Bioanorganische Chemie (Ward)
Publications
274 found
Show per page
Schmid, D. (2025) Addressing selectivity challenges by utilizing the
xexameric resorcin[4]arene capsule.
Schmid, D. (2025) Addressing selectivity challenges by utilizing the
xexameric resorcin[4]arene capsule.
Morita, Iori et al. (2024) ‘Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein’, ACS Catalysis. 07.11.2024, 14, pp. 17171–17179. Available at: https://doi.org/10.1021/acscatal.4c04163.
Morita, Iori et al. (2024) ‘Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein’, ACS Catalysis. 07.11.2024, 14, pp. 17171–17179. Available at: https://doi.org/10.1021/acscatal.4c04163.
Vornholt, Tobias et al. (2024) ‘Artificial metalloenzymes’, Nature Reviews Methods Primers. 01.11.2024, 4. Available at: https://doi.org/10.1038/s43586-024-00356-w.
Vornholt, Tobias et al. (2024) ‘Artificial metalloenzymes’, Nature Reviews Methods Primers. 01.11.2024, 4. Available at: https://doi.org/10.1038/s43586-024-00356-w.
Mukherjee, Manjistha et al. (2024) ‘Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ACS Catalysis. 19.10.2024, 14(21), pp. 16266–16276. Available at: https://doi.org/10.1021/acscatal.4c03208.
Mukherjee, Manjistha et al. (2024) ‘Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ACS Catalysis. 19.10.2024, 14(21), pp. 16266–16276. Available at: https://doi.org/10.1021/acscatal.4c03208.
Renno, Giacomo et al. (2024) ‘Pnictogen‐Bonding Enzymes’, Angewandte Chemie International Edition. 05.07.2024, 63(45). Available at: https://doi.org/10.1002/anie.202411347.
Renno, Giacomo et al. (2024) ‘Pnictogen‐Bonding Enzymes’, Angewandte Chemie International Edition. 05.07.2024, 63(45). Available at: https://doi.org/10.1002/anie.202411347.
Yu, Kun and Ward, Thomas R. (2024) ‘C–H functionalization reactions catalyzed by artificial metalloenzymes’, Journal of Inorganic Biochemistry. 31.05.2024, 258. Available at: https://doi.org/10.1016/j.jinorgbio.2024.112621.
Yu, Kun and Ward, Thomas R. (2024) ‘C–H functionalization reactions catalyzed by artificial metalloenzymes’, Journal of Inorganic Biochemistry. 31.05.2024, 258. Available at: https://doi.org/10.1016/j.jinorgbio.2024.112621.
Morita, Iori and Ward, Thomas R. (2024) ‘Recent advances in the design and optimization of artificial metalloenzymes’, Current Opinion in Chemical Biology. 03.08.2024, 81. Available at: https://doi.org/10.1016/j.cbpa.2024.102508.
Morita, Iori and Ward, Thomas R. (2024) ‘Recent advances in the design and optimization of artificial metalloenzymes’, Current Opinion in Chemical Biology. 03.08.2024, 81. Available at: https://doi.org/10.1016/j.cbpa.2024.102508.
Zhang, Xiang et al. (2024) ‘Repurposing myoglobin into an abiological asymmetric ketoreductase’, Chem. 08.08.2024, 10(8), pp. 2577–2589. Available at: https://doi.org/10.1016/j.chempr.2024.06.010.
Zhang, Xiang et al. (2024) ‘Repurposing myoglobin into an abiological asymmetric ketoreductase’, Chem. 08.08.2024, 10(8), pp. 2577–2589. Available at: https://doi.org/10.1016/j.chempr.2024.06.010.
Zou, Zhi, Higginson, Bradley and Ward, Thomas R. (2024) ‘Creation and optimization of artificial metalloenzymes: Harnessing the power of directed evolution and beyond’, Chem. 08.08.2024, 10(8), pp. 2373–2389. Available at: https://doi.org/10.1016/j.chempr.2024.07.007.
Zou, Zhi, Higginson, Bradley and Ward, Thomas R. (2024) ‘Creation and optimization of artificial metalloenzymes: Harnessing the power of directed evolution and beyond’, Chem. 08.08.2024, 10(8), pp. 2373–2389. Available at: https://doi.org/10.1016/j.chempr.2024.07.007.
Zou, Zhi et al. (2024) ‘Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis’, Nature Synthesis. 27.06.2024, 3, pp. 1113–1123. Available at: https://doi.org/10.1038/s44160-024-00575-9.
Zou, Zhi et al. (2024) ‘Combining an artificial metathase with a fatty acid decarboxylase in a whole cell for cycloalkene synthesis’, Nature Synthesis. 27.06.2024, 3, pp. 1113–1123. Available at: https://doi.org/10.1038/s44160-024-00575-9.
Baiyoumy, Alain, Vinck, Robin and Ward, Thomas R. (2024) ‘The Two Janus Faces of CpRu‐Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging’, Helvetica Chimica Acta. 15.04.2024, 107(7). Available at: https://doi.org/10.1002/hlca.202400053.
Baiyoumy, Alain, Vinck, Robin and Ward, Thomas R. (2024) ‘The Two Janus Faces of CpRu‐Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging’, Helvetica Chimica Acta. 15.04.2024, 107(7). Available at: https://doi.org/10.1002/hlca.202400053.
Vornholt, Tobias et al. (2024) ‘Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning’, ACS Central Science. 22.05.2024, 10(7), pp. 1357–1370. Available at: https://doi.org/10.1021/acscentsci.4c00258.
Vornholt, Tobias et al. (2024) ‘Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning’, ACS Central Science. 22.05.2024, 10(7), pp. 1357–1370. Available at: https://doi.org/10.1021/acscentsci.4c00258.
Yu, Kun et al. (2024) ‘Artificial Metalloenzyme‐Catalyzed Enantioselective Carboamination of Alkenes’, ChemCatChem. 17.04.2024, 16(17). Available at: https://doi.org/10.1002/cctc.202400365.
Yu, Kun et al. (2024) ‘Artificial Metalloenzyme‐Catalyzed Enantioselective Carboamination of Alkenes’, ChemCatChem. 17.04.2024, 16(17). Available at: https://doi.org/10.1002/cctc.202400365.
Burgener, Simon, Zhang, Xiang and Ward, Thomas R. (2024) ‘Artificial Metalloenzymes for Enantioselective Catalysis’, in Cossy, Janine (ed.) Comprehensive Chirality. Elsevier (Comprehensive Chirality), pp. 71–110. Available at: https://doi.org/10.1016/b978-0-32-390644-9.00082-2.
Burgener, Simon, Zhang, Xiang and Ward, Thomas R. (2024) ‘Artificial Metalloenzymes for Enantioselective Catalysis’, in Cossy, Janine (ed.) Comprehensive Chirality. Elsevier (Comprehensive Chirality), pp. 71–110. Available at: https://doi.org/10.1016/b978-0-32-390644-9.00082-2.
Carrillo, M. (2024) Polymer fixed-targets for time-resolved serial protein crystallography at XFELs and synchrotrons.
Carrillo, M. (2024) Polymer fixed-targets for time-resolved serial protein crystallography at XFELs and synchrotrons.
Hua, Y. (2024) Charge control of biomolecules by photocleavage in high vacuum.
Hua, Y. (2024) Charge control of biomolecules by photocleavage in high vacuum.
Morita, I. (2024) Development of an artificial peroxidase based on a human carbonic anhydrase protein
.
Morita, I. (2024) Development of an artificial peroxidase based on a human carbonic anhydrase protein
.
Yu, K. et al. (2024) ‘An artificial nickel chlorinase based on the biotin–streptavidin technology’, Chemical Communications, 60, pp. 1944–1947. Available at: https://doi.org/10.1039/d3cc05847f.
Yu, K. et al. (2024) ‘An artificial nickel chlorinase based on the biotin–streptavidin technology’, Chemical Communications, 60, pp. 1944–1947. Available at: https://doi.org/10.1039/d3cc05847f.
Burgener, Simon et al. (2023) ‘Binding Interactions and Inhibition Mechanisms of Gold Complexes in Thiamine Diphosphate-Dependent Enzymes’, Biochemistry. 06.11.2023, 62(22), pp. 3303–3311. Available at: https://doi.org/10.1021/acs.biochem.3c00376.
Burgener, Simon et al. (2023) ‘Binding Interactions and Inhibition Mechanisms of Gold Complexes in Thiamine Diphosphate-Dependent Enzymes’, Biochemistry. 06.11.2023, 62(22), pp. 3303–3311. Available at: https://doi.org/10.1021/acs.biochem.3c00376.
Vornholt, Tobias et al. (2023) ‘An Artificial Metalloenzyme for Atroposelective Metathesis**’, ChemCatChem, 15(23). Available at: https://doi.org/10.1002/cctc.202301113.
Vornholt, Tobias et al. (2023) ‘An Artificial Metalloenzyme for Atroposelective Metathesis**’, ChemCatChem, 15(23). Available at: https://doi.org/10.1002/cctc.202301113.
Tachibana, Ryo et al. (2023) ‘A Customized Bayesian Algorithm to Optimize Enzyme-Catalyzed Reactions’, ACS Sustainable Chemistry & Engineering. 03.08.2023, 11(33), pp. 12336–12344. Available at: https://doi.org/10.1021/acssuschemeng.3c02402.
Tachibana, Ryo et al. (2023) ‘A Customized Bayesian Algorithm to Optimize Enzyme-Catalyzed Reactions’, ACS Sustainable Chemistry & Engineering. 03.08.2023, 11(33), pp. 12336–12344. Available at: https://doi.org/10.1021/acssuschemeng.3c02402.
Baiyoumy, A. (2023) Development and application of an artificial allylic aminase for in vivo catalysis purposes.
Baiyoumy, A. (2023) Development and application of an artificial allylic aminase for in vivo catalysis purposes.
Beweries, Torsten et al. (2023) ‘Make - underpinning concepts of the synthesis of systems where non-covalent interactions are important: general discussion’, Faraday Discussions, 244, pp. 434–454. Available at: https://doi.org/10.1039/d3fd90012f.
Beweries, Torsten et al. (2023) ‘Make - underpinning concepts of the synthesis of systems where non-covalent interactions are important: general discussion’, Faraday Discussions, 244, pp. 434–454. Available at: https://doi.org/10.1039/d3fd90012f.
Beweries, Torsten et al. (2023) ‘Manipulate - techniques to manipulate the surroundings of a synthetic catalyst to control activity and selectivity: general discussion’, Faraday Discussions, 244, pp. 96–118. Available at: https://doi.org/10.1039/d3fd90013d.
Beweries, Torsten et al. (2023) ‘Manipulate - techniques to manipulate the surroundings of a synthetic catalyst to control activity and selectivity: general discussion’, Faraday Discussions, 244, pp. 96–118. Available at: https://doi.org/10.1039/d3fd90013d.
Chanbasha, Basheer et al. (2023) ‘Model - state-of-the-art modelling and computational analysis of reactive sites: general discussion’, Faraday Discussions, 244, pp. 336–355. Available at: https://doi.org/10.1039/d3fd90015k.
Chanbasha, Basheer et al. (2023) ‘Model - state-of-the-art modelling and computational analysis of reactive sites: general discussion’, Faraday Discussions, 244, pp. 336–355. Available at: https://doi.org/10.1039/d3fd90015k.
Igareta, Nico V. et al. (2023) ‘Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation’, FARADAY DISCUSSIONS, 244, pp. 9–20. Available at: https://doi.org/10.1039/d3fd00034f.
Igareta, Nico V. et al. (2023) ‘Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation’, FARADAY DISCUSSIONS, 244, pp. 9–20. Available at: https://doi.org/10.1039/d3fd00034f.
Meeus, Eva J. et al. (2023) ‘A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis’, Chemical Communications. 14.11.2023, 59(98), pp. 14567–14570. Available at: https://doi.org/10.1039/d3cc04723g.
Meeus, Eva J. et al. (2023) ‘A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis’, Chemical Communications. 14.11.2023, 59(98), pp. 14567–14570. Available at: https://doi.org/10.1039/d3cc04723g.
Parvizian, M./.M. (2023) Exploring metal nitride synthesis
from precursors to structural insights.
Parvizian, M./.M. (2023) Exploring metal nitride synthesis
from precursors to structural insights.
Rumo, C. (2023) Artificial metalloenzymes based on copper heteroscorpionate complexes for C-H functionalization catalysis.
Rumo, C. (2023) Artificial metalloenzymes based on copper heteroscorpionate complexes for C-H functionalization catalysis.
Wang, Weijin et al. (2023) ‘Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology’, Angewandte Chemie International Edition, p. e202311896. Available at: https://doi.org/10.1002/anie.202311896.
Wang, Weijin et al. (2023) ‘Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology’, Angewandte Chemie International Edition, p. e202311896. Available at: https://doi.org/10.1002/anie.202311896.
Ward, Thomas R. and Copéret, Christophe (2023) ‘Introduction: Bridging the Gaps: Learning from Catalysis across Boundaries’, Chemical Reviews, 123(9), pp. 5221–5224. Available at: https://doi.org/10.1021/acs.chemrev.3c00029.
Ward, Thomas R. and Copéret, Christophe (2023) ‘Introduction: Bridging the Gaps: Learning from Catalysis across Boundaries’, Chemical Reviews, 123(9), pp. 5221–5224. Available at: https://doi.org/10.1021/acs.chemrev.3c00029.
Waser, V. (2023) An artificial [Fe4S4]-containing metalloenzyme for the reduction of CO2 to hydrocarbons.
Waser, V. (2023) An artificial [Fe4S4]-containing metalloenzyme for the reduction of CO2 to hydrocarbons.
Waser, Valerie et al. (2023) ‘An Artificial [Fe₄S₄]-Containing Metalloenzyme for the Reduction of CO₂ to Hydrocarbons’, Journal of the American Chemical Society, 145(27), pp. 14823–14830. Available at: https://doi.org/10.1021/jacs.3c03546.
Waser, Valerie et al. (2023) ‘An Artificial [Fe₄S₄]-Containing Metalloenzyme for the Reduction of CO₂ to Hydrocarbons’, Journal of the American Chemical Society, 145(27), pp. 14823–14830. Available at: https://doi.org/10.1021/jacs.3c03546.
Waser, Valerie and Ward, Thomas R. (2023) ‘Aqueous stability and redox chemistry of synthetic [Fe₄S₄] clusters’, Coordination chemistry reviews, 495, p. 215377. Available at: https://doi.org/10.1016/j.ccr.2023.215377.
Waser, Valerie and Ward, Thomas R. (2023) ‘Aqueous stability and redox chemistry of synthetic [Fe₄S₄] clusters’, Coordination chemistry reviews, 495, p. 215377. Available at: https://doi.org/10.1016/j.ccr.2023.215377.
Yu, K. (2023) Artificial metalloenzymes-catalyzed C-H functionalization reactions based on the biotin-streptavidin technology.
Yu, K. (2023) Artificial metalloenzymes-catalyzed C-H functionalization reactions based on the biotin-streptavidin technology.
Yu, Kun et al. (2023) ‘Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C(sp³)-H Bonds’, Journal of the American Chemical Society, 145(30), pp. 16621–16629. Available at: https://doi.org/10.1021/jacs.3c03969.
Yu, Kun et al. (2023) ‘Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C(sp³)-H Bonds’, Journal of the American Chemical Society, 145(30), pp. 16621–16629. Available at: https://doi.org/10.1021/jacs.3c03969.
Boris, L. (2022) Extending artificial metalloenzymes for the uncaging of
drugs on cells.
Boris, L. (2022) Extending artificial metalloenzymes for the uncaging of
drugs on cells.
Burgener, Simon and Ward, Thomas R. (2022) ‘Dihydrogen-dependent carbon dioxide reductase: Hardwired for CO₂ reduction’, Chem Catalysis, 2(10), pp. 2427–2429. Available at: https://doi.org/10.1016/j.checat.2022.09.031.
Burgener, Simon and Ward, Thomas R. (2022) ‘Dihydrogen-dependent carbon dioxide reductase: Hardwired for CO₂ reduction’, Chem Catalysis, 2(10), pp. 2427–2429. Available at: https://doi.org/10.1016/j.checat.2022.09.031.
Hirschi, Stephan et al. (2022) ‘Synthetic Biology: Bottom-Up Assembly of Molecular Systems’, Chemical Reviews, 122(21), pp. 16294–16328. Available at: https://doi.org/10.1021/acs.chemrev.2c00339.
Hirschi, Stephan et al. (2022) ‘Synthetic Biology: Bottom-Up Assembly of Molecular Systems’, Chemical Reviews, 122(21), pp. 16294–16328. Available at: https://doi.org/10.1021/acs.chemrev.2c00339.
Igareta, N.V. (2022) Expanding the secondary coordination sphere of streptavidin-based artificial metalloenzymes and their characterization
.
Igareta, N.V. (2022) Expanding the secondary coordination sphere of streptavidin-based artificial metalloenzymes and their characterization
.
Jončev, Z. (2022) Atroposelective Arene-Forming Alkene Metathesis using Small Molecule Catalysts and Artificial Metalloenzymes.
Jončev, Z. (2022) Atroposelective Arene-Forming Alkene Metathesis using Small Molecule Catalysts and Artificial Metalloenzymes.
Rumo, Corentin et al. (2022) ‘An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp³ C-H Functionalization via Intramolecular Carbene Insertion’, Journal of the American Chemical Society, 144(26), pp. 11676–11684. Available at: https://doi.org/10.1021/jacs.2c03311.
Rumo, Corentin et al. (2022) ‘An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp³ C-H Functionalization via Intramolecular Carbene Insertion’, Journal of the American Chemical Society, 144(26), pp. 11676–11684. Available at: https://doi.org/10.1021/jacs.2c03311.
Schreier, Mirjam R. et al. (2022) ‘Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry’, Accounts of Chemical Research, 55(9), pp. 1290–1300. Available at: https://doi.org/10.1021/acs.accounts.2c00075.
Schreier, Mirjam R. et al. (2022) ‘Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry’, Accounts of Chemical Research, 55(9), pp. 1290–1300. Available at: https://doi.org/10.1021/acs.accounts.2c00075.
Stein, A. (2022) Active Site Engineering of Three Scaffolds for Artificial
Metalloenzyme-Assembly and Applications Thereof.
Stein, A. (2022) Active Site Engineering of Three Scaffolds for Artificial
Metalloenzyme-Assembly and Applications Thereof.
Stein, Alina et al. (2022) ‘Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination’, Journal of Organometallic Chemistry, 962, p. 122272. Available at: https://doi.org/10.1016/j.jorganchem.2022.122272.
Stein, Alina et al. (2022) ‘Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination’, Journal of Organometallic Chemistry, 962, p. 122272. Available at: https://doi.org/10.1016/j.jorganchem.2022.122272.
Vallapurackal, Jaicy et al. (2022) ‘Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions’, Angewandte Chemie International Edition, 61(48), p. e202207328. Available at: https://doi.org/10.1002/anie.202207328.
Vallapurackal, Jaicy et al. (2022) ‘Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions’, Angewandte Chemie International Edition, 61(48), p. e202207328. Available at: https://doi.org/10.1002/anie.202207328.
Baiyoumy, Alain et al. (2021) ‘Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein’, ACS Catalysis, 11(17), pp. 10705–10712. Available at: https://doi.org/10.1021/acscatal.1c02405.
Baiyoumy, Alain et al. (2021) ‘Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein’, ACS Catalysis, 11(17), pp. 10705–10712. Available at: https://doi.org/10.1021/acscatal.1c02405.
Christoffel, F. (2021) Directed Evolution of Gold-based Artificial Metalloenzymes and Design of Gold-triggered Drug-Release Systems.
Christoffel, F. (2021) Directed Evolution of Gold-based Artificial Metalloenzymes and Design of Gold-triggered Drug-Release Systems.
Christoffel, Fadri et al. (2021) ‘Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis’, Nature Catalysis, 4(8), p. 643–+. Available at: https://doi.org/10.1038/s41929-021-00651-9.
Christoffel, Fadri et al. (2021) ‘Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis’, Nature Catalysis, 4(8), p. 643–+. Available at: https://doi.org/10.1038/s41929-021-00651-9.
Di Leone, Stefano et al. (2021) ‘Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers’, Biomacromolecules, 22(7), pp. 3005–3016. Available at: https://doi.org/10.1021/acs.biomac.1c00424.
Di Leone, Stefano et al. (2021) ‘Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers’, Biomacromolecules, 22(7), pp. 3005–3016. Available at: https://doi.org/10.1021/acs.biomac.1c00424.
Fischer, Sandro, Ward, Thomas R. and Liang, Alexandria D. (2021) ‘Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag’, ACS Catalysis, 11(10), pp. 6343–6347. Available at: https://doi.org/10.1021/acscatal.1c01470.
Fischer, Sandro, Ward, Thomas R. and Liang, Alexandria D. (2021) ‘Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag’, ACS Catalysis, 11(10), pp. 6343–6347. Available at: https://doi.org/10.1021/acscatal.1c01470.
Lozhkin, Boris and Ward, Thomas R. (2021) ‘A Close-to-Aromatize Approach for the Late-Stage Functionalization through Ring Closing Metathesis’, Helvetica Chimica Acta, 104(5), p. e2100024. Available at: https://doi.org/10.1002/hlca.202100024.
Lozhkin, Boris and Ward, Thomas R. (2021) ‘A Close-to-Aromatize Approach for the Late-Stage Functionalization through Ring Closing Metathesis’, Helvetica Chimica Acta, 104(5), p. e2100024. Available at: https://doi.org/10.1002/hlca.202100024.
Lozhkin, Boris and Ward, Thomas R. (2021) ‘Bioorthogonal strategies for the in vivo synthesis or release of drugs’, Bioorganic & medicinal chemistry, 45, p. 116310. Available at: https://doi.org/10.1016/j.bmc.2021.116310.
Lozhkin, Boris and Ward, Thomas R. (2021) ‘Bioorthogonal strategies for the in vivo synthesis or release of drugs’, Bioorganic & medicinal chemistry, 45, p. 116310. Available at: https://doi.org/10.1016/j.bmc.2021.116310.
Miró-Vinyals, Carla et al. (2021) ‘HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye’, ChemBioChem, 22(24), pp. 3398–3401. Available at: https://doi.org/10.1002/cbic.202100424.
Miró-Vinyals, Carla et al. (2021) ‘HaloTag Engineering for Enhanced Fluorogenicity and Kinetics with a Styrylpyridium Dye’, ChemBioChem, 22(24), pp. 3398–3401. Available at: https://doi.org/10.1002/cbic.202100424.
Stein, Alina et al. (2021) ‘A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase’, ACS Central Science, 7(11), pp. 1874–1884. Available at: https://doi.org/10.1021/acscentsci.1c00825.
Stein, Alina et al. (2021) ‘A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase’, ACS Central Science, 7(11), pp. 1874–1884. Available at: https://doi.org/10.1021/acscentsci.1c00825.
Stucki, Ariane et al. (2021) ‘Droplet Microfluidics and Directed Evolution of Enzymes: an Intertwined Journey’, Angewandte Chemie International Edition, 60(46), pp. 24368–24387. Available at: https://doi.org/10.1002/anie.202016154.
Stucki, Ariane et al. (2021) ‘Droplet Microfluidics and Directed Evolution of Enzymes: an Intertwined Journey’, Angewandte Chemie International Edition, 60(46), pp. 24368–24387. Available at: https://doi.org/10.1002/anie.202016154.
Vallapurackal, J. (2021) Development of a Microfluidics-Based Screening Assay for the High-Throughput Directed Evolution of Artificial Metalloenzymes
.
Vallapurackal, J. (2021) Development of a Microfluidics-Based Screening Assay for the High-Throughput Directed Evolution of Artificial Metalloenzymes
.
Vornholt, Tobias et al. (2021) ‘Systematic engineering of artificial metalloenzymes for new-to-nature reactions’, Science Advances, 7(4), p. eabe4208. Available at: https://doi.org/10.1126/sciadv.abe4208.
Vornholt, Tobias et al. (2021) ‘Systematic engineering of artificial metalloenzymes for new-to-nature reactions’, Science Advances, 7(4), p. eabe4208. Available at: https://doi.org/10.1126/sciadv.abe4208.
Bullock, R. Morris et al. (2020) ‘Using nature’s blueprint to expand catalysis with Earth-abundant metals’, Science, 369(6505), p. 3183. Available at: https://doi.org/10.1126/science.abc3183.
Bullock, R. Morris et al. (2020) ‘Using nature’s blueprint to expand catalysis with Earth-abundant metals’, Science, 369(6505), p. 3183. Available at: https://doi.org/10.1126/science.abc3183.
Davis, Holly Jane et al. (2020) ‘A visible-light promoted amine oxidation catalyzed by a Cp*Ir complex’, ChemCatChem, 12(18), pp. 4512–4516. Available at: https://doi.org/10.1002/cctc.202000488.
Davis, Holly Jane et al. (2020) ‘A visible-light promoted amine oxidation catalyzed by a Cp*Ir complex’, ChemCatChem, 12(18), pp. 4512–4516. Available at: https://doi.org/10.1002/cctc.202000488.
Miller, Kelsey R. et al. (2020) ‘Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases’, Inorganic Chemistry, 59(9), pp. 6000–6009. Available at: https://doi.org/10.1021/acs.inorgchem.9b03791.
Miller, Kelsey R. et al. (2020) ‘Artificial Iron Proteins: Modeling the Active Sites in Non-Heme Dioxygenases’, Inorganic Chemistry, 59(9), pp. 6000–6009. Available at: https://doi.org/10.1021/acs.inorgchem.9b03791.
Sabatino, V. (2020) Applications of Aqueous Olefin Metathesis in Chemical Biology and Drug Discovery.
Sabatino, V. (2020) Applications of Aqueous Olefin Metathesis in Chemical Biology and Drug Discovery.
Sabatino, Valerio, Staub, Dario and Ward, Thomas R. (2020) ‘Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis’, Catalysis Letters, 151(1), pp. 17–7. Available at: https://doi.org/10.1007/s10562-020-03271-3.
Sabatino, Valerio, Staub, Dario and Ward, Thomas R. (2020) ‘Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis’, Catalysis Letters, 151(1), pp. 17–7. Available at: https://doi.org/10.1007/s10562-020-03271-3.
Samanta, Avik et al. (2020) ‘Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes’, Nature Nanotechnology, 15(11), pp. 914–921. Available at: https://doi.org/10.1038/s41565-020-0761-y.
Samanta, Avik et al. (2020) ‘Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes’, Nature Nanotechnology, 15(11), pp. 914–921. Available at: https://doi.org/10.1038/s41565-020-0761-y.
Schätti, Jonas et al. (2020) ‘Matter-wave interference and deflection of tripeptides decorated with fluorinated alkyl chains’, Journal of Mass Spectrometry, 55(6), p. e4514. Available at: https://doi.org/10.1002/jms.4514.
Schätti, Jonas et al. (2020) ‘Matter-wave interference and deflection of tripeptides decorated with fluorinated alkyl chains’, Journal of Mass Spectrometry, 55(6), p. e4514. Available at: https://doi.org/10.1002/jms.4514.
Serrano-Plana, Joan et al. (2020) ‘Enantioselective Hydroxylation of Benzylic C(sp; 3; )-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology’, Journal of the American Chemical Society, 142(24), pp. 10617–10623. Available at: https://doi.org/10.1021/jacs.0c02788.
Serrano-Plana, Joan et al. (2020) ‘Enantioselective Hydroxylation of Benzylic C(sp; 3; )-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology’, Journal of the American Chemical Society, 142(24), pp. 10617–10623. Available at: https://doi.org/10.1021/jacs.0c02788.
Klehr, Juliane et al. (2020) ‘Streptavidin (Sav)-Based Artificial Metalloenzymes: Cofactor Design Considerations and Large-Scale Expression of Host Protein Variants’, in Iranzo O., Roque A. (ed.) Peptide and Protein Engineering. New York: Humana (Peptide and Protein Engineering), pp. 213–235. Available at: https://doi.org/10.1007/978-1-0716-0720-6_12.
Klehr, Juliane et al. (2020) ‘Streptavidin (Sav)-Based Artificial Metalloenzymes: Cofactor Design Considerations and Large-Scale Expression of Host Protein Variants’, in Iranzo O., Roque A. (ed.) Peptide and Protein Engineering. New York: Humana (Peptide and Protein Engineering), pp. 213–235. Available at: https://doi.org/10.1007/978-1-0716-0720-6_12.
Bartolami, Eline et al. (2019) ‘Diselenolane-Mediated Cellular Uptake: Efficient Cytosolic Delivery of Probes, Peptides, Proteins, Artificial Metalloenzymes and Protein-Coated Quantum Dots’, Chemistry - A European Journal, 25(16), pp. 4047–4051. Available at: https://doi.org/10.1002/chem.201805900.
Bartolami, Eline et al. (2019) ‘Diselenolane-Mediated Cellular Uptake: Efficient Cytosolic Delivery of Probes, Peptides, Proteins, Artificial Metalloenzymes and Protein-Coated Quantum Dots’, Chemistry - A European Journal, 25(16), pp. 4047–4051. Available at: https://doi.org/10.1002/chem.201805900.
Cheng, Yangyang et al. (2019) ‘Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks’, Angewandte Chemie International Edition, 58(28), pp. 9522–9526. Available at: https://doi.org/10.1002/anie.201905003.
Cheng, Yangyang et al. (2019) ‘Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks’, Angewandte Chemie International Edition, 58(28), pp. 9522–9526. Available at: https://doi.org/10.1002/anie.201905003.
Davis, Holly J. and Ward, Thomas R. (2019) ‘Artificial Metalloenzymes: Challenges and Opportunities’, ACS Central Science, 5(7), pp. 1120–1136. Available at: https://doi.org/10.1021/acscentsci.9b00397.
Davis, Holly J. and Ward, Thomas R. (2019) ‘Artificial Metalloenzymes: Challenges and Opportunities’, ACS Central Science, 5(7), pp. 1120–1136. Available at: https://doi.org/10.1021/acscentsci.9b00397.
Guo, Xingwei et al. (2019) ‘Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis’, European Journal of Organic Chemistry. 02.08.2019, (10), pp. 1288–1293. Available at: https://doi.org/10.1002/ejoc.201900777.
Guo, Xingwei et al. (2019) ‘Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis’, European Journal of Organic Chemistry. 02.08.2019, (10), pp. 1288–1293. Available at: https://doi.org/10.1002/ejoc.201900777.
Hartwig, John F. and Ward, Thomas R. (2019) ‘New ‘Cats’ in the House: Chemistry Meets Biology in Artificial Metalloenzymes and Repurposed Metalloenzymes’, Accounts of Chemical Research, 52(5), p. 1145. Available at: https://doi.org/10.1021/acs.accounts.9b00154.
Hartwig, John F. and Ward, Thomas R. (2019) ‘New ‘Cats’ in the House: Chemistry Meets Biology in Artificial Metalloenzymes and Repurposed Metalloenzymes’, Accounts of Chemical Research, 52(5), p. 1145. Available at: https://doi.org/10.1021/acs.accounts.9b00154.
Liang, Alexandria Deliz et al. (2019) ‘Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution’, Accounts of Chemical Research, 52(3), pp. 585–595. Available at: https://doi.org/10.1021/acs.accounts.8b00618.
Liang, Alexandria Deliz et al. (2019) ‘Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution’, Accounts of Chemical Research, 52(3), pp. 585–595. Available at: https://doi.org/10.1021/acs.accounts.8b00618.
Rebelein, Johannes G. et al. (2019) ‘Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein’, ACS Catalysis, 9(5), pp. 4173–4178. Available at: https://doi.org/10.1021/acscatal.9b01006.
Rebelein, Johannes G. et al. (2019) ‘Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein’, ACS Catalysis, 9(5), pp. 4173–4178. Available at: https://doi.org/10.1021/acscatal.9b01006.
Sabatino, Valerio, Rebelein, Johannes G. and Ward, Thomas R. (2019) ‘‘Close-to-Release’: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis’, Journal of the American Chemical Society, 141(43), pp. 17048–17052. Available at: https://doi.org/10.1021/jacs.9b07193.
Sabatino, Valerio, Rebelein, Johannes G. and Ward, Thomas R. (2019) ‘‘Close-to-Release’: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis’, Journal of the American Chemical Society, 141(43), pp. 17048–17052. Available at: https://doi.org/10.1021/jacs.9b07193.
Sabatino, Valerio and Ward, Thomas R. (2019) ‘Aqueous olefin metathesis: recent developments and applications’, Beilstein Journal of Organic Chemistry, 15, pp. 445–468. Available at: https://doi.org/10.3762/bjoc.15.39.
Sabatino, Valerio and Ward, Thomas R. (2019) ‘Aqueous olefin metathesis: recent developments and applications’, Beilstein Journal of Organic Chemistry, 15, pp. 445–468. Available at: https://doi.org/10.3762/bjoc.15.39.
Schätti, Jonas et al. (2019) ‘Neutralization of insulin by photocleavage under high vacuum’, Chemical Communications, 55(83), pp. 12507–12510. Available at: https://doi.org/10.1039/c9cc05712a.
Schätti, Jonas et al. (2019) ‘Neutralization of insulin by photocleavage under high vacuum’, Chemical Communications, 55(83), pp. 12507–12510. Available at: https://doi.org/10.1039/c9cc05712a.
Wu, Shuke et al. (2019) ‘Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources’, Nature Communications, 10(1), p. 5060. Available at: https://doi.org/10.1038/s41467-019-13071-y.
Wu, Shuke et al. (2019) ‘Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources’, Nature Communications, 10(1), p. 5060. Available at: https://doi.org/10.1038/s41467-019-13071-y.
Wu, Shuke et al. (2019) ‘Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes’, Journal of the American Chemical Society, 141(40), pp. 15869–15878. Available at: https://doi.org/10.1021/jacs.9b06923.
Wu, Shuke et al. (2019) ‘Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes’, Journal of the American Chemical Society, 141(40), pp. 15869–15878. Available at: https://doi.org/10.1021/jacs.9b06923.
Christoffel, Fadri and Ward, Thomas R. (2018) ‘Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review’, Catalysis letters, 148(2), pp. 489–511. Available at: https://doi.org/10.1007/s10562-017-2285-0.
Christoffel, Fadri and Ward, Thomas R. (2018) ‘Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review’, Catalysis letters, 148(2), pp. 489–511. Available at: https://doi.org/10.1007/s10562-017-2285-0.
Guo, Xingwei et al. (2018) ‘Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network’, Chemical Science, 9, pp. 5052–5056. Available at: https://doi.org/10.1039/c8sc01561a.
Guo, Xingwei et al. (2018) ‘Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network’, Chemical Science, 9, pp. 5052–5056. Available at: https://doi.org/10.1039/c8sc01561a.
Heinisch, Tillmann et al. (2018) ‘E. coli surface display of streptavidin for directed evolution of an allylic deallylase’, Chemical Science, 9(24), pp. 5383–5388. Available at: https://doi.org/10.1039/c8sc00484f.
Heinisch, Tillmann et al. (2018) ‘E. coli surface display of streptavidin for directed evolution of an allylic deallylase’, Chemical Science, 9(24), pp. 5383–5388. Available at: https://doi.org/10.1039/c8sc00484f.
Hestericová, Martina et al. (2018) ‘Directed Evolution of an Artificial Imine Reductase’, Angewandte Chemie - International Edition, 57(7), pp. 1863–1868. Available at: https://doi.org/10.1002/anie.201711016.
Hestericová, Martina et al. (2018) ‘Directed Evolution of an Artificial Imine Reductase’, Angewandte Chemie - International Edition, 57(7), pp. 1863–1868. Available at: https://doi.org/10.1002/anie.201711016.
Hestericova, Martina et al. (2018) ‘Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase’, Dalton transactions, 47(32), pp. 10837–10841. Available at: https://doi.org/10.1039/c8dt02224k.
Hestericova, Martina et al. (2018) ‘Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase’, Dalton transactions, 47(32), pp. 10837–10841. Available at: https://doi.org/10.1039/c8dt02224k.
Jeschek, Markus, Panke, Sven and Ward, Thomas R. (2018) ‘Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism’, Trends in Biotechnology, 36(1), pp. 60–72. Available at: https://doi.org/10.1016/j.tibtech.2017.10.003.
Jeschek, Markus, Panke, Sven and Ward, Thomas R. (2018) ‘Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism’, Trends in Biotechnology, 36(1), pp. 60–72. Available at: https://doi.org/10.1016/j.tibtech.2017.10.003.
Keller, Sascha G. et al. (2018) ‘Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology’, Helvetica Chimica Acta, 101(4), p. e1800036. Available at: https://doi.org/10.1002/hlca.201800036.
Keller, Sascha G. et al. (2018) ‘Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology’, Helvetica Chimica Acta, 101(4), p. e1800036. Available at: https://doi.org/10.1002/hlca.201800036.
Mallin, Hendrik and Ward, Thomas R. (2018) ‘Streptavidin-Enzyme Linked Aggregates for the One-Step Assembly and Purification of Enzyme Cascades’, ChemCatChem, 10(13), pp. 2810–2816. Available at: https://doi.org/10.1002/cctc.201800162.
Mallin, Hendrik and Ward, Thomas R. (2018) ‘Streptavidin-Enzyme Linked Aggregates for the One-Step Assembly and Purification of Enzyme Cascades’, ChemCatChem, 10(13), pp. 2810–2816. Available at: https://doi.org/10.1002/cctc.201800162.
Mann, Samuel et al. (2018) ‘Coordination chemistry within a protein host: regulation of the secondary coordination sphere’, Chemical Communications, 54(35), pp. 4413–4416. Available at: https://doi.org/10.1039/c8cc01931b.
Mann, Samuel et al. (2018) ‘Coordination chemistry within a protein host: regulation of the secondary coordination sphere’, Chemical Communications, 54(35), pp. 4413–4416. Available at: https://doi.org/10.1039/c8cc01931b.
Okamoto, Yasunori et al. (2018) ‘A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell’, Nature Communications, 9, p. 1943. Available at: https://doi.org/10.1038/s41467-018-04440-0.
Okamoto, Yasunori et al. (2018) ‘A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell’, Nature Communications, 9, p. 1943. Available at: https://doi.org/10.1038/s41467-018-04440-0.
Pellizzoni, Michela M. et al. (2018) ‘Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes’, ACS Catalysis, 8(2), pp. 1476–1484. Available at: https://doi.org/10.1021/acscatal.7b03773.
Pellizzoni, Michela M. et al. (2018) ‘Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes’, ACS Catalysis, 8(2), pp. 1476–1484. Available at: https://doi.org/10.1021/acscatal.7b03773.
Rebelein, Johannes G. and Ward, Thomas R. (2018) ‘In vivo catalyzed new-to-nature reactions’, Current Opinion in Biotechnology, 53, pp. 106–114. Available at: https://doi.org/10.1016/j.copbio.2017.12.008.
Rebelein, Johannes G. and Ward, Thomas R. (2018) ‘In vivo catalyzed new-to-nature reactions’, Current Opinion in Biotechnology, 53, pp. 106–114. Available at: https://doi.org/10.1016/j.copbio.2017.12.008.
Ribar Hestericová, M. (2018) Optimization of the performance of an artificial imine reductase by directed evolution and encapsulation. Available at: https://doi.org/10.5451/unibas-007173635.
Ribar Hestericová, M. (2018) Optimization of the performance of an artificial imine reductase by directed evolution and encapsulation. Available at: https://doi.org/10.5451/unibas-007173635.
Schwizer, Fabian et al. (2018) ‘Artificial Metalloenzymes: Reaction Scope and Optimization Strategies’, Chemical Reviews, 118(1), pp. 142–231. Available at: https://doi.org/10.1021/acs.chemrev.7b00014.
Schwizer, Fabian et al. (2018) ‘Artificial Metalloenzymes: Reaction Scope and Optimization Strategies’, Chemical Reviews, 118(1), pp. 142–231. Available at: https://doi.org/10.1021/acs.chemrev.7b00014.
Szponarski, Mathieu et al. (2018) ‘On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme’, Communications Chemistry, 1(84), pp. 1–10. Available at: https://doi.org/10.1038/s42004-018-0087-y.
Szponarski, Mathieu et al. (2018) ‘On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme’, Communications Chemistry, 1(84), pp. 1–10. Available at: https://doi.org/10.1038/s42004-018-0087-y.
Zhao, J. (2018) Transition metal catalysts within protein scaffolds−three case studies on the development and engineering of artificial metalloenzymes. Available at: https://doi.org/10.5451/unibas-006807156.
Zhao, J. (2018) Transition metal catalysts within protein scaffolds−three case studies on the development and engineering of artificial metalloenzymes. Available at: https://doi.org/10.5451/unibas-006807156.
Zhao, Jingming et al. (2018) ‘An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin’, Catalysis science & technology, 8(9), pp. 2294–2298. Available at: https://doi.org/10.1039/c8cy00646f.
Zhao, Jingming et al. (2018) ‘An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin’, Catalysis science & technology, 8(9), pp. 2294–2298. Available at: https://doi.org/10.1039/c8cy00646f.
Zhao, Jingming et al. (2018) ‘Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm’, Journal of American Chemical Society, 140(41), pp. 13171–13175. Available at: https://doi.org/10.1021/jacs.8b07189.
Zhao, Jingming et al. (2018) ‘Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm’, Journal of American Chemical Society, 140(41), pp. 13171–13175. Available at: https://doi.org/10.1021/jacs.8b07189.
Jeschek, Markus et al. (2017) ‘Biotin-independent strains of Escherichia coli for enhanced streptavidin production’, Metabolic Engineering, 40, pp. 33–40. Available at: https://doi.org/10.1016/j.ymben.2016.12.013.
Jeschek, Markus et al. (2017) ‘Biotin-independent strains of Escherichia coli for enhanced streptavidin production’, Metabolic Engineering, 40, pp. 33–40. Available at: https://doi.org/10.1016/j.ymben.2016.12.013.
Keller, S.G. (2017) Towards a photo-driven artificial hydrogenase using the biotin-streptavidin technology. Available at: https://doi.org/10.5451/unibas-007126267.
Keller, S.G. (2017) Towards a photo-driven artificial hydrogenase using the biotin-streptavidin technology. Available at: https://doi.org/10.5451/unibas-007126267.
Keller, Sascha G. et al. (2017) ‘Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation’, Chemistry - A European Journal, 23(71), pp. 18019–18024. Available at: https://doi.org/10.1002/chem.201703885.
Keller, Sascha G. et al. (2017) ‘Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation’, Chemistry - A European Journal, 23(71), pp. 18019–18024. Available at: https://doi.org/10.1002/chem.201703885.