Faculty of Science
Faculty of Science
UNIverse - Public Research Portal
Publications
238 found
Show per page
Morita, Iori et al. (2024) ‘Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein’, ACS Catalysis. 07.11.2024, 14, pp. 17171–17179. Available at: https://doi.org/10.1021/acscatal.4c04163.
URLs
URLs
Vornholt, Tobias et al. (2024) ‘Artificial metalloenzymes’, Nature Reviews Methods Primers. 01.11.2024, 4. Available at: https://doi.org/10.1038/s43586-024-00356-w.
URLs
URLs
Mukherjee, Manjistha et al. (2024) ‘Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ACS Catalysis. 19.10.2024, 14(21), pp. 16266–16276. Available at: https://doi.org/10.1021/acscatal.4c03208.
URLs
URLs
Renno, Giacomo et al. (2024) ‘Pnictogen‐Bonding Enzymes’, Angewandte Chemie International Edition. 05.07.2024, 63(45). Available at: https://doi.org/10.1002/anie.202411347.
URLs
URLs
Yu, Kun and Ward, Thomas R. (2024) ‘C–H functionalization reactions catalyzed by artificial metalloenzymes’, Journal of Inorganic Biochemistry. 31.05.2024, 258. Available at: https://doi.org/10.1016/j.jinorgbio.2024.112621.
URLs
URLs
Morita, Iori and Ward, Thomas R. (2024) ‘Recent advances in the design and optimization of artificial metalloenzymes’, Current Opinion in Chemical Biology. 03.08.2024, 81. Available at: https://doi.org/10.1016/j.cbpa.2024.102508.
URLs
URLs
Zhang, Xiang et al. (2024) ‘Repurposing myoglobin into an abiological asymmetric ketoreductase’, Chem. 08.08.2024, 10(8), pp. 2577–2589. Available at: https://doi.org/10.1016/j.chempr.2024.06.010.
URLs
URLs
Zou, Zhi, Higginson, Bradley and Ward, Thomas R. (2024) ‘Creation and optimization of artificial metalloenzymes: Harnessing the power of directed evolution and beyond’, Chem. 08.08.2024, 10(8), pp. 2373–2389. Available at: https://doi.org/10.1016/j.chempr.2024.07.007.
URLs
URLs
Zou, Zhi et al. (2024) ‘Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis’, Nature Synthesis. 27.06.2024, 3, pp. 1113–1123. Available at: https://doi.org/10.1038/s44160-024-00575-9.
URLs
URLs
Baiyoumy, Alain, Vinck, Robin and Ward, Thomas R. (2024) ‘The Two Janus Faces of CpRu‐Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging’, Helvetica Chimica Acta. 15.04.2024, 107(7). Available at: https://doi.org/10.1002/hlca.202400053.
URLs
URLs
Vornholt, Tobias et al. (2024) ‘Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning’, ACS Central Science. 22.05.2024, 10(7), pp. 1357–1370. Available at: https://doi.org/10.1021/acscentsci.4c00258.
URLs
URLs
Yu, Kun et al. (2024) ‘Artificial Metalloenzyme‐Catalyzed Enantioselective Carboamination of Alkenes’, ChemCatChem. 17.04.2024, 16(17). Available at: https://doi.org/10.1002/cctc.202400365.
URLs
URLs
Burgener, Simon, Zhang, Xiang and Ward, Thomas R. (2024) ‘Artificial Metalloenzymes for Enantioselective Catalysis’, in Cossy, Janine (ed.) Comprehensive Chirality. Elsevier (Comprehensive Chirality), pp. 71–110. Available at: https://doi.org/10.1016/b978-0-32-390644-9.00082-2.
URLs
URLs
Yu, K. et al. (2024) ‘An artificial nickel chlorinase based on the biotin–streptavidin technology’, Chemical Communications, 60, pp. 1944–1947. Available at: https://doi.org/10.1039/d3cc05847f.
URLs
URLs
Burgener, Simon et al. (2023) ‘Binding Interactions and Inhibition Mechanisms of Gold Complexes in Thiamine Diphosphate-Dependent Enzymes’, Biochemistry. 06.11.2023, 62(22), pp. 3303–3311. Available at: https://doi.org/10.1021/acs.biochem.3c00376.
URLs
URLs
Vornholt, Tobias et al. (2023) ‘An Artificial Metalloenzyme for Atroposelective Metathesis**’, ChemCatChem, 15(23). Available at: https://doi.org/10.1002/cctc.202301113.
URLs
URLs
Tachibana, Ryo et al. (2023) ‘A Customized Bayesian Algorithm to Optimize Enzyme-Catalyzed Reactions’, ACS Sustainable Chemistry & Engineering. 03.08.2023, 11(33), pp. 12336–12344. Available at: https://doi.org/10.1021/acssuschemeng.3c02402.
URLs
URLs
Beweries, Torsten et al. (2023) ‘Make - underpinning concepts of the synthesis of systems where non-covalent interactions are important: general discussion’, Faraday Discussions, 244, pp. 434–454. Available at: https://doi.org/10.1039/d3fd90012f.
URLs
URLs
Beweries, Torsten et al. (2023) ‘Manipulate - techniques to manipulate the surroundings of a synthetic catalyst to control activity and selectivity: general discussion’, Faraday Discussions, 244, pp. 96–118. Available at: https://doi.org/10.1039/d3fd90013d.
URLs
URLs
Chanbasha, Basheer et al. (2023) ‘Model - state-of-the-art modelling and computational analysis of reactive sites: general discussion’, Faraday Discussions, 244, pp. 336–355. Available at: https://doi.org/10.1039/d3fd90015k.
URLs
URLs
Igareta, Nico V. et al. (2023) ‘Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation’, FARADAY DISCUSSIONS, 244, pp. 9–20. Available at: https://doi.org/10.1039/d3fd00034f.
URLs
URLs
Meeus, Eva J. et al. (2023) ‘A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis’, Chemical Communications. 14.11.2023, 59(98), pp. 14567–14570. Available at: https://doi.org/10.1039/d3cc04723g.
URLs
URLs
Wang, Weijin et al. (2023) ‘Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology’, Angewandte Chemie International Edition, p. e202311896. Available at: https://doi.org/10.1002/anie.202311896.
URLs
URLs
Ward, Thomas R. and Copéret, Christophe (2023) ‘Introduction: Bridging the Gaps: Learning from Catalysis across Boundaries’, Chemical Reviews, 123(9), pp. 5221–5224. Available at: https://doi.org/10.1021/acs.chemrev.3c00029.
URLs
URLs
Waser, Valerie et al. (2023) ‘An Artificial [Fe₄S₄]-Containing Metalloenzyme for the Reduction of CO₂ to Hydrocarbons’, Journal of the American Chemical Society, 145(27), pp. 14823–14830. Available at: https://doi.org/10.1021/jacs.3c03546.
URLs
URLs
Waser, Valerie and Ward, Thomas R. (2023) ‘Aqueous stability and redox chemistry of synthetic [Fe₄S₄] clusters’, Coordination chemistry reviews, 495, p. 215377. Available at: https://doi.org/10.1016/j.ccr.2023.215377.
URLs
URLs
Yu, Kun et al. (2023) ‘Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C(sp³)-H Bonds’, Journal of the American Chemical Society, 145(30), pp. 16621–16629. Available at: https://doi.org/10.1021/jacs.3c03969.
URLs
URLs
Burgener, Simon and Ward, Thomas R. (2022) ‘Dihydrogen-dependent carbon dioxide reductase: Hardwired for CO₂ reduction’, Chem Catalysis, 2(10), pp. 2427–2429. Available at: https://doi.org/10.1016/j.checat.2022.09.031.
URLs
URLs
Hirschi, Stephan et al. (2022) ‘Synthetic Biology: Bottom-Up Assembly of Molecular Systems’, Chemical Reviews, 122(21), pp. 16294–16328. Available at: https://doi.org/10.1021/acs.chemrev.2c00339.
URLs
URLs
Rumo, Corentin et al. (2022) ‘An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp³ C-H Functionalization via Intramolecular Carbene Insertion’, Journal of the American Chemical Society, 144(26), pp. 11676–11684. Available at: https://doi.org/10.1021/jacs.2c03311.
URLs
URLs
Schreier, Mirjam R. et al. (2022) ‘Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry’, Accounts of Chemical Research, 55(9), pp. 1290–1300. Available at: https://doi.org/10.1021/acs.accounts.2c00075.
URLs
URLs
Stein, Alina et al. (2022) ‘Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination’, Journal of Organometallic Chemistry, 962, p. 122272. Available at: https://doi.org/10.1016/j.jorganchem.2022.122272.
URLs
URLs
Vallapurackal, Jaicy et al. (2022) ‘Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions’, Angewandte Chemie International Edition, 61(48), p. e202207328. Available at: https://doi.org/10.1002/anie.202207328.
URLs
URLs
Baiyoumy, Alain et al. (2021) ‘Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein’, ACS Catalysis, 11(17), pp. 10705–10712. Available at: https://doi.org/10.1021/acscatal.1c02405.
URLs
URLs
Christoffel, Fadri et al. (2021) ‘Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis’, Nature Catalysis, 4(8), p. 643–+. Available at: https://doi.org/10.1038/s41929-021-00651-9.
URLs
URLs
Di Leone, Stefano et al. (2021) ‘Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers’, Biomacromolecules, 22(7), pp. 3005–3016. Available at: https://doi.org/10.1021/acs.biomac.1c00424.
URLs
URLs
Fischer, Sandro, Ward, Thomas R. and Liang, Alexandria D. (2021) ‘Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag’, ACS Catalysis, 11(10), pp. 6343–6347. Available at: https://doi.org/10.1021/acscatal.1c01470.
URLs
URLs
Lozhkin, Boris and Ward, Thomas R. (2021) ‘A Close-to-Aromatize Approach for the Late-Stage Functionalization through Ring Closing Metathesis’, Helvetica Chimica Acta, 104(5), p. e2100024. Available at: https://doi.org/10.1002/hlca.202100024.
URLs
URLs
Lozhkin, Boris and Ward, Thomas R. (2021) ‘Bioorthogonal strategies for the in vivo synthesis or release of drugs’, Bioorganic & medicinal chemistry, 45, p. 116310. Available at: https://doi.org/10.1016/j.bmc.2021.116310.
URLs
URLs
Miró-Vinyals, Carla et al. (2021) ‘HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye’, ChemBioChem, 22(24), pp. 3398–3401. Available at: https://doi.org/10.1002/cbic.202100424.
URLs
URLs
Stein, Alina et al. (2021) ‘A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase’, ACS Central Science, 7(11), pp. 1874–1884. Available at: https://doi.org/10.1021/acscentsci.1c00825.
URLs
URLs
Stucki, Ariane et al. (2021) ‘Droplet Microfluidics and Directed Evolution of Enzymes: an Intertwined Journey’, Angewandte Chemie International Edition, 60(46), pp. 24368–24387. Available at: https://doi.org/10.1002/anie.202016154.
URLs
URLs
Vornholt, Tobias et al. (2021) ‘Systematic engineering of artificial metalloenzymes for new-to-nature reactions’, Science Advances, 7(4), p. eabe4208. Available at: https://doi.org/10.1126/sciadv.abe4208.
URLs
URLs
Bullock, R. Morris et al. (2020) ‘Using nature’s blueprint to expand catalysis with Earth-abundant metals’, Science, 369(6505), p. 3183. Available at: https://doi.org/10.1126/science.abc3183.
URLs
URLs
Davis, Holly Jane et al. (2020) ‘A visible-light promoted amine oxidation catalyzed by a Cp*Ir complex’, ChemCatChem, 12(18), pp. 4512–4516. Available at: https://doi.org/10.1002/cctc.202000488.
URLs
URLs
Miller, Kelsey R. et al. (2020) ‘Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases’, Inorganic Chemistry, 59(9), pp. 6000–6009. Available at: https://doi.org/10.1021/acs.inorgchem.9b03791.
URLs
URLs
Sabatino, Valerio, Staub, Dario and Ward, Thomas R. (2020) ‘Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis’, Catalysis Letters, 151(1), pp. 17–7. Available at: https://doi.org/10.1007/s10562-020-03271-3.
URLs
URLs
Samanta, Avik et al. (2020) ‘Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes’, Nature Nanotechnology, 15(11), pp. 914–921. Available at: https://doi.org/10.1038/s41565-020-0761-y.
URLs
URLs
Schätti, Jonas et al. (2020) ‘Matter-wave interference and deflection of tripeptides decorated with fluorinated alkyl chains’, Journal of Mass Spectrometry, 55(6), p. e4514. Available at: https://doi.org/10.1002/jms.4514.
URLs
URLs
Serrano-Plana, Joan et al. (2020) ‘Enantioselective Hydroxylation of Benzylic C(sp; 3; )-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology’, Journal of the American Chemical Society, 142(24), pp. 10617–10623. Available at: https://doi.org/10.1021/jacs.0c02788.
URLs
URLs
Klehr, Juliane et al. (2020) ‘Streptavidin (Sav)-Based Artificial Metalloenzymes: Cofactor Design Considerations and Large-Scale Expression of Host Protein Variants’, in Iranzo O., Roque A. (ed.) Peptide and Protein Engineering. New York: Humana (Peptide and Protein Engineering), pp. 213–235. Available at: https://doi.org/10.1007/978-1-0716-0720-6_12.
URLs
URLs
Bartolami, Eline et al. (2019) ‘Diselenolane-Mediated Cellular Uptake: Efficient Cytosolic Delivery of Probes, Peptides, Proteins, Artificial Metalloenzymes and Protein-Coated Quantum Dots’, Chemistry - A European Journal, 25(16), pp. 4047–4051. Available at: https://doi.org/10.1002/chem.201805900.
URLs
URLs
Cheng, Yangyang et al. (2019) ‘Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks’, Angewandte Chemie International Edition, 58(28), pp. 9522–9526. Available at: https://doi.org/10.1002/anie.201905003.
URLs
URLs
Davis, Holly J. and Ward, Thomas R. (2019) ‘Artificial Metalloenzymes: Challenges and Opportunities’, ACS Central Science, 5(7), pp. 1120–1136. Available at: https://doi.org/10.1021/acscentsci.9b00397.
URLs
URLs
Guo, Xingwei et al. (2019) ‘Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis’, European Journal of Organic Chemistry [Preprint]. Available at: https://doi.org/10.1002/ejoc.201900777.
URLs
URLs
Hartwig, John F. and Ward, Thomas R. (2019) ‘New ‘Cats’ in the House: Chemistry Meets Biology in Artificial Metalloenzymes and Repurposed Metalloenzymes’, Accounts of Chemical Research, 52(5), p. 1145. Available at: https://doi.org/10.1021/acs.accounts.9b00154.
URLs
URLs
Liang, Alexandria Deliz et al. (2019) ‘Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution’, Accounts of Chemical Research, 52(3), pp. 585–595. Available at: https://doi.org/10.1021/acs.accounts.8b00618.
URLs
URLs
Rebelein, Johannes G. et al. (2019) ‘Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein’, ACS Catalysis, 9(5), pp. 4173–4178. Available at: https://doi.org/10.1021/acscatal.9b01006.
URLs
URLs
Sabatino, Valerio, Rebelein, Johannes G. and Ward, Thomas R. (2019) ‘‘Close-to-Release’: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis’, Journal of the American Chemical Society, 141(43), pp. 17048–17052. Available at: https://doi.org/10.1021/jacs.9b07193.
URLs
URLs
Sabatino, Valerio and Ward, Thomas R. (2019) ‘Aqueous olefin metathesis: recent developments and applications’, Beilstein Journal of Organic Chemistry, 15, pp. 445–468. Available at: https://doi.org/10.3762/bjoc.15.39.
URLs
URLs
Schätti, Jonas et al. (2019) ‘Neutralization of insulin by photocleavage under high vacuum’, Chemical Communications, 55(83), pp. 12507–12510. Available at: https://doi.org/10.1039/c9cc05712a.
URLs
URLs
Wu, Shuke et al. (2019) ‘Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources’, Nature Communications, 10(1), p. 5060. Available at: https://doi.org/10.1038/s41467-019-13071-y.
URLs
URLs
Wu, Shuke et al. (2019) ‘Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes’, Journal of the American Chemical Society, 141(40), pp. 15869–15878. Available at: https://doi.org/10.1021/jacs.9b06923.
URLs
URLs
Christoffel, Fadri and Ward, Thomas R. (2018) ‘Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review’, Catalysis letters, 148(2), pp. 489–511. Available at: https://doi.org/10.1007/s10562-017-2285-0.
URLs
URLs
Guo, Xingwei et al. (2018) ‘Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network’, Chemical Science, 9, pp. 5052–5056. Available at: https://doi.org/10.1039/c8sc01561a.
URLs
URLs
Heinisch, Tillmann et al. (2018) ‘E. coli surface display of streptavidin for directed evolution of an allylic deallylase’, Chemical Science, 9(24), pp. 5383–5388. Available at: https://doi.org/10.1039/c8sc00484f.
URLs
URLs
Hestericová, Martina et al. (2018) ‘Directed Evolution of an Artificial Imine Reductase’, Angewandte Chemie - International Edition, 57(7), pp. 1863–1868. Available at: https://doi.org/10.1002/anie.201711016.
URLs
URLs
Hestericova, Martina et al. (2018) ‘Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase’, Dalton transactions, 47(32), pp. 10837–10841. Available at: https://doi.org/10.1039/c8dt02224k.
URLs
URLs
Jeschek, Markus, Panke, Sven and Ward, Thomas R. (2018) ‘Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism’, Trends in Biotechnology, 36(1), pp. 60–72. Available at: https://doi.org/10.1016/j.tibtech.2017.10.003.
URLs
URLs
Keller, Sascha G. et al. (2018) ‘Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology’, Helvetica Chimica Acta, 101(4), p. e1800036. Available at: https://doi.org/10.1002/hlca.201800036.
URLs
URLs
Mallin, Hendrik and Ward, Thomas R. (2018) ‘Streptavidin-Enzyme Linked Aggregates for the One-Step Assembly and Purification of Enzyme Cascades’, ChemCatChem, 10(13), pp. 2810–2816. Available at: https://doi.org/10.1002/cctc.201800162.
URLs
URLs
Mann, Samuel et al. (2018) ‘Coordination chemistry within a protein host: regulation of the secondary coordination sphere’, Chemical Communications, 54(35), pp. 4413–4416. Available at: https://doi.org/10.1039/c8cc01931b.
URLs
URLs
Okamoto, Yasunori et al. (2018) ‘A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell’, Nature Communications, 9, p. 1943. Available at: https://doi.org/10.1038/s41467-018-04440-0.
URLs
URLs
Pellizzoni, Michela M. et al. (2018) ‘Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes’, ACS Catalysis, 8(2), pp. 1476–1484. Available at: https://doi.org/10.1021/acscatal.7b03773.
URLs
URLs
Rebelein, Johannes G. and Ward, Thomas R. (2018) ‘In vivo catalyzed new-to-nature reactions’, Current Opinion in Biotechnology, 53, pp. 106–114. Available at: https://doi.org/10.1016/j.copbio.2017.12.008.
URLs
URLs
Schwizer, Fabian et al. (2018) ‘Artificial Metalloenzymes: Reaction Scope and Optimization Strategies’, Chemical Reviews, 118(1), pp. 142–231. Available at: https://doi.org/10.1021/acs.chemrev.7b00014.
URLs
URLs
Szponarski, Mathieu et al. (2018) ‘On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme’, Communications Chemistry, 1(84), pp. 1–10. Available at: https://doi.org/10.1038/s42004-018-0087-y.
URLs
URLs
Zhao, Jingming et al. (2018) ‘An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin’, Catalysis science & technology, 8(9), pp. 2294–2298. Available at: https://doi.org/10.1039/c8cy00646f.
URLs
URLs
Zhao, Jingming et al. (2018) ‘Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm’, Journal of American Chemical Society, 140(41), pp. 13171–13175. Available at: https://doi.org/10.1021/jacs.8b07189.
URLs
URLs
Jeschek, Markus et al. (2017) ‘Biotin-independent strains of Escherichia coli for enhanced streptavidin production’, Metabolic Engineering, 40, pp. 33–40. Available at: https://doi.org/10.1016/j.ymben.2016.12.013.
URLs
URLs
Keller, Sascha G. et al. (2017) ‘Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation’, Chemistry - A European Journal, 23(71), pp. 18019–18024. Available at: https://doi.org/10.1002/chem.201703885.
URLs
URLs
Liu, Le et al. (2017) ‘Anion-ÏEuro catalysis: Bicyclic products with four contiguous stereogenic centers from otherwise elusive diastereospecific domino reactions on ÏEuro-acidic surfaces’, Chemical Science, 8(5), pp. 3770–3774. Available at: https://doi.org/10.1039/c7sc00525c.
URLs
URLs
Mann, Samuel et al. (2017) ‘Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins’, Journal of the American Chemical Society, 139(48), pp. 17289–17292. Available at: https://doi.org/10.1021/jacs.7b10452.
URLs
URLs
Okamoto, Yasunori and Ward, Thomas R. (2017) ‘Cross-Regulation of an Artificial Metalloenzyme’, Angewandte Chemie International Edition, 56(34), pp. 10156–10160. Available at: https://doi.org/10.1002/anie.201702181.
URLs
URLs
Okamoto, Yasunori and Ward, Thomas R. (2017) ‘Transfer Hydrogenation Catalyzed by Organometallic Complexes using NADH as Reductant in a Biochemical Context’, Biochemistry, 56(40), pp. 5223–5224. Available at: https://doi.org/10.1021/acs.biochem.7b00809.
URLs
URLs
Seck, Charlotte et al. (2017) ‘Alkylation of Ketones Catalyzed by Bifunctional Iron Complexes: From Mechanistic Understanding to Application’, ChemCatChem, 9(23), pp. 4410–4416. Available at: https://doi.org/10.1002/cctc.201701241.
URLs
URLs
Okamoto, Yasunori and Ward, Thomas R. (2017) ‘Supramolecular Enzyme Mimics’, in Atwood Ed., J. (ed.) Comprehensive Supramolecular Chemistry II. II. Oxford: Elsevier (Comprehensive Supramolecular Chemistry II), pp. 459–510. Available at: https://doi.org/10.1016/b978-0-12-409547-2.12551-x.
URLs
URLs
Trindler, Christian and Ward, Thomas R. (2017) ‘Artificial Metalloenzymes’, in Poli, Rinaldo (ed.) Effects of Nanoconfinement on Catalysis. Cham, Switzerland: Springer (Effects of Nanoconfinement on Catalysis), pp. 49–82. Available at: https://doi.org/10.1007/978-3-319-50207-6_3.
URLs
URLs
Chatterjee, Anamitra et al. (2016) ‘An Enantioselective Artificial Suzukiase Based on the Biotin-Streptavidin Technology’, Chemical Science, 7(1), pp. 673–677. Available at: https://doi.org/10.1039/c5sc03116h.
URLs
URLs
Chatterjee, Anamitra and Ward, Thomas R. (2016) ‘Recent Advances in the Palladium Catalyzed Suzuki-Miyaura Cross-Coupling Reaction in Water’, Catalysis Letters, 146(4), pp. 820–840. Available at: https://doi.org/10.1007/s10562-016-1707-8.
URLs
URLs
Cotelle, Yoann et al. (2016) ‘Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Tool to Run Reactions on Aromatic Surfaces’, Angewandte Chemie International Edition, 55(13), pp. 4275–9. Available at: https://doi.org/10.1002/ange.201600831.
URLs
URLs
Cotelle, Yoann et al. (2016) ‘Anion-π Enzymes’, ACS Central Science, 2(6), pp. 388–393. Available at: https://doi.org/10.1021/acscentsci.6b00097.
URLs
URLs
Heinisch, Tillmann and Ward, Thomas R. (2016) ‘Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities’, Accounts of Chemical Research, 49(9), pp. 1711–21. Available at: https://doi.org/10.1021/acs.accounts.6b00235.
URLs
URLs
Hestericová, Martina et al. (2016) ‘Immobilization of an Artificial Imine Reductase within Silica Nanoparticles Improves its Performance’, Chemical Communications, 52(60), pp. 9462–5. Available at: https://doi.org/10.1039/c6cc04604e.
URLs
URLs
Hyster, Todd K. and Ward, Thomas R. (2016) ‘Genetic Optimization of Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions’, Angewandte Chemie International Edition, 55(26), pp. 7344–7357. Available at: https://doi.org/10.1002/anie.201508816.
URLs
URLs
Jeschek, Markus, Panke, Sven and Ward, Thomas R. (2016) ‘Periplasmic Screening for Artificial Metalloenzymes’, Methods in enzymology, 580, pp. 539–56. Available at: https://doi.org/10.1016/bs.mie.2016.05.037.
URLs
URLs
Jeschek, Markus et al. (2016) ‘Directed evolution of artificial metalloenzymes for in vivo metathesis’, Nature, 537(7622), pp. 661–665. Available at: https://doi.org/10.1038/nature19114.
URLs
URLs
Keller, Sascha G. et al. (2016) ‘Light-driven electron injection from a biotinylated triarylamine donor to [Ru(diimine)3]2+-labeled streptavidin’, Organic and Biomolecular Chemistry, 14(30), pp. 7197–201. Available at: https://doi.org/10.1039/c6ob01273f.
URLs
URLs
Liu, Zhe et al. (2016) ‘Upregulation of an Artificial Zymogen by Proteolysis’, Angewandte Chemie International Edition, 55(38), pp. 11587–11590. Available at: https://doi.org/10.1002/anie.201605010.
URLs
URLs
Mann, Sam et al. (2016) ‘Modular Artificial Cupredoxins’, Journal of the American Chemical Society, 138(29), pp. 9073–9076. Available at: https://doi.org/10.1021/jacs.6b05428.
URLs
URLs