Publications
238 found
Show per page
Morita, Iori et al. (2024) ‘Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein’, ACS Catalysis. 07.11.2024, 14, pp. 17171–17179. Available at: https://doi.org/10.1021/acscatal.4c04163.
Vornholt, Tobias et al. (2024) ‘Artificial metalloenzymes’, Nature Reviews Methods Primers. 01.11.2024, 4. Available at: https://doi.org/10.1038/s43586-024-00356-w.
Mukherjee, Manjistha et al. (2024) ‘Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ACS Catalysis. 19.10.2024, 14(21), pp. 16266–16276. Available at: https://doi.org/10.1021/acscatal.4c03208.
Renno, Giacomo et al. (2024) ‘Pnictogen‐Bonding Enzymes’, Angewandte Chemie International Edition. 05.07.2024, 63(45). Available at: https://doi.org/10.1002/anie.202411347.
Yu, Kun and Ward, Thomas R. (2024) ‘C–H functionalization reactions catalyzed by artificial metalloenzymes’, Journal of Inorganic Biochemistry. 31.05.2024, 258. Available at: https://doi.org/10.1016/j.jinorgbio.2024.112621.
Morita, Iori and Ward, Thomas R. (2024) ‘Recent advances in the design and optimization of artificial metalloenzymes’, Current Opinion in Chemical Biology. 03.08.2024, 81. Available at: https://doi.org/10.1016/j.cbpa.2024.102508.
Zhang, Xiang et al. (2024) ‘Repurposing myoglobin into an abiological asymmetric ketoreductase’, Chem. 08.08.2024, 10(8), pp. 2577–2589. Available at: https://doi.org/10.1016/j.chempr.2024.06.010.
Zou, Zhi, Higginson, Bradley and Ward, Thomas R. (2024) ‘Creation and optimization of artificial metalloenzymes: Harnessing the power of directed evolution and beyond’, Chem. 08.08.2024, 10(8), pp. 2373–2389. Available at: https://doi.org/10.1016/j.chempr.2024.07.007.
Zou, Zhi et al. (2024) ‘Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis’, Nature Synthesis. 27.06.2024, 3, pp. 1113–1123. Available at: https://doi.org/10.1038/s44160-024-00575-9.
Baiyoumy, Alain, Vinck, Robin and Ward, Thomas R. (2024) ‘The Two Janus Faces of CpRu‐Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging’, Helvetica Chimica Acta. 15.04.2024, 107(7). Available at: https://doi.org/10.1002/hlca.202400053.
Vornholt, Tobias et al. (2024) ‘Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning’, ACS Central Science. 22.05.2024, 10(7), pp. 1357–1370. Available at: https://doi.org/10.1021/acscentsci.4c00258.
Yu, Kun et al. (2024) ‘Artificial Metalloenzyme‐Catalyzed Enantioselective Carboamination of Alkenes’, ChemCatChem. 17.04.2024, 16(17). Available at: https://doi.org/10.1002/cctc.202400365.
Burgener, Simon, Zhang, Xiang and Ward, Thomas R. (2024) ‘Artificial Metalloenzymes for Enantioselective Catalysis’, in Cossy, Janine (ed.) Comprehensive Chirality. Elsevier (Comprehensive Chirality), pp. 71–110. Available at: https://doi.org/10.1016/b978-0-32-390644-9.00082-2.
Yu, K. et al. (2024) ‘An artificial nickel chlorinase based on the biotin–streptavidin technology’, Chemical Communications, 60, pp. 1944–1947. Available at: https://doi.org/10.1039/d3cc05847f.
Burgener, Simon et al. (2023) ‘Binding Interactions and Inhibition Mechanisms of Gold Complexes in Thiamine Diphosphate-Dependent Enzymes’, Biochemistry. 06.11.2023, 62(22), pp. 3303–3311. Available at: https://doi.org/10.1021/acs.biochem.3c00376.
Vornholt, Tobias et al. (2023) ‘An Artificial Metalloenzyme for Atroposelective Metathesis**’, ChemCatChem, 15(23). Available at: https://doi.org/10.1002/cctc.202301113.
Tachibana, Ryo et al. (2023) ‘A Customized Bayesian Algorithm to Optimize Enzyme-Catalyzed Reactions’, ACS Sustainable Chemistry & Engineering. 03.08.2023, 11(33), pp. 12336–12344. Available at: https://doi.org/10.1021/acssuschemeng.3c02402.
Beweries, Torsten et al. (2023) ‘Make - underpinning concepts of the synthesis of systems where non-covalent interactions are important: general discussion’, Faraday Discussions, 244, pp. 434–454. Available at: https://doi.org/10.1039/d3fd90012f.
Beweries, Torsten et al. (2023) ‘Manipulate - techniques to manipulate the surroundings of a synthetic catalyst to control activity and selectivity: general discussion’, Faraday Discussions, 244, pp. 96–118. Available at: https://doi.org/10.1039/d3fd90013d.
Chanbasha, Basheer et al. (2023) ‘Model - state-of-the-art modelling and computational analysis of reactive sites: general discussion’, Faraday Discussions, 244, pp. 336–355. Available at: https://doi.org/10.1039/d3fd90015k.
Igareta, Nico V. et al. (2023) ‘Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation’, FARADAY DISCUSSIONS, 244, pp. 9–20. Available at: https://doi.org/10.1039/d3fd00034f.
Meeus, Eva J. et al. (2023) ‘A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis’, Chemical Communications. 14.11.2023, 59(98), pp. 14567–14570. Available at: https://doi.org/10.1039/d3cc04723g.
Wang, Weijin et al. (2023) ‘Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology’, Angewandte Chemie International Edition, p. e202311896. Available at: https://doi.org/10.1002/anie.202311896.
Ward, Thomas R. and Copéret, Christophe (2023) ‘Introduction: Bridging the Gaps: Learning from Catalysis across Boundaries’, Chemical Reviews, 123(9), pp. 5221–5224. Available at: https://doi.org/10.1021/acs.chemrev.3c00029.
Waser, Valerie et al. (2023) ‘An Artificial [Fe₄S₄]-Containing Metalloenzyme for the Reduction of CO₂ to Hydrocarbons’, Journal of the American Chemical Society, 145(27), pp. 14823–14830. Available at: https://doi.org/10.1021/jacs.3c03546.
Waser, Valerie and Ward, Thomas R. (2023) ‘Aqueous stability and redox chemistry of synthetic [Fe₄S₄] clusters’, Coordination chemistry reviews, 495, p. 215377. Available at: https://doi.org/10.1016/j.ccr.2023.215377.
Yu, Kun et al. (2023) ‘Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C(sp³)-H Bonds’, Journal of the American Chemical Society, 145(30), pp. 16621–16629. Available at: https://doi.org/10.1021/jacs.3c03969.
Burgener, Simon and Ward, Thomas R. (2022) ‘Dihydrogen-dependent carbon dioxide reductase: Hardwired for CO₂ reduction’, Chem Catalysis, 2(10), pp. 2427–2429. Available at: https://doi.org/10.1016/j.checat.2022.09.031.
Hirschi, Stephan et al. (2022) ‘Synthetic Biology: Bottom-Up Assembly of Molecular Systems’, Chemical Reviews, 122(21), pp. 16294–16328. Available at: https://doi.org/10.1021/acs.chemrev.2c00339.
Rumo, Corentin et al. (2022) ‘An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp³ C-H Functionalization via Intramolecular Carbene Insertion’, Journal of the American Chemical Society, 144(26), pp. 11676–11684. Available at: https://doi.org/10.1021/jacs.2c03311.
Schreier, Mirjam R. et al. (2022) ‘Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry’, Accounts of Chemical Research, 55(9), pp. 1290–1300. Available at: https://doi.org/10.1021/acs.accounts.2c00075.
Stein, Alina et al. (2022) ‘Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination’, Journal of Organometallic Chemistry, 962, p. 122272. Available at: https://doi.org/10.1016/j.jorganchem.2022.122272.
Vallapurackal, Jaicy et al. (2022) ‘Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions’, Angewandte Chemie International Edition, 61(48), p. e202207328. Available at: https://doi.org/10.1002/anie.202207328.
Baiyoumy, Alain et al. (2021) ‘Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein’, ACS Catalysis, 11(17), pp. 10705–10712. Available at: https://doi.org/10.1021/acscatal.1c02405.
Christoffel, Fadri et al. (2021) ‘Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis’, Nature Catalysis, 4(8), p. 643–+. Available at: https://doi.org/10.1038/s41929-021-00651-9.
Di Leone, Stefano et al. (2021) ‘Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers’, Biomacromolecules, 22(7), pp. 3005–3016. Available at: https://doi.org/10.1021/acs.biomac.1c00424.
Fischer, Sandro, Ward, Thomas R. and Liang, Alexandria D. (2021) ‘Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag’, ACS Catalysis, 11(10), pp. 6343–6347. Available at: https://doi.org/10.1021/acscatal.1c01470.
Lozhkin, Boris and Ward, Thomas R. (2021) ‘A Close-to-Aromatize Approach for the Late-Stage Functionalization through Ring Closing Metathesis’, Helvetica Chimica Acta, 104(5), p. e2100024. Available at: https://doi.org/10.1002/hlca.202100024.
Lozhkin, Boris and Ward, Thomas R. (2021) ‘Bioorthogonal strategies for the in vivo synthesis or release of drugs’, Bioorganic & medicinal chemistry, 45, p. 116310. Available at: https://doi.org/10.1016/j.bmc.2021.116310.
Miró-Vinyals, Carla et al. (2021) ‘HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye’, ChemBioChem, 22(24), pp. 3398–3401. Available at: https://doi.org/10.1002/cbic.202100424.
Stein, Alina et al. (2021) ‘A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase’, ACS Central Science, 7(11), pp. 1874–1884. Available at: https://doi.org/10.1021/acscentsci.1c00825.
Stucki, Ariane et al. (2021) ‘Droplet Microfluidics and Directed Evolution of Enzymes: an Intertwined Journey’, Angewandte Chemie International Edition, 60(46), pp. 24368–24387. Available at: https://doi.org/10.1002/anie.202016154.
Vornholt, Tobias et al. (2021) ‘Systematic engineering of artificial metalloenzymes for new-to-nature reactions’, Science Advances, 7(4), p. eabe4208. Available at: https://doi.org/10.1126/sciadv.abe4208.
Bullock, R. Morris et al. (2020) ‘Using nature’s blueprint to expand catalysis with Earth-abundant metals’, Science, 369(6505), p. 3183. Available at: https://doi.org/10.1126/science.abc3183.
Davis, Holly Jane et al. (2020) ‘A visible-light promoted amine oxidation catalyzed by a Cp*Ir complex’, ChemCatChem, 12(18), pp. 4512–4516. Available at: https://doi.org/10.1002/cctc.202000488.
Miller, Kelsey R. et al. (2020) ‘Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases’, Inorganic Chemistry, 59(9), pp. 6000–6009. Available at: https://doi.org/10.1021/acs.inorgchem.9b03791.
Sabatino, Valerio, Staub, Dario and Ward, Thomas R. (2020) ‘Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis’, Catalysis Letters, 151(1), pp. 17–7. Available at: https://doi.org/10.1007/s10562-020-03271-3.
Samanta, Avik et al. (2020) ‘Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes’, Nature Nanotechnology, 15(11), pp. 914–921. Available at: https://doi.org/10.1038/s41565-020-0761-y.
Schätti, Jonas et al. (2020) ‘Matter-wave interference and deflection of tripeptides decorated with fluorinated alkyl chains’, Journal of Mass Spectrometry, 55(6), p. e4514. Available at: https://doi.org/10.1002/jms.4514.
Serrano-Plana, Joan et al. (2020) ‘Enantioselective Hydroxylation of Benzylic C(sp; 3; )-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology’, Journal of the American Chemical Society, 142(24), pp. 10617–10623. Available at: https://doi.org/10.1021/jacs.0c02788.
Klehr, Juliane et al. (2020) ‘Streptavidin (Sav)-Based Artificial Metalloenzymes: Cofactor Design Considerations and Large-Scale Expression of Host Protein Variants’, in Iranzo O., Roque A. (ed.) Peptide and Protein Engineering. New York: Humana (Peptide and Protein Engineering), pp. 213–235. Available at: https://doi.org/10.1007/978-1-0716-0720-6_12.
Bartolami, Eline et al. (2019) ‘Diselenolane-Mediated Cellular Uptake: Efficient Cytosolic Delivery of Probes, Peptides, Proteins, Artificial Metalloenzymes and Protein-Coated Quantum Dots’, Chemistry - A European Journal, 25(16), pp. 4047–4051. Available at: https://doi.org/10.1002/chem.201805900.
Cheng, Yangyang et al. (2019) ‘Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks’, Angewandte Chemie International Edition, 58(28), pp. 9522–9526. Available at: https://doi.org/10.1002/anie.201905003.
Davis, Holly J. and Ward, Thomas R. (2019) ‘Artificial Metalloenzymes: Challenges and Opportunities’, ACS Central Science, 5(7), pp. 1120–1136. Available at: https://doi.org/10.1021/acscentsci.9b00397.
Guo, Xingwei et al. (2019) ‘Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis’, European Journal of Organic Chemistry [Preprint]. Available at: https://doi.org/10.1002/ejoc.201900777.
Hartwig, John F. and Ward, Thomas R. (2019) ‘New ‘Cats’ in the House: Chemistry Meets Biology in Artificial Metalloenzymes and Repurposed Metalloenzymes’, Accounts of Chemical Research, 52(5), p. 1145. Available at: https://doi.org/10.1021/acs.accounts.9b00154.
Liang, Alexandria Deliz et al. (2019) ‘Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution’, Accounts of Chemical Research, 52(3), pp. 585–595. Available at: https://doi.org/10.1021/acs.accounts.8b00618.
Rebelein, Johannes G. et al. (2019) ‘Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein’, ACS Catalysis, 9(5), pp. 4173–4178. Available at: https://doi.org/10.1021/acscatal.9b01006.
Sabatino, Valerio, Rebelein, Johannes G. and Ward, Thomas R. (2019) ‘‘Close-to-Release’: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis’, Journal of the American Chemical Society, 141(43), pp. 17048–17052. Available at: https://doi.org/10.1021/jacs.9b07193.
Sabatino, Valerio and Ward, Thomas R. (2019) ‘Aqueous olefin metathesis: recent developments and applications’, Beilstein Journal of Organic Chemistry, 15, pp. 445–468. Available at: https://doi.org/10.3762/bjoc.15.39.
Schätti, Jonas et al. (2019) ‘Neutralization of insulin by photocleavage under high vacuum’, Chemical Communications, 55(83), pp. 12507–12510. Available at: https://doi.org/10.1039/c9cc05712a.
Wu, Shuke et al. (2019) ‘Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources’, Nature Communications, 10(1), p. 5060. Available at: https://doi.org/10.1038/s41467-019-13071-y.
Wu, Shuke et al. (2019) ‘Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes’, Journal of the American Chemical Society, 141(40), pp. 15869–15878. Available at: https://doi.org/10.1021/jacs.9b06923.
Christoffel, Fadri and Ward, Thomas R. (2018) ‘Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review’, Catalysis letters, 148(2), pp. 489–511. Available at: https://doi.org/10.1007/s10562-017-2285-0.
Guo, Xingwei et al. (2018) ‘Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network’, Chemical Science, 9, pp. 5052–5056. Available at: https://doi.org/10.1039/c8sc01561a.
Heinisch, Tillmann et al. (2018) ‘E. coli surface display of streptavidin for directed evolution of an allylic deallylase’, Chemical Science, 9(24), pp. 5383–5388. Available at: https://doi.org/10.1039/c8sc00484f.
Hestericová, Martina et al. (2018) ‘Directed Evolution of an Artificial Imine Reductase’, Angewandte Chemie - International Edition, 57(7), pp. 1863–1868. Available at: https://doi.org/10.1002/anie.201711016.
Hestericova, Martina et al. (2018) ‘Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase’, Dalton transactions, 47(32), pp. 10837–10841. Available at: https://doi.org/10.1039/c8dt02224k.
Jeschek, Markus, Panke, Sven and Ward, Thomas R. (2018) ‘Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism’, Trends in Biotechnology, 36(1), pp. 60–72. Available at: https://doi.org/10.1016/j.tibtech.2017.10.003.
Keller, Sascha G. et al. (2018) ‘Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology’, Helvetica Chimica Acta, 101(4), p. e1800036. Available at: https://doi.org/10.1002/hlca.201800036.
Mallin, Hendrik and Ward, Thomas R. (2018) ‘Streptavidin-Enzyme Linked Aggregates for the One-Step Assembly and Purification of Enzyme Cascades’, ChemCatChem, 10(13), pp. 2810–2816. Available at: https://doi.org/10.1002/cctc.201800162.
Mann, Samuel et al. (2018) ‘Coordination chemistry within a protein host: regulation of the secondary coordination sphere’, Chemical Communications, 54(35), pp. 4413–4416. Available at: https://doi.org/10.1039/c8cc01931b.
Okamoto, Yasunori et al. (2018) ‘A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell’, Nature Communications, 9, p. 1943. Available at: https://doi.org/10.1038/s41467-018-04440-0.
Pellizzoni, Michela M. et al. (2018) ‘Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes’, ACS Catalysis, 8(2), pp. 1476–1484. Available at: https://doi.org/10.1021/acscatal.7b03773.
Rebelein, Johannes G. and Ward, Thomas R. (2018) ‘In vivo catalyzed new-to-nature reactions’, Current Opinion in Biotechnology, 53, pp. 106–114. Available at: https://doi.org/10.1016/j.copbio.2017.12.008.
Schwizer, Fabian et al. (2018) ‘Artificial Metalloenzymes: Reaction Scope and Optimization Strategies’, Chemical Reviews, 118(1), pp. 142–231. Available at: https://doi.org/10.1021/acs.chemrev.7b00014.
Szponarski, Mathieu et al. (2018) ‘On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme’, Communications Chemistry, 1(84), pp. 1–10. Available at: https://doi.org/10.1038/s42004-018-0087-y.
Zhao, Jingming et al. (2018) ‘An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin’, Catalysis science & technology, 8(9), pp. 2294–2298. Available at: https://doi.org/10.1039/c8cy00646f.
Zhao, Jingming et al. (2018) ‘Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm’, Journal of American Chemical Society, 140(41), pp. 13171–13175. Available at: https://doi.org/10.1021/jacs.8b07189.
Jeschek, Markus et al. (2017) ‘Biotin-independent strains of Escherichia coli for enhanced streptavidin production’, Metabolic Engineering, 40, pp. 33–40. Available at: https://doi.org/10.1016/j.ymben.2016.12.013.
Keller, Sascha G. et al. (2017) ‘Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation’, Chemistry - A European Journal, 23(71), pp. 18019–18024. Available at: https://doi.org/10.1002/chem.201703885.
Liu, Le et al. (2017) ‘Anion-ÏEuro catalysis: Bicyclic products with four contiguous stereogenic centers from otherwise elusive diastereospecific domino reactions on ÏEuro-acidic surfaces’, Chemical Science, 8(5), pp. 3770–3774. Available at: https://doi.org/10.1039/c7sc00525c.
Mann, Samuel et al. (2017) ‘Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins’, Journal of the American Chemical Society, 139(48), pp. 17289–17292. Available at: https://doi.org/10.1021/jacs.7b10452.
Okamoto, Yasunori and Ward, Thomas R. (2017) ‘Cross-Regulation of an Artificial Metalloenzyme’, Angewandte Chemie International Edition, 56(34), pp. 10156–10160. Available at: https://doi.org/10.1002/anie.201702181.
Okamoto, Yasunori and Ward, Thomas R. (2017) ‘Transfer Hydrogenation Catalyzed by Organometallic Complexes using NADH as Reductant in a Biochemical Context’, Biochemistry, 56(40), pp. 5223–5224. Available at: https://doi.org/10.1021/acs.biochem.7b00809.
Seck, Charlotte et al. (2017) ‘Alkylation of Ketones Catalyzed by Bifunctional Iron Complexes: From Mechanistic Understanding to Application’, ChemCatChem, 9(23), pp. 4410–4416. Available at: https://doi.org/10.1002/cctc.201701241.
Okamoto, Yasunori and Ward, Thomas R. (2017) ‘Supramolecular Enzyme Mimics’, in Atwood Ed., J. (ed.) Comprehensive Supramolecular Chemistry II. II. Oxford: Elsevier (Comprehensive Supramolecular Chemistry II), pp. 459–510. Available at: https://doi.org/10.1016/b978-0-12-409547-2.12551-x.
Trindler, Christian and Ward, Thomas R. (2017) ‘Artificial Metalloenzymes’, in Poli, Rinaldo (ed.) Effects of Nanoconfinement on Catalysis. Cham, Switzerland: Springer (Effects of Nanoconfinement on Catalysis), pp. 49–82. Available at: https://doi.org/10.1007/978-3-319-50207-6_3.
Chatterjee, Anamitra et al. (2016) ‘An Enantioselective Artificial Suzukiase Based on the Biotin-Streptavidin Technology’, Chemical Science, 7(1), pp. 673–677. Available at: https://doi.org/10.1039/c5sc03116h.
Chatterjee, Anamitra and Ward, Thomas R. (2016) ‘Recent Advances in the Palladium Catalyzed Suzuki-Miyaura Cross-Coupling Reaction in Water’, Catalysis Letters, 146(4), pp. 820–840. Available at: https://doi.org/10.1007/s10562-016-1707-8.
Cotelle, Yoann et al. (2016) ‘Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Tool to Run Reactions on Aromatic Surfaces’, Angewandte Chemie International Edition, 55(13), pp. 4275–9. Available at: https://doi.org/10.1002/ange.201600831.
Cotelle, Yoann et al. (2016) ‘Anion-π Enzymes’, ACS Central Science, 2(6), pp. 388–393. Available at: https://doi.org/10.1021/acscentsci.6b00097.
Heinisch, Tillmann and Ward, Thomas R. (2016) ‘Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities’, Accounts of Chemical Research, 49(9), pp. 1711–21. Available at: https://doi.org/10.1021/acs.accounts.6b00235.
Hestericová, Martina et al. (2016) ‘Immobilization of an Artificial Imine Reductase within Silica Nanoparticles Improves its Performance’, Chemical Communications, 52(60), pp. 9462–5. Available at: https://doi.org/10.1039/c6cc04604e.
Hyster, Todd K. and Ward, Thomas R. (2016) ‘Genetic Optimization of Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions’, Angewandte Chemie International Edition, 55(26), pp. 7344–7357. Available at: https://doi.org/10.1002/anie.201508816.
Jeschek, Markus, Panke, Sven and Ward, Thomas R. (2016) ‘Periplasmic Screening for Artificial Metalloenzymes’, Methods in enzymology, 580, pp. 539–56. Available at: https://doi.org/10.1016/bs.mie.2016.05.037.
Jeschek, Markus et al. (2016) ‘Directed evolution of artificial metalloenzymes for in vivo metathesis’, Nature, 537(7622), pp. 661–665. Available at: https://doi.org/10.1038/nature19114.
Keller, Sascha G. et al. (2016) ‘Light-driven electron injection from a biotinylated triarylamine donor to [Ru(diimine)3]2+-labeled streptavidin’, Organic and Biomolecular Chemistry, 14(30), pp. 7197–201. Available at: https://doi.org/10.1039/c6ob01273f.
Liu, Zhe et al. (2016) ‘Upregulation of an Artificial Zymogen by Proteolysis’, Angewandte Chemie International Edition, 55(38), pp. 11587–11590. Available at: https://doi.org/10.1002/anie.201605010.
Mann, Sam et al. (2016) ‘Modular Artificial Cupredoxins’, Journal of the American Chemical Society, 138(29), pp. 9073–9076. Available at: https://doi.org/10.1021/jacs.6b05428.