 17(6), pp. 3687–3699. Available at: https://doi.org/10.1021/acs.jctc.1c00249.
Kaser, Silvan et al. (2021) ‘Transfer Learning to CCSD (T): Accurate Anharmonic Frequencies from Machine Learning Models’, Journal of Chemical Theory and Computation, 17(6), pp. 3687–3699. Available at: https://doi.org/10.1021/acs.jctc.1c00249.
Käser, Silvan and Meuwly, Markus (2021) ‘Transfer Learned Potential Energy Surfaces: Accurate Anharmonic Vibrational Dynamics and Dissociation Energies for the Formic Acid Monomer and Dimer’, Physical Chemistry Chemical Physics, 24(9), pp. 5269–5281. Available at: https://doi.org/10.1039/d1cp04393e.
Käser, Silvan and Meuwly, Markus (2021) ‘Transfer Learned Potential Energy Surfaces: Accurate Anharmonic Vibrational Dynamics and Dissociation Energies for the Formic Acid Monomer and Dimer’, Physical Chemistry Chemical Physics, 24(9), pp. 5269–5281. Available at: https://doi.org/10.1039/d1cp04393e.
Meuwly, M. (2021) ‘Machine Learning for Chemical Reactions’, Chemical Reviews, 121(16), pp. 10218–10239. Available at: https://doi.org/10.1021/acs.chemrev.1c00033.
Meuwly, M. (2021) ‘Machine Learning for Chemical Reactions’, Chemical Reviews, 121(16), pp. 10218–10239. Available at: https://doi.org/10.1021/acs.chemrev.1c00033.
Meuwly, Markus and Karplus, Martin (2021) ‘The Functional Role of the Hemoglobin-Water Interface’, Molecular Aspects of Medicine, p. 101042. Available at: https://doi.org/10.1016/j.mam.2021.101042.
Meuwly, Markus and Karplus, Martin (2021) ‘The Functional Role of the Hemoglobin-Water Interface’, Molecular Aspects of Medicine, p. 101042. Available at: https://doi.org/10.1016/j.mam.2021.101042.
Mondal, Padmabati et al. (2021) ‘Multipolar Force Fields for Amide-I Spectroscopy from Conformational Dynamics of the Alanine-Trimer’, Journal of Physical Chemistry B, 125(39), pp. 10928–10938. Available at: https://doi.org/10.1021/acs.jpcb.1c05423.
Mondal, Padmabati et al. (2021) ‘Multipolar Force Fields for Amide-I Spectroscopy from Conformational Dynamics of the Alanine-Trimer’, Journal of Physical Chemistry B, 125(39), pp. 10928–10938. Available at: https://doi.org/10.1021/acs.jpcb.1c05423.
Rivero, Uxia et al. (2021) ‘Reactive atomistic simulations of Diels-Alder-type reactions: conformational and dynamic effects in the polar cycloaddition of 2,3-dibromobutadiene radical ions with maleic anhydride’, Molecular Physics, 119(1-2), p. e1825852. Available at: https://doi.org/10.1080/00268976.2020.1825852.
Rivero, Uxia et al. (2021) ‘Reactive atomistic simulations of Diels-Alder-type reactions: conformational and dynamic effects in the polar cycloaddition of 2,3-dibromobutadiene radical ions with maleic anhydride’, Molecular Physics, 119(1-2), p. e1825852. Available at: https://doi.org/10.1080/00268976.2020.1825852.
Salehi, S. M. and Meuwly, M. (2021) ‘Site-Selective Dynamics of Azidolysozyme’, Journal of Chemical Physics, 154(16), p. 165101. Available at: https://doi.org/10.1063/5.0047330.
Salehi, S. M. and Meuwly, M. (2021) ‘Site-Selective Dynamics of Azidolysozyme’, Journal of Chemical Physics, 154(16), p. 165101. Available at: https://doi.org/10.1063/5.0047330.
Turan, Haydar Taylan and Meuwly, Markus (2021) ‘Spectroscopy, Dynamics and Hydration of S-Nitrosylated Myoglobin’, Journal of Physical Chemistry B, 125(17), pp. 4262–4273. Available at: https://doi.org/10.1021/acs.jpcb.0c10353.
Turan, Haydar Taylan and Meuwly, Markus (2021) ‘Spectroscopy, Dynamics and Hydration of S-Nitrosylated Myoglobin’, Journal of Physical Chemistry B, 125(17), pp. 4262–4273. Available at: https://doi.org/10.1021/acs.jpcb.0c10353.
Upadhyay, Meenu and Meuwly, Markus (2021) ‘Thermal and Vibrationally Activated Decomposition of the syn-CHCHOO Criegee Intermediate’, ACS Earth and Space Chemistry, 5(12), pp. 3396–3406. Available at: https://doi.org/10.1021/acsearthspacechem.1c00249.
Upadhyay, Meenu and Meuwly, Markus (2021) ‘Thermal and Vibrationally Activated Decomposition of the syn-CHCHOO Criegee Intermediate’, ACS Earth and Space Chemistry, 5(12), pp. 3396–3406. Available at: https://doi.org/10.1021/acsearthspacechem.1c00249.
Upadhyay, Meenu and Meuwly, Markus (2021) ‘Energy Redistribution following CO2 Formation on Cold Amorphous Solid Water’, Frontiers in Chemistry, 9, p. 827085. Available at: https://doi.org/10.3389/fchem.2021.827085.
Upadhyay, Meenu and Meuwly, Markus (2021) ‘Energy Redistribution following CO2 Formation on Cold Amorphous Solid Water’, Frontiers in Chemistry, 9, p. 827085. Available at: https://doi.org/10.3389/fchem.2021.827085.
Upadhyay, Meenu, Pezzella, Marco and Meuwly, Markus (2021) ‘Genesis of Polyatomic Molecules in Dark Clouds: CO2 Formation on Cold Amorphous Solid Water’, The journal of physical chemistry letters, 12(29), pp. 6781–6787. Available at: https://doi.org/10.1021/acs.jpclett.1c01810.
Upadhyay, Meenu, Pezzella, Marco and Meuwly, Markus (2021) ‘Genesis of Polyatomic Molecules in Dark Clouds: CO2 Formation on Cold Amorphous Solid Water’, The journal of physical chemistry letters, 12(29), pp. 6781–6787. Available at: https://doi.org/10.1021/acs.jpclett.1c01810.
Vazquez-Salazar, Luis Itza et al. (2021) ‘Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Predictions of Tautomerization Energies’, Journal of Chemical Theory and Computation, 17(8), pp. 4769–4785. Available at: https://doi.org/10.1021/acs.jctc.1c00363.
Vazquez-Salazar, Luis Itza et al. (2021) ‘Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Predictions of Tautomerization Energies’, Journal of Chemical Theory and Computation, 17(8), pp. 4769–4785. Available at: https://doi.org/10.1021/acs.jctc.1c00363.
Veliz, Juan Carlos San Vicente et al. (2021) ‘The C(P-3) + O-2((3)sigma(-)(g)) -> CO2 CO((1)sigma(+)) + O(D-1)/O(P-3) reaction: thermal and vibrational relaxation rates from 15 K to 20 000 K’, Physical Chemistry Chemical Physics, 23(19), pp. 11251–11263. Available at: https://doi.org/10.1039/d1cp01101d.
Veliz, Juan Carlos San Vicente et al. (2021) ‘The C(P-3) + O-2((3)sigma(-)(g)) -> CO2 CO((1)sigma(+)) + O(D-1)/O(P-3) reaction: thermal and vibrational relaxation rates from 15 K to 20 000 K’, Physical Chemistry Chemical Physics, 23(19), pp. 11251–11263. Available at: https://doi.org/10.1039/d1cp01101d.
Salehi, S.M., Koner, D. and Meuwly, M. (2020) ‘Dynamics and Infrared Spectrocopy of Monomeric and Dimeric Wild Type and Mutant Insulin’, Journal of Physical Chemistry B, 124(52), pp. 11882–11894. Available at: https://doi.org/10.1021/acs.jpcb.0c08048.
Salehi, S.M., Koner, D. and Meuwly, M. (2020) ‘Dynamics and Infrared Spectrocopy of Monomeric and Dimeric Wild Type and Mutant Insulin’, Journal of Physical Chemistry B, 124(52), pp. 11882–11894. Available at: https://doi.org/10.1021/acs.jpcb.0c08048.
Unke, O.T. et al. (2020) ‘High-dimensional potential energy surfaces for molecular simulations: From empiricism to machine learning’, Machine Learning: Science and Technology, 1(1). Available at: https://doi.org/10.1088/2632-2153/ab5922.
Unke, O.T. et al. (2020) ‘High-dimensional potential energy surfaces for molecular simulations: From empiricism to machine learning’, Machine Learning: Science and Technology, 1(1). Available at: https://doi.org/10.1088/2632-2153/ab5922.
Arnold, Julian et al. (2020) ‘Machine Learning for Observables: Reactant to Product State Distributions for Atom-Diatom Collisions’, Journal of Physical Chemistry A, 124(35), pp. 7177–7190. Available at: https://doi.org/10.1021/acs.jpca.0c05173.
Arnold, Julian et al. (2020) ‘Machine Learning for Observables: Reactant to Product State Distributions for Atom-Diatom Collisions’, Journal of Physical Chemistry A, 124(35), pp. 7177–7190. Available at: https://doi.org/10.1021/acs.jpca.0c05173.
Devereux, Mike et al. (2020) ‘Polarizable Multipolar Molecular Dynamics Using Distributed Point Charges’, Journal of Chemical Theory and Computation, 16(12), pp. 7267–7280. Available at: https://doi.org/10.1021/acs.jctc.0c00883.
Devereux, Mike et al. (2020) ‘Polarizable Multipolar Molecular Dynamics Using Distributed Point Charges’, Journal of Chemical Theory and Computation, 16(12), pp. 7267–7280. Available at: https://doi.org/10.1021/acs.jctc.0c00883.
Kaeser, Silvan et al. (2020) ‘Machine Learning Models of Vibrating H2CO: Comparing Reproducing Kernels, FCHL, and PhysNet’, Journal of Physical Chemistry A, 124(42), pp. 8853–8865. Available at: https://doi.org/10.1021/acs.jpca.0c05979.
Kaeser, Silvan et al. (2020) ‘Machine Learning Models of Vibrating H2CO: Comparing Reproducing Kernels, FCHL, and PhysNet’, Journal of Physical Chemistry A, 124(42), pp. 8853–8865. Available at: https://doi.org/10.1021/acs.jpca.0c05979.
Kaser, Silvan, Unke, Oliver T. and Meuwly, Markus (2020) ‘Isomerization and decomposition reactions of acetaldehyde relevant to atmospheric processes from dynamics simulations on neural network-based potential energy surfaces’, Journal of Chemical Physics, 152(21), p. 214304. Available at: https://doi.org/10.1063/5.0008223.
Kaser, Silvan, Unke, Oliver T. and Meuwly, Markus (2020) ‘Isomerization and decomposition reactions of acetaldehyde relevant to atmospheric processes from dynamics simulations on neural network-based potential energy surfaces’, Journal of Chemical Physics, 152(21), p. 214304. Available at: https://doi.org/10.1063/5.0008223.
Kaser, Silvan, Unke, Oliver T. and Meuwly, Markus (2020) ‘Reactive dynamics and spectroscopy of hydrogen transfer from neural network-based reactive potential energy surfaces’, New Journal of Physics, 22(5), p. 055002. Available at: https://doi.org/10.1088/1367-2630/ab81b5.
Kaser, Silvan, Unke, Oliver T. and Meuwly, Markus (2020) ‘Reactive dynamics and spectroscopy of hydrogen transfer from neural network-based reactive potential energy surfaces’, New Journal of Physics, 22(5), p. 055002. Available at: https://doi.org/10.1088/1367-2630/ab81b5.
Koner, Debasish, Bemish, Raymond J. and Meuwly, Markus (2020) ‘Dynamics on Multiple Potential Energy Surfaces: Quantitative Studies of Elementary Processes Relevant to Hypersonics’, The Journal of Physical Chemistry A, 124(31), pp. 6255–6269. Available at: https://doi.org/10.1021/acs.jpca.0c01870.
Koner, Debasish, Bemish, Raymond J. and Meuwly, Markus (2020) ‘Dynamics on Multiple Potential Energy Surfaces: Quantitative Studies of Elementary Processes Relevant to Hypersonics’, The Journal of Physical Chemistry A, 124(31), pp. 6255–6269. Available at: https://doi.org/10.1021/acs.jpca.0c01870.
Koner, Debasish and Meuwly, Markus (2020) ‘Permutationally Invariant, Reproducing Kernel-Based Potential Energy Surfaces for Polyatomic Molecules: From Formaldehyde to Acetone’, Journal of Chemical Theory and Computation, 16(9), pp. 5474–5484. Available at: https://doi.org/10.1021/acs.jctc.0c00535.
Koner, Debasish and Meuwly, Markus (2020) ‘Permutationally Invariant, Reproducing Kernel-Based Potential Energy Surfaces for Polyatomic Molecules: From Formaldehyde to Acetone’, Journal of Chemical Theory and Computation, 16(9), pp. 5474–5484. Available at: https://doi.org/10.1021/acs.jctc.0c00535.
Koner, Debasish et al. (2020) ‘Non-conventional force fields for applications in spectroscopy and chemical reaction dynamics’, Journal of Chemical Physics, 153(1), p. 010901. Available at: https://doi.org/10.1063/5.0009628.
Koner, Debasish et al. (2020) ‘Non-conventional force fields for applications in spectroscopy and chemical reaction dynamics’, Journal of Chemical Physics, 153(1), p. 010901. Available at: https://doi.org/10.1063/5.0009628.
Koner, Debasish et al. (2020) ‘Accurate reproducing kernel-based potential energy surfaces for the triplet ground states of N; 2; O and dynamics for the N + NO ↔ O + N; 2; and N; 2; + O → 2N + O reactions’, Physical Chemistry Chemical Physics, 22(33), pp. 18257–18260. Available at: https://doi.org/10.1039/d0cp02509g.
Koner, Debasish et al. (2020) ‘Accurate reproducing kernel-based potential energy surfaces for the triplet ground states of N; 2; O and dynamics for the N + NO ↔ O + N; 2; and N; 2; + O → 2N + O reactions’, Physical Chemistry Chemical Physics, 22(33), pp. 18257–18260. Available at: https://doi.org/10.1039/d0cp02509g.
Koner, Debasish et al. (2020) ‘N-3(+): Full-dimensional ground state potential energy surface, vibrational energy levels, and dynamics’, JOURNAL OF CHEMICAL PHYSICS, 153(4), p. 044302. Available at: https://doi.org/10.1063/5.0011957.
Koner, Debasish et al. (2020) ‘N-3(+): Full-dimensional ground state potential energy surface, vibrational energy levels, and dynamics’, JOURNAL OF CHEMICAL PHYSICS, 153(4), p. 044302. Available at: https://doi.org/10.1063/5.0011957.
Pezzella, Marco et al. (2020) ‘Water Dynamics Around Proteins: T- and R-States of Hemoglobin and Melittin’, Journal of Physical Chemistry B, 124(30), pp. 6540–6554. Available at: https://doi.org/10.1021/acs.jpcb.0c04320.
Pezzella, Marco et al. (2020) ‘Water Dynamics Around Proteins: T- and R-States of Hemoglobin and Melittin’, Journal of Physical Chemistry B, 124(30), pp. 6540–6554. Available at: https://doi.org/10.1021/acs.jpcb.0c04320.
Pezzella, Marco, Koner, Debasish and Meuwly, Markus (2020) ‘Formation and Stabilization of Ground and Excited-State Singlet O-2 upon Recombination of P-3 Oxygen on Amorphous Solid Water’, Journal of Physical Chemistry Letters, 11(6), pp. 2171–2176. Available at: https://doi.org/10.1021/acs.jpclett.0c00130.
Pezzella, Marco, Koner, Debasish and Meuwly, Markus (2020) ‘Formation and Stabilization of Ground and Excited-State Singlet O-2 upon Recombination of P-3 Oxygen on Amorphous Solid Water’, Journal of Physical Chemistry Letters, 11(6), pp. 2171–2176. Available at: https://doi.org/10.1021/acs.jpclett.0c00130.
San Vicente Veliz, Juan Carlos et al. (2020) ‘The N(4S) + O2(X3Sigma) O(3P) + NO(X2Pi) reaction: thermal and vibrational relaxation rates for the 2A”, 4A” and 2A″ states’, Physical Chemistry Chemical Physics, 22(7), pp. 3927–3939. Available at: https://doi.org/10.1039/c9cp06085e.
San Vicente Veliz, Juan Carlos et al. (2020) ‘The N(4S) + O2(X3Sigma) O(3P) + NO(X2Pi) reaction: thermal and vibrational relaxation rates for the 2A”, 4A” and 2A″ states’, Physical Chemistry Chemical Physics, 22(7), pp. 3927–3939. Available at: https://doi.org/10.1039/c9cp06085e.
Sweeny, Brendan C. et al. (2020) ‘Thermal Activation of Methane by MgO+: Temperature Dependent Kinetics, Reactive Molecular Dynamics Simulations and Statistical Modeling’, Physical Chemistry Chemical Physics, 22(16), pp. 8913–8923. Available at: https://doi.org/10.1039/d0cp00668h.
Sweeny, Brendan C. et al. (2020) ‘Thermal Activation of Methane by MgO+: Temperature Dependent Kinetics, Reactive Molecular Dynamics Simulations and Statistical Modeling’, Physical Chemistry Chemical Physics, 22(16), pp. 8913–8923. Available at: https://doi.org/10.1039/d0cp00668h.
Brickel, Sebastian et al. (2019) ‘Reactive molecular dynamics for the [Cl-CH3-Br]− reaction in the gas phase and in solution: a comparative study using empirical and neural network force fields’, Electronic Structure, 1(2), p. 024002. Available at: https://doi.org/10.1088/2516-1075/ab1edb.
Brickel, Sebastian et al. (2019) ‘Reactive molecular dynamics for the [Cl-CH3-Br]− reaction in the gas phase and in solution: a comparative study using empirical and neural network force fields’, Electronic Structure, 1(2), p. 024002. Available at: https://doi.org/10.1088/2516-1075/ab1edb.
Brickel, Sebastian and Meuwly, Markus (2019) ‘Molecular Determinants for Rate Acceleration in the Claisen Rearrangement Reaction’, Journal of Physical Chemistry B, 123(2), pp. 448–456. Available at: https://doi.org/10.1021/acs.jpcb.8b11059.
Brickel, Sebastian and Meuwly, Markus (2019) ‘Molecular Determinants for Rate Acceleration in the Claisen Rearrangement Reaction’, Journal of Physical Chemistry B, 123(2), pp. 448–456. Available at: https://doi.org/10.1021/acs.jpcb.8b11059.
Desmond, Jasmine L., Koner, Debasish and Meuwly, Markus (2019) ‘Probing the Differential Dynamics of the Monomeric and Dimeric Insulin from Amide-I IR Spectroscopy’, Journal of Physical Chemistry B, 123(30), pp. 6588–6598. Available at: https://doi.org/10.1021/acs.jpcb.9b04628.
Desmond, Jasmine L., Koner, Debasish and Meuwly, Markus (2019) ‘Probing the Differential Dynamics of the Monomeric and Dimeric Insulin from Amide-I IR Spectroscopy’, Journal of Physical Chemistry B, 123(30), pp. 6588–6598. Available at: https://doi.org/10.1021/acs.jpcb.9b04628.
Diamantis, Polydefkis, El Hage, Krystel and Meuwly, Markus (2019) ‘Effect of Single-Point Mutations on Nitric Oxide Rebinding and the Thermodynamic Stability of Myoglobin’, The Journal of Physical Chemistry B, 123(9), pp. 1961–1972. Available at: https://doi.org/10.1021/acs.jpcb.8b11454.
Diamantis, Polydefkis, El Hage, Krystel and Meuwly, Markus (2019) ‘Effect of Single-Point Mutations on Nitric Oxide Rebinding and the Thermodynamic Stability of Myoglobin’, The Journal of Physical Chemistry B, 123(9), pp. 1961–1972. Available at: https://doi.org/10.1021/acs.jpcb.8b11454.
Dörfler, Alexander D. et al. (2019) ‘Long-range versus short-range effects in cold molecular ion-neutral collisions’, Nature Communications, 10(1), p. 5429. Available at: https://doi.org/10.1038/s41467-019-13218-x.
Dörfler, Alexander D. et al. (2019) ‘Long-range versus short-range effects in cold molecular ion-neutral collisions’, Nature Communications, 10(1), p. 5429. Available at: https://doi.org/10.1038/s41467-019-13218-x.
El Hage, Krystel et al. (2019) ‘Response to comment on “Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size”’, eLife, 8, p. e45318. Available at: https://doi.org/10.7554/elife.45318.
El Hage, Krystel et al. (2019) ‘Response to comment on “Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size”’, eLife, 8, p. e45318. Available at: https://doi.org/10.7554/elife.45318.
Koner, Debasish et al. (2019) ‘Near dissociation states for H2+-He on MRCI and FCI potential energy surfaces’, Physical Chemistry Chemical Physics, 21(45), pp. 24976–24983. Available at: https://doi.org/10.1039/c9cp05259c.
Koner, Debasish et al. (2019) ‘Near dissociation states for H2+-He on MRCI and FCI potential energy surfaces’, Physical Chemistry Chemical Physics, 21(45), pp. 24976–24983. Available at: https://doi.org/10.1039/c9cp05259c.
Koner, Debasish et al. (2019) ‘Exhaustive state-to-state cross sections for reactive molecular collisions from importance sampling simulation and a neural network representation’, Journal of Chemical Physics, 150(21), p. 211101. Available at: https://doi.org/10.1063/1.5097385.
Koner, Debasish et al. (2019) ‘Exhaustive state-to-state cross sections for reactive molecular collisions from importance sampling simulation and a neural network representation’, Journal of Chemical Physics, 150(21), p. 211101. Available at: https://doi.org/10.1063/1.5097385.
Meuwly, Markus (2019) ‘Reactive molecular dynamics: From small molecules to proteins’, WIREs: Computational Molecular Science, 9(1), p. e1386. Available at: https://doi.org/10.1002/wcms.1386.
Meuwly, Markus (2019) ‘Reactive molecular dynamics: From small molecules to proteins’, WIREs: Computational Molecular Science, 9(1), p. e1386. Available at: https://doi.org/10.1002/wcms.1386.
Pezzella, Marco and Meuwly, Markus (2019) ‘O-2 formation in cold environments’, Physical Chemistry Chemical Physics, 21(11), pp. 6247–6255. Available at: https://doi.org/10.1039/c8cp07474g.
Pezzella, Marco and Meuwly, Markus (2019) ‘O-2 formation in cold environments’, Physical Chemistry Chemical Physics, 21(11), pp. 6247–6255. Available at: https://doi.org/10.1039/c8cp07474g.
Rivero, Uxia et al. (2019) ‘Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations’, Journal of Chemical Physics, 151(10), p. 104301. Available at: https://doi.org/10.1063/1.5114981.
Rivero, Uxia et al. (2019) ‘Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations’, Journal of Chemical Physics, 151(10), p. 104301. Available at: https://doi.org/10.1063/1.5114981.
Salehi, Seyedeh Maryam, Koner, Debasish and Meuwly, Markus (2019) ‘Vibrational Spectroscopy of N-3(-) in the Gas and Condensed Phase’, Journal of Physical Chemistry B, 123(15), pp. 3282–3290. Available at: https://doi.org/10.1021/acs.jpcb.8b11430.
Salehi, Seyedeh Maryam, Koner, Debasish and Meuwly, Markus (2019) ‘Vibrational Spectroscopy of N-3(-) in the Gas and Condensed Phase’, Journal of Physical Chemistry B, 123(15), pp. 3282–3290. Available at: https://doi.org/10.1021/acs.jpcb.8b11430.
Unke, Oliver T., Brickel, Sebastian and Meuwly, Markus (2019) ‘Sampling reactive regions in phase space by following the minimum dynamic path’, Journal of Chemical Physics, 150(7), p. 074107. Available at: https://doi.org/10.1063/1.5082885.
Unke, Oliver T., Brickel, Sebastian and Meuwly, Markus (2019) ‘Sampling reactive regions in phase space by following the minimum dynamic path’, Journal of Chemical Physics, 150(7), p. 074107. Available at: https://doi.org/10.1063/1.5082885.
Unke, Oliver T. and Meuwly, Markus (2019) ‘PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges’, Journal of Chemical Theory and Computation, 15(6), pp. 3678–3693. Available at: https://doi.org/10.1021/acs.jctc.9b00181.
Unke, Oliver T. and Meuwly, Markus (2019) ‘PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges’, Journal of Chemical Theory and Computation, 15(6), pp. 3678–3693. Available at: https://doi.org/10.1021/acs.jctc.9b00181.
Xu, Zhen-Hao and Meuwly, Markus (2019) ‘Multistate Reactive Molecular Dynamics Simulations of Proton Diffusion in Water Clusters and in the Bulk’, Journal of Physical Chemistry B, 123(46), pp. 9846–9861. Available at: https://doi.org/10.1021/acs.jpcb.9b03258.
Xu, Zhen-Hao and Meuwly, Markus (2019) ‘Multistate Reactive Molecular Dynamics Simulations of Proton Diffusion in Water Clusters and in the Bulk’, Journal of Physical Chemistry B, 123(46), pp. 9846–9861. Available at: https://doi.org/10.1021/acs.jpcb.9b03258.
Das, Akshaya Kumar and Meuwly, Markus (2018) ‘Kinetic Analysis and Structural Interpretation of Competitive Ligand Binding for NO Dioxygenation in Truncated HemoglobinN’, Angewandte Chemie International Edition, 57(13), pp. 3509–3513. Available at: https://doi.org/10.1002/anie.201711445.
Das, Akshaya Kumar and Meuwly, Markus (2018) ‘Kinetic Analysis and Structural Interpretation of Competitive Ligand Binding for NO Dioxygenation in Truncated HemoglobinN’, Angewandte Chemie International Edition, 57(13), pp. 3509–3513. Available at: https://doi.org/10.1002/anie.201711445.
El Hage, Krystel, Bemish, Raymond J. and Meuwly, Markus (2018) ‘From in silica to in silico: retention thermodynamics at solid-liquid interfaces’, Physical Chemistry Chemical Physics, 20(27), pp. 18610–18622. Available at: https://doi.org/10.1039/c8cp02899k.
El Hage, Krystel, Bemish, Raymond J. and Meuwly, Markus (2018) ‘From in silica to in silico: retention thermodynamics at solid-liquid interfaces’, Physical Chemistry Chemical Physics, 20(27), pp. 18610–18622. Available at: https://doi.org/10.1039/c8cp02899k.
El Hage, Krystel et al. (2018) ‘Implications of short time scale dynamics on long time processes’, Structural Dynamics, 5(1), p. 061507. Available at: https://doi.org/10.1063/1.4996448.
El Hage, Krystel et al. (2018) ‘Implications of short time scale dynamics on long time processes’, Structural Dynamics, 5(1), p. 061507. Available at: https://doi.org/10.1063/1.4996448.
El Hage, Krystel et al. (2018) ‘Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size’, eLife, 7, p. e35560. Available at: https://doi.org/10.7554/elife.35560.
El Hage, Krystel et al. (2018) ‘Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size’, eLife, 7, p. e35560. Available at: https://doi.org/10.7554/elife.35560.
El Hage, Krystel, Mondal, Padmabati and Meuwly, Markus (2018) ‘Free energy simulations for protein ligand binding and stability’, Molecular Simulation, 44(13-14), pp. 1044–1061. Available at: https://doi.org/10.1080/08927022.2017.1416115.
El Hage, Krystel, Mondal, Padmabati and Meuwly, Markus (2018) ‘Free energy simulations for protein ligand binding and stability’, Molecular Simulation, 44(13-14), pp. 1044–1061. Available at: https://doi.org/10.1080/08927022.2017.1416115.
Koner, Debasish, Bemish, Raymond J. and Meuwly, Markus (2018) ‘The C(3P) + NO(X2Π) → O(3P) + CN(X2Σ+), N(2D)/N(4S) + CO(X1Σ+) reaction: Rates, branching ratios, and final states from 15 K to 20 000 K’, Journal of Chemical Physics, 149(9), p. 094305. Available at: https://doi.org/10.1063/1.5046906.
Koner, Debasish, Bemish, Raymond J. and Meuwly, Markus (2018) ‘The C(3P) + NO(X2Π) → O(3P) + CN(X2Σ+), N(2D)/N(4S) + CO(X1Σ+) reaction: Rates, branching ratios, and final states from 15 K to 20 000 K’, Journal of Chemical Physics, 149(9), p. 094305. Available at: https://doi.org/10.1063/1.5046906.
Mondal, Padmabati and Meuwly, Markus (2018) ‘Solvent Composition Drives the Rebinding Kinetics of Nitric Oxide to Microperoxidase’, Scientific Reports, 8(1), p. 5281. Available at: https://doi.org/10.1038/s41598-018-22944-z.
Mondal, Padmabati and Meuwly, Markus (2018) ‘Solvent Composition Drives the Rebinding Kinetics of Nitric Oxide to Microperoxidase’, Scientific Reports, 8(1), p. 5281. Available at: https://doi.org/10.1038/s41598-018-22944-z.
Pezzella, Marco, Unke, Oliver T. and Meuwly, Markus (2018) ‘Molecular Oxygen Formation in Interstellar Ices Does Not Require Tunneling’, Journal of Physical Chemistry Letters, 9(8), pp. 1822–1826. Available at: https://doi.org/10.1021/acs.jpclett.8b00328.
Pezzella, Marco, Unke, Oliver T. and Meuwly, Markus (2018) ‘Molecular Oxygen Formation in Interstellar Ices Does Not Require Tunneling’, Journal of Physical Chemistry Letters, 9(8), pp. 1822–1826. Available at: https://doi.org/10.1021/acs.jpclett.8b00328.
Raghunathan, Shampa et al. (2018) ‘The Role of Water in the Stability of Wild-type and Mutant Insulin Dimers’, Journal of Physical Chemistry B, 122(28), pp. 7038–7048. Available at: https://doi.org/10.1021/acs.jpcb.8b04448.
Raghunathan, Shampa et al. (2018) ‘The Role of Water in the Stability of Wild-type and Mutant Insulin Dimers’, Journal of Physical Chemistry B, 122(28), pp. 7038–7048. Available at: https://doi.org/10.1021/acs.jpcb.8b04448.
Schmid, Maurus H. et al. (2018) ‘Multi-State VALBOND for Atomistic Simulations of Hypervalent Molecules, Metal Complexes, and Reactions’, Journal of Chemical Theory and Computation, 14(7), pp. 3565–3578. Available at: https://doi.org/10.1021/acs.jctc.7b01210.
Schmid, Maurus H. et al. (2018) ‘Multi-State VALBOND for Atomistic Simulations of Hypervalent Molecules, Metal Complexes, and Reactions’, Journal of Chemical Theory and Computation, 14(7), pp. 3565–3578. Available at: https://doi.org/10.1021/acs.jctc.7b01210.
Sidler, David, Meuwly, Markus and Hamm, Peter (2018) ‘An efficient water force field calibrated against intermolecular THz and Raman spectra’, Journal of Chemical Physics, 148(24), p. 244504. Available at: https://doi.org/10.1063/1.5037062.
Sidler, David, Meuwly, Markus and Hamm, Peter (2018) ‘An efficient water force field calibrated against intermolecular THz and Raman spectra’, Journal of Chemical Physics, 148(24), p. 244504. Available at: https://doi.org/10.1063/1.5037062.
Unke, Oliver T. and Meuwly, Markus (2018) ‘A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information’, Journal of Chemical Physics, 148(24), p. 241708. Available at: https://doi.org/10.1063/1.5017898.
Unke, Oliver T. and Meuwly, Markus (2018) ‘A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information’, Journal of Chemical Physics, 148(24), p. 241708. Available at: https://doi.org/10.1063/1.5017898.
Antipov, Sergey V. et al. (2017) ‘Ultrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches’, Structural Dynamics, 4(6), p. 061509. Available at: https://doi.org/10.1063/1.4996559.
Antipov, Sergey V. et al. (2017) ‘Ultrafast dynamics induced by the interaction of molecules with electromagnetic fields: Several quantum, semiclassical, and classical approaches’, Structural Dynamics, 4(6), p. 061509. Available at: https://doi.org/10.1063/1.4996559.
Bircher, Martin P. et al. (2017) ‘Nonadiabatic effects in electronic and nuclear dynamics’, Structural Dynamics, 4(6), p. 061510. Available at: https://doi.org/10.1063/1.4996816.
Bircher, Martin P. et al. (2017) ‘Nonadiabatic effects in electronic and nuclear dynamics’, Structural Dynamics, 4(6), p. 061510. Available at: https://doi.org/10.1063/1.4996816.