UNIverse - Public Research Portal

Bioanorganische Chemie (Ward)

Publications

274 found
Show per page

Schmid, D. (2025) Addressing selectivity challenges by utilizing the xexameric resorcin[4]arene capsule.

URLs
URLs

Morita, Iori et al. (2024) ‘Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein’, ACS Catalysis. 07.11.2024, 14, pp. 17171–17179. Available at: https://doi.org/10.1021/acscatal.4c04163.

URLs
URLs

Vornholt, Tobias et al. (2024) ‘Artificial metalloenzymes’, Nature Reviews Methods Primers. 01.11.2024, 4. Available at: https://doi.org/10.1038/s43586-024-00356-w.

URLs
URLs

Mukherjee, Manjistha et al. (2024) ‘Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ACS Catalysis. 19.10.2024, 14(21), pp. 16266–16276. Available at: https://doi.org/10.1021/acscatal.4c03208.

URLs
URLs

Renno, Giacomo et al. (2024) ‘Pnictogen‐Bonding Enzymes’, Angewandte Chemie International Edition. 05.07.2024, 63(45). Available at: https://doi.org/10.1002/anie.202411347.

URLs
URLs

Yu, Kun and Ward, Thomas R. (2024) ‘C–H functionalization reactions catalyzed by artificial metalloenzymes’, Journal of Inorganic Biochemistry. 31.05.2024, 258. Available at: https://doi.org/10.1016/j.jinorgbio.2024.112621.

URLs
URLs

Morita, Iori and Ward, Thomas R. (2024) ‘Recent advances in the design and optimization of artificial metalloenzymes’, Current Opinion in Chemical Biology. 03.08.2024, 81. Available at: https://doi.org/10.1016/j.cbpa.2024.102508.

URLs
URLs

Zhang, Xiang et al. (2024) ‘Repurposing myoglobin into an abiological asymmetric ketoreductase’, Chem. 08.08.2024, 10(8), pp. 2577–2589. Available at: https://doi.org/10.1016/j.chempr.2024.06.010.

URLs
URLs

Zou, Zhi, Higginson, Bradley and Ward, Thomas R. (2024) ‘Creation and optimization of artificial metalloenzymes: Harnessing the power of directed evolution and beyond’, Chem. 08.08.2024, 10(8), pp. 2373–2389. Available at: https://doi.org/10.1016/j.chempr.2024.07.007.

URLs
URLs

Zou, Zhi et al. (2024) ‘Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis’, Nature Synthesis. 27.06.2024, 3, pp. 1113–1123. Available at: https://doi.org/10.1038/s44160-024-00575-9.

URLs
URLs

Baiyoumy, Alain, Vinck, Robin and Ward, Thomas R. (2024) ‘The Two Janus Faces of CpRu‐Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging’, Helvetica Chimica Acta. 15.04.2024, 107(7). Available at: https://doi.org/10.1002/hlca.202400053.

URLs
URLs

Vornholt, Tobias et al. (2024) ‘Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning’, ACS Central Science. 22.05.2024, 10(7), pp. 1357–1370. Available at: https://doi.org/10.1021/acscentsci.4c00258.

URLs
URLs

Yu, Kun et al. (2024) ‘Artificial Metalloenzyme‐Catalyzed Enantioselective Carboamination of Alkenes’, ChemCatChem. 17.04.2024, 16(17). Available at: https://doi.org/10.1002/cctc.202400365.

URLs
URLs

Burgener, Simon, Zhang, Xiang and Ward, Thomas R. (2024) ‘Artificial Metalloenzymes for Enantioselective Catalysis’, in Cossy, Janine (ed.) Comprehensive Chirality. Elsevier (Comprehensive Chirality), pp. 71–110. Available at: https://doi.org/10.1016/b978-0-32-390644-9.00082-2.

URLs
URLs

Carrillo, M. (2024) Polymer fixed-targets for time-resolved serial protein crystallography at XFELs and synchrotrons.

URLs
URLs

Hua, Y. (2024) Charge control of biomolecules by photocleavage in high vacuum.

URLs
URLs

Morita, I. (2024) Development of an artificial peroxidase based on a human carbonic anhydrase protein .

URLs
URLs

Yu, K. et al. (2024) ‘An artificial nickel chlorinase based on the biotin–streptavidin technology’, Chemical Communications, 60, pp. 1944–1947. Available at: https://doi.org/10.1039/d3cc05847f.

URLs
URLs

Burgener, Simon et al. (2023) ‘Binding Interactions and Inhibition Mechanisms of Gold Complexes in Thiamine Diphosphate-Dependent Enzymes’, Biochemistry. 06.11.2023, 62(22), pp. 3303–3311. Available at: https://doi.org/10.1021/acs.biochem.3c00376.

URLs
URLs

Vornholt, Tobias et al. (2023) ‘An Artificial Metalloenzyme for Atroposelective Metathesis**’, ChemCatChem, 15(23). Available at: https://doi.org/10.1002/cctc.202301113.

URLs
URLs

Tachibana, Ryo et al. (2023) ‘A Customized Bayesian Algorithm to Optimize Enzyme-Catalyzed Reactions’, ACS Sustainable Chemistry & Engineering. 03.08.2023, 11(33), pp. 12336–12344. Available at: https://doi.org/10.1021/acssuschemeng.3c02402.

URLs
URLs

Baiyoumy, A. (2023) Development and application of an artificial allylic aminase for in vivo catalysis purposes.

URLs
URLs

Beweries, Torsten et al. (2023) ‘Make - underpinning concepts of the synthesis of systems where non-covalent interactions are important: general discussion’, Faraday Discussions, 244, pp. 434–454. Available at: https://doi.org/10.1039/d3fd90012f.

URLs
URLs

Beweries, Torsten et al. (2023) ‘Manipulate - techniques to manipulate the surroundings of a synthetic catalyst to control activity and selectivity: general discussion’, Faraday Discussions, 244, pp. 96–118. Available at: https://doi.org/10.1039/d3fd90013d.

URLs
URLs

Chanbasha, Basheer et al. (2023) ‘Model - state-of-the-art modelling and computational analysis of reactive sites: general discussion’, Faraday Discussions, 244, pp. 336–355. Available at: https://doi.org/10.1039/d3fd90015k.

URLs
URLs

Igareta, Nico V. et al. (2023) ‘Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation’, FARADAY DISCUSSIONS, 244, pp. 9–20. Available at: https://doi.org/10.1039/d3fd00034f.

URLs
URLs

Meeus, Eva J. et al. (2023) ‘A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis’, Chemical Communications. 14.11.2023, 59(98), pp. 14567–14570. Available at: https://doi.org/10.1039/d3cc04723g.

URLs
URLs

Parvizian, M./.M. (2023) Exploring metal nitride synthesis from precursors to structural insights.

URLs
URLs

Rumo, C. (2023) Artificial metalloenzymes based on copper heteroscorpionate complexes for C-H functionalization catalysis.

URLs
URLs

Wang, Weijin et al. (2023) ‘Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology’, Angewandte Chemie International Edition, p. e202311896. Available at: https://doi.org/10.1002/anie.202311896.

URLs
URLs

Ward, Thomas R. and Copéret, Christophe (2023) ‘Introduction: Bridging the Gaps: Learning from Catalysis across Boundaries’, Chemical Reviews, 123(9), pp. 5221–5224. Available at: https://doi.org/10.1021/acs.chemrev.3c00029.

URLs
URLs

Waser, V. (2023) An artificial [Fe4S4]-containing metalloenzyme for the reduction of CO2 to hydrocarbons.

URLs
URLs

Waser, Valerie et al. (2023) ‘An Artificial [Fe₄S₄]-Containing Metalloenzyme for the Reduction of CO₂ to Hydrocarbons’, Journal of the American Chemical Society, 145(27), pp. 14823–14830. Available at: https://doi.org/10.1021/jacs.3c03546.

URLs
URLs

Waser, Valerie and Ward, Thomas R. (2023) ‘Aqueous stability and redox chemistry of synthetic [Fe₄S₄] clusters’, Coordination chemistry reviews, 495, p. 215377. Available at: https://doi.org/10.1016/j.ccr.2023.215377.

URLs
URLs

Yu, K. (2023) Artificial metalloenzymes-catalyzed C-H functionalization reactions based on the biotin-streptavidin technology.

URLs
URLs

Yu, Kun et al. (2023) ‘Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C(sp³)-H Bonds’, Journal of the American Chemical Society, 145(30), pp. 16621–16629. Available at: https://doi.org/10.1021/jacs.3c03969.

URLs
URLs

Boris, L. (2022) Extending artificial metalloenzymes for the uncaging of drugs on cells.

URLs
URLs

Burgener, Simon and Ward, Thomas R. (2022) ‘Dihydrogen-dependent carbon dioxide reductase: Hardwired for CO₂ reduction’, Chem Catalysis, 2(10), pp. 2427–2429. Available at: https://doi.org/10.1016/j.checat.2022.09.031.

URLs
URLs

Hirschi, Stephan et al. (2022) ‘Synthetic Biology: Bottom-Up Assembly of Molecular Systems’, Chemical Reviews, 122(21), pp. 16294–16328. Available at: https://doi.org/10.1021/acs.chemrev.2c00339.

URLs
URLs

Igareta, N.V. (2022) Expanding the secondary coordination sphere of streptavidin-based artificial metalloenzymes and their characterization .

URLs
URLs

Jončev, Z. (2022) Atroposelective Arene-Forming Alkene Metathesis using Small Molecule Catalysts and Artificial Metalloenzymes.

URLs
URLs

Rumo, Corentin et al. (2022) ‘An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp³ C-H Functionalization via Intramolecular Carbene Insertion’, Journal of the American Chemical Society, 144(26), pp. 11676–11684. Available at: https://doi.org/10.1021/jacs.2c03311.

URLs
URLs

Schreier, Mirjam R. et al. (2022) ‘Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry’, Accounts of Chemical Research, 55(9), pp. 1290–1300. Available at: https://doi.org/10.1021/acs.accounts.2c00075.

URLs
URLs

Stein, A. (2022) Active Site Engineering of Three Scaffolds for Artificial Metalloenzyme-Assembly and Applications Thereof.

URLs
URLs

Stein, Alina et al. (2022) ‘Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination’, Journal of Organometallic Chemistry, 962, p. 122272. Available at: https://doi.org/10.1016/j.jorganchem.2022.122272.

URLs
URLs

Vallapurackal, Jaicy et al. (2022) ‘Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions’, Angewandte Chemie International Edition, 61(48), p. e202207328. Available at: https://doi.org/10.1002/anie.202207328.

URLs
URLs

Baiyoumy, Alain et al. (2021) ‘Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein’, ACS Catalysis, 11(17), pp. 10705–10712. Available at: https://doi.org/10.1021/acscatal.1c02405.

URLs
URLs

Christoffel, F. (2021) Directed Evolution of Gold-based Artificial Metalloenzymes and Design of Gold-triggered Drug-Release Systems.

URLs
URLs

Christoffel, Fadri et al. (2021) ‘Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis’, Nature Catalysis, 4(8), p. 643–+. Available at: https://doi.org/10.1038/s41929-021-00651-9.

URLs
URLs

Di Leone, Stefano et al. (2021) ‘Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers’, Biomacromolecules, 22(7), pp. 3005–3016. Available at: https://doi.org/10.1021/acs.biomac.1c00424.

URLs
URLs

Fischer, Sandro, Ward, Thomas R. and Liang, Alexandria D. (2021) ‘Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag’, ACS Catalysis, 11(10), pp. 6343–6347. Available at: https://doi.org/10.1021/acscatal.1c01470.

URLs
URLs

Lozhkin, Boris and Ward, Thomas R. (2021) ‘A Close-to-Aromatize Approach for the Late-Stage Functionalization through Ring Closing Metathesis’, Helvetica Chimica Acta, 104(5), p. e2100024. Available at: https://doi.org/10.1002/hlca.202100024.

URLs
URLs

Lozhkin, Boris and Ward, Thomas R. (2021) ‘Bioorthogonal strategies for the in vivo synthesis or release of drugs’, Bioorganic & medicinal chemistry, 45, p. 116310. Available at: https://doi.org/10.1016/j.bmc.2021.116310.

URLs
URLs

Miró-Vinyals, Carla et al. (2021) ‘HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye’, ChemBioChem, 22(24), pp. 3398–3401. Available at: https://doi.org/10.1002/cbic.202100424.

URLs
URLs

Stein, Alina et al. (2021) ‘A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase’, ACS Central Science, 7(11), pp. 1874–1884. Available at: https://doi.org/10.1021/acscentsci.1c00825.

URLs
URLs

Stucki, Ariane et al. (2021) ‘Droplet Microfluidics and Directed Evolution of Enzymes: an Intertwined Journey’, Angewandte Chemie International Edition, 60(46), pp. 24368–24387. Available at: https://doi.org/10.1002/anie.202016154.

URLs
URLs

Vallapurackal, J. (2021) Development of a Microfluidics-Based Screening Assay for the High-Throughput Directed Evolution of Artificial Metalloenzymes .

URLs
URLs

Vornholt, Tobias et al. (2021) ‘Systematic engineering of artificial metalloenzymes for new-to-nature reactions’, Science Advances, 7(4), p. eabe4208. Available at: https://doi.org/10.1126/sciadv.abe4208.

URLs
URLs

Bullock, R. Morris et al. (2020) ‘Using nature’s blueprint to expand catalysis with Earth-abundant metals’, Science, 369(6505), p. 3183. Available at: https://doi.org/10.1126/science.abc3183.

URLs
URLs

Davis, Holly Jane et al. (2020) ‘A visible-light promoted amine oxidation catalyzed by a Cp*Ir complex’, ChemCatChem, 12(18), pp. 4512–4516. Available at: https://doi.org/10.1002/cctc.202000488.

URLs
URLs

Miller, Kelsey R. et al. (2020) ‘Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases’, Inorganic Chemistry, 59(9), pp. 6000–6009. Available at: https://doi.org/10.1021/acs.inorgchem.9b03791.

URLs
URLs

Sabatino, V. (2020) Applications of Aqueous Olefin Metathesis in Chemical Biology and Drug Discovery.

URLs
URLs

Sabatino, Valerio, Staub, Dario and Ward, Thomas R. (2020) ‘Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis’, Catalysis Letters, 151(1), pp. 17–7. Available at: https://doi.org/10.1007/s10562-020-03271-3.

URLs
URLs

Samanta, Avik et al. (2020) ‘Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes’, Nature Nanotechnology, 15(11), pp. 914–921. Available at: https://doi.org/10.1038/s41565-020-0761-y.

URLs
URLs

Schätti, Jonas et al. (2020) ‘Matter-wave interference and deflection of tripeptides decorated with fluorinated alkyl chains’, Journal of Mass Spectrometry, 55(6), p. e4514. Available at: https://doi.org/10.1002/jms.4514.

URLs
URLs

Serrano-Plana, Joan et al. (2020) ‘Enantioselective Hydroxylation of Benzylic C(sp; 3; )-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology’, Journal of the American Chemical Society, 142(24), pp. 10617–10623. Available at: https://doi.org/10.1021/jacs.0c02788.

URLs
URLs

Klehr, Juliane et al. (2020) ‘Streptavidin (Sav)-Based Artificial Metalloenzymes: Cofactor Design Considerations and Large-Scale Expression of Host Protein Variants’, in Iranzo O., Roque A. (ed.) Peptide and Protein Engineering. New York: Humana (Peptide and Protein Engineering), pp. 213–235. Available at: https://doi.org/10.1007/978-1-0716-0720-6_12.

URLs
URLs

Bartolami, Eline et al. (2019) ‘Diselenolane-Mediated Cellular Uptake: Efficient Cytosolic Delivery of Probes, Peptides, Proteins, Artificial Metalloenzymes and Protein-Coated Quantum Dots’, Chemistry - A European Journal, 25(16), pp. 4047–4051. Available at: https://doi.org/10.1002/chem.201805900.

URLs
URLs

Cheng, Yangyang et al. (2019) ‘Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks’, Angewandte Chemie International Edition, 58(28), pp. 9522–9526. Available at: https://doi.org/10.1002/anie.201905003.

URLs
URLs

Davis, Holly J. and Ward, Thomas R. (2019) ‘Artificial Metalloenzymes: Challenges and Opportunities’, ACS Central Science, 5(7), pp. 1120–1136. Available at: https://doi.org/10.1021/acscentsci.9b00397.

URLs
URLs

Guo, Xingwei et al. (2019) ‘Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis’, European Journal of Organic Chemistry. 02.08.2019, (10), pp. 1288–1293. Available at: https://doi.org/10.1002/ejoc.201900777.

URLs
URLs

Hartwig, John F. and Ward, Thomas R. (2019) ‘New ‘Cats’ in the House: Chemistry Meets Biology in Artificial Metalloenzymes and Repurposed Metalloenzymes’, Accounts of Chemical Research, 52(5), p. 1145. Available at: https://doi.org/10.1021/acs.accounts.9b00154.

URLs
URLs

Liang, Alexandria Deliz et al. (2019) ‘Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution’, Accounts of Chemical Research, 52(3), pp. 585–595. Available at: https://doi.org/10.1021/acs.accounts.8b00618.

URLs
URLs

Rebelein, Johannes G. et al. (2019) ‘Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein’, ACS Catalysis, 9(5), pp. 4173–4178. Available at: https://doi.org/10.1021/acscatal.9b01006.

URLs
URLs

Sabatino, Valerio, Rebelein, Johannes G. and Ward, Thomas R. (2019) ‘‘Close-to-Release’: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis’, Journal of the American Chemical Society, 141(43), pp. 17048–17052. Available at: https://doi.org/10.1021/jacs.9b07193.

URLs
URLs

Sabatino, Valerio and Ward, Thomas R. (2019) ‘Aqueous olefin metathesis: recent developments and applications’, Beilstein Journal of Organic Chemistry, 15, pp. 445–468. Available at: https://doi.org/10.3762/bjoc.15.39.

URLs
URLs

Schätti, Jonas et al. (2019) ‘Neutralization of insulin by photocleavage under high vacuum’, Chemical Communications, 55(83), pp. 12507–12510. Available at: https://doi.org/10.1039/c9cc05712a.

URLs
URLs

Wu, Shuke et al. (2019) ‘Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources’, Nature Communications, 10(1), p. 5060. Available at: https://doi.org/10.1038/s41467-019-13071-y.

URLs
URLs

Wu, Shuke et al. (2019) ‘Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes’, Journal of the American Chemical Society, 141(40), pp. 15869–15878. Available at: https://doi.org/10.1021/jacs.9b06923.

URLs
URLs

Christoffel, Fadri and Ward, Thomas R. (2018) ‘Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review’, Catalysis letters, 148(2), pp. 489–511. Available at: https://doi.org/10.1007/s10562-017-2285-0.

URLs
URLs

Guo, Xingwei et al. (2018) ‘Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network’, Chemical Science, 9, pp. 5052–5056. Available at: https://doi.org/10.1039/c8sc01561a.

URLs
URLs

Heinisch, Tillmann et al. (2018) ‘E. coli surface display of streptavidin for directed evolution of an allylic deallylase’, Chemical Science, 9(24), pp. 5383–5388. Available at: https://doi.org/10.1039/c8sc00484f.

URLs
URLs

Hestericová, Martina et al. (2018) ‘Directed Evolution of an Artificial Imine Reductase’, Angewandte Chemie - International Edition, 57(7), pp. 1863–1868. Available at: https://doi.org/10.1002/anie.201711016.

URLs
URLs

Hestericova, Martina et al. (2018) ‘Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase’, Dalton transactions, 47(32), pp. 10837–10841. Available at: https://doi.org/10.1039/c8dt02224k.

URLs
URLs

Jeschek, Markus, Panke, Sven and Ward, Thomas R. (2018) ‘Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism’, Trends in Biotechnology, 36(1), pp. 60–72. Available at: https://doi.org/10.1016/j.tibtech.2017.10.003.

URLs
URLs

Keller, Sascha G. et al. (2018) ‘Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology’, Helvetica Chimica Acta, 101(4), p. e1800036. Available at: https://doi.org/10.1002/hlca.201800036.

URLs
URLs

Mallin, Hendrik and Ward, Thomas R. (2018) ‘Streptavidin-Enzyme Linked Aggregates for the One-Step Assembly and Purification of Enzyme Cascades’, ChemCatChem, 10(13), pp. 2810–2816. Available at: https://doi.org/10.1002/cctc.201800162.

URLs
URLs

Mann, Samuel et al. (2018) ‘Coordination chemistry within a protein host: regulation of the secondary coordination sphere’, Chemical Communications, 54(35), pp. 4413–4416. Available at: https://doi.org/10.1039/c8cc01931b.

URLs
URLs

Okamoto, Yasunori et al. (2018) ‘A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell’, Nature Communications, 9, p. 1943. Available at: https://doi.org/10.1038/s41467-018-04440-0.

URLs
URLs

Pellizzoni, Michela M. et al. (2018) ‘Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes’, ACS Catalysis, 8(2), pp. 1476–1484. Available at: https://doi.org/10.1021/acscatal.7b03773.

URLs
URLs

Rebelein, Johannes G. and Ward, Thomas R. (2018) ‘In vivo catalyzed new-to-nature reactions’, Current Opinion in Biotechnology, 53, pp. 106–114. Available at: https://doi.org/10.1016/j.copbio.2017.12.008.

URLs
URLs

Ribar Hestericová, M. (2018) Optimization of the performance of an artificial imine reductase by directed evolution and encapsulation. Available at: https://doi.org/10.5451/unibas-007173635.

URLs
URLs

Schwizer, Fabian et al. (2018) ‘Artificial Metalloenzymes: Reaction Scope and Optimization Strategies’, Chemical Reviews, 118(1), pp. 142–231. Available at: https://doi.org/10.1021/acs.chemrev.7b00014.

URLs
URLs

Szponarski, Mathieu et al. (2018) ‘On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme’, Communications Chemistry, 1(84), pp. 1–10. Available at: https://doi.org/10.1038/s42004-018-0087-y.

URLs
URLs

Zhao, J. (2018) Transition metal catalysts within protein scaffolds−three case studies on the development and engineering of artificial metalloenzymes. Available at: https://doi.org/10.5451/unibas-006807156.

URLs
URLs

Zhao, Jingming et al. (2018) ‘An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin’, Catalysis science & technology, 8(9), pp. 2294–2298. Available at: https://doi.org/10.1039/c8cy00646f.

URLs
URLs

Zhao, Jingming et al. (2018) ‘Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm’, Journal of American Chemical Society, 140(41), pp. 13171–13175. Available at: https://doi.org/10.1021/jacs.8b07189.

URLs
URLs

Jeschek, Markus et al. (2017) ‘Biotin-independent strains of Escherichia coli for enhanced streptavidin production’, Metabolic Engineering, 40, pp. 33–40. Available at: https://doi.org/10.1016/j.ymben.2016.12.013.

URLs
URLs

Keller, S.G. (2017) Towards a photo-driven artificial hydrogenase using the biotin-streptavidin technology. Available at: https://doi.org/10.5451/unibas-007126267.

URLs
URLs

Keller, Sascha G. et al. (2017) ‘Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation’, Chemistry - A European Journal, 23(71), pp. 18019–18024. Available at: https://doi.org/10.1002/chem.201703885.

URLs
URLs