Chemische Physik (Willitsch)
Publications
131 found
Show per page
Weegen, Moritz, Poggio, Martino and Willitsch, Stefan (2024) ‘Coupling Trapped Ions to a Nanomechanical Oscillator’, Physical Review Letters. 25.11.2024, 133(22). Available at: https://doi.org/10.1103/physrevlett.133.223201.
Weegen, Moritz, Poggio, Martino and Willitsch, Stefan (2024) ‘Coupling Trapped Ions to a Nanomechanical Oscillator’, Physical Review Letters. 25.11.2024, 133(22). Available at: https://doi.org/10.1103/physrevlett.133.223201.
Paliwal, Prerna et al. (2024) ‘Exploring and Controlling Chemistry Using Quantum Logic’, CHIMIA. 30.10.2024, 78(10), pp. 654–658. Available at: https://doi.org/10.2533/chimia.2024.654.
Paliwal, Prerna et al. (2024) ‘Exploring and Controlling Chemistry Using Quantum Logic’, CHIMIA. 30.10.2024, 78(10), pp. 654–658. Available at: https://doi.org/10.2533/chimia.2024.654.
Ploenes, L. et al. (2024) ‘Collisional alignment and molecular rotation control the chemi-ionization of individual conformers of hydroquinone with metastable neon’, Nature Chemistry. 19.07.2024, 16, pp. 1876–1881. Available at: https://doi.org/10.1038/s41557-024-01590-1.
Ploenes, L. et al. (2024) ‘Collisional alignment and molecular rotation control the chemi-ionization of individual conformers of hydroquinone with metastable neon’, Nature Chemistry. 19.07.2024, 16, pp. 1876–1881. Available at: https://doi.org/10.1038/s41557-024-01590-1.
Deiß, M., Willitsch, S. and Hecker Denschlag, J. (2024) ‘Cold trapped molecular ions and hybrid platforms for ions and neutral particles’, Nature Physics, 20(5), pp. 713–721. Available at: https://doi.org/10.1038/s41567-024-02440-0.
Deiß, M., Willitsch, S. and Hecker Denschlag, J. (2024) ‘Cold trapped molecular ions and hybrid platforms for ions and neutral particles’, Nature Physics, 20(5), pp. 713–721. Available at: https://doi.org/10.1038/s41567-024-02440-0.
Xu, Lei, Toscano, Jutta and Willitsch, Stefan (2024) ‘Trapping and Sympathetic Cooling of Conformationally Selected Molecular Ions’, Physical Review Letters, 132(8). Available at: https://doi.org/10.1103/physrevlett.132.083001.
Xu, Lei, Toscano, Jutta and Willitsch, Stefan (2024) ‘Trapping and Sympathetic Cooling of Conformationally Selected Molecular Ions’, Physical Review Letters, 132(8). Available at: https://doi.org/10.1103/physrevlett.132.083001.
Mishra, A. et al. (2024) ‘Isomeric and rotational effects in the chemi-ionisation of 1,2-dibromoethene with metastable neon atoms’, Faraday Discussions, 251, pp. 92–103. Available at: https://doi.org/10.1039/d3fd00172e.
Mishra, A. et al. (2024) ‘Isomeric and rotational effects in the chemi-ionisation of 1,2-dibromoethene with metastable neon atoms’, Faraday Discussions, 251, pp. 92–103. Available at: https://doi.org/10.1039/d3fd00172e.
Karl, R., Yin, Y. and Willitsch, S. (2024) ‘Laser cooling of trapped ions in strongly inhomogeneous magnetic fields’, Molecular Physics, 122(1-2). Available at: https://doi.org/10.1080/00268976.2023.2199099.
Karl, R., Yin, Y. and Willitsch, S. (2024) ‘Laser cooling of trapped ions in strongly inhomogeneous magnetic fields’, Molecular Physics, 122(1-2). Available at: https://doi.org/10.1080/00268976.2023.2199099.
Keeratirawee, K. (2024) The development of low-cost photoacoustic gas sensor devices for monitoring ozone and nitrogen dioxide and the quantification of gas composition through changes in the speed of sound.
Keeratirawee, K. (2024) The development of low-cost photoacoustic gas sensor devices for monitoring ozone and nitrogen dioxide and the quantification of gas composition through changes in the speed of sound.
Straňák, P. (2024) Exploring conformationally and state-resolved ionic and neutral reactions.
Straňák, P. (2024) Exploring conformationally and state-resolved ionic and neutral reactions.
Toscano, J. (2024) ‘Rotational-state-selected Carbon Astrochemistry’, Chimia, 78(1-2), pp. 40–44. Available at: https://doi.org/10.2533/chimia.2024.40.
Toscano, J. (2024) ‘Rotational-state-selected Carbon Astrochemistry’, Chimia, 78(1-2), pp. 40–44. Available at: https://doi.org/10.2533/chimia.2024.40.
Weegen, M. (2024) Mechanical excitation of trapped ions coupled to a nanomechanical oscillator.
Weegen, M. (2024) Mechanical excitation of trapped ions coupled to a nanomechanical oscillator.
Mangeng, Christian et al. (2023) ‘Experimental implementation of laser cooling of trapped ions in strongly inhomogeneous magnetic fields’, Physical Review Research. 27.11.2023, 5(4). Available at: https://doi.org/10.1103/physrevresearch.5.043180.
Mangeng, Christian et al. (2023) ‘Experimental implementation of laser cooling of trapped ions in strongly inhomogeneous magnetic fields’, Physical Review Research. 27.11.2023, 5(4). Available at: https://doi.org/10.1103/physrevresearch.5.043180.
Voute, A. et al. (2023) ‘Charge transfer of polyatomic molecules in ion-atom hybrid traps: Stereodynamics in the millikelvin regime’, Physical Review Research, 5(3). Available at: https://doi.org/10.1103/PhysRevResearch.5.L032021.
Voute, A. et al. (2023) ‘Charge transfer of polyatomic molecules in ion-atom hybrid traps: Stereodynamics in the millikelvin regime’, Physical Review Research, 5(3). Available at: https://doi.org/10.1103/PhysRevResearch.5.L032021.
Kilaj, Ardita et al. (2023) ‘Conformational and state-specific effects in reactions of 2,3-dibromobutadiene with Coulomb-crystallized calcium ions’, Physical Chemistry Chemical Physics, 25(20), pp. 13933–13945. Available at: https://doi.org/10.1039/d3cp01416a.
Kilaj, Ardita et al. (2023) ‘Conformational and state-specific effects in reactions of 2,3-dibromobutadiene with Coulomb-crystallized calcium ions’, Physical Chemistry Chemical Physics, 25(20), pp. 13933–13945. Available at: https://doi.org/10.1039/d3cp01416a.
Shlykov, Aleksandr, Roguski, Mikolaj and Willitsch, Stefan (2023) ‘Optimized Strategies for the Quantum-State Preparation of Single Trapped Nitrogen Molecular Ions’, Advanced Quantum Technologies. 29.10.2023, 8(2). Available at: https://doi.org/10.1002/qute.202300268.
Shlykov, Aleksandr, Roguski, Mikolaj and Willitsch, Stefan (2023) ‘Optimized Strategies for the Quantum-State Preparation of Single Trapped Nitrogen Molecular Ions’, Advanced Quantum Technologies. 29.10.2023, 8(2). Available at: https://doi.org/10.1002/qute.202300268.
Sinhal, Mudit and Willitsch, Stefan (2023) ‘Molecular-Ion Quantum Technologies’, in Photonic Quantum Technologies: Science and Applications. wiley (Photonic Quantum Technologies: Science and Applications), pp. 305–332. Available at: https://doi.org/10.1002/9783527837427.ch13.
Sinhal, Mudit and Willitsch, Stefan (2023) ‘Molecular-Ion Quantum Technologies’, in Photonic Quantum Technologies: Science and Applications. wiley (Photonic Quantum Technologies: Science and Applications), pp. 305–332. Available at: https://doi.org/10.1002/9783527837427.ch13.
Weegen, Moritz, Poggio, Martino and Willitsch,Stefan (2023) ‘Coupling trapped ions to a nanomechanical oscillator’, Arxiv [Preprint]. Cornell University (Arxiv). Available at: https://doi.org/10.48550/arXiv.2312.00576.
Weegen, Moritz, Poggio, Martino and Willitsch,Stefan (2023) ‘Coupling trapped ions to a nanomechanical oscillator’, Arxiv [Preprint]. Cornell University (Arxiv). Available at: https://doi.org/10.48550/arXiv.2312.00576.
Bertrand, Mathieu et al. (2022) ‘High-Power, Narrow-Linewidth Distributed-Feedback Quantum-Cascade Laser for Molecular Spectroscopy’, Photonics, 9(8), p. 589. Available at: https://doi.org/10.3390/photonics9080589.
Bertrand, Mathieu et al. (2022) ‘High-Power, Narrow-Linewidth Distributed-Feedback Quantum-Cascade Laser for Molecular Spectroscopy’, Photonics, 9(8), p. 589. Available at: https://doi.org/10.3390/photonics9080589.
Husmann, D. et al. (2022) ‘Swiss Fiber Network for Dissemination of Optical Frequencies in the L-band of a Telecommunication Network’. Institute of Electrical and Electronics Engineers Inc.
Husmann, D. et al. (2022) ‘Swiss Fiber Network for Dissemination of Optical Frequencies in the L-band of a Telecommunication Network’. Institute of Electrical and Electronics Engineers Inc.
Perrin, A. et al. (2022) ‘Editorial’, Molecular Physics, 120(15-16). Available at: https://doi.org/10.1080/00268976.2022.2101246.
Perrin, A. et al. (2022) ‘Editorial’, Molecular Physics, 120(15-16). Available at: https://doi.org/10.1080/00268976.2022.2101246.
Ploenes, L. (2022) A Novel Crossed-Molecular-Beam Setup: Investigating state- and conformer-specific effects in bimolecular reactions.
Ploenes, L. (2022) A Novel Crossed-Molecular-Beam Setup: Investigating state- and conformer-specific effects in bimolecular reactions.
San Vicente Veliz, J.C. (2022) Small molecules atomistic simulations: from QCT to machine learned models.
San Vicente Veliz, J.C. (2022) Small molecules atomistic simulations: from QCT to machine learned models.
Sinhal, Mudit, Johnson, Anatoly and Willitsch, Stefan (2022) ‘Frequency stabilisation and SI tracing of mid-infrared quantum-cascade lasers for precision molecular spectroscopy’, Molecular Physics, 121(17-18), p. e2144519. Available at: https://doi.org/10.1080/00268976.2022.2144519.
Sinhal, Mudit, Johnson, Anatoly and Willitsch, Stefan (2022) ‘Frequency stabilisation and SI tracing of mid-infrared quantum-cascade lasers for precision molecular spectroscopy’, Molecular Physics, 121(17-18), p. e2144519. Available at: https://doi.org/10.1080/00268976.2022.2144519.
Sinhal, Mudit and Willitsch, Stefan (2022) ‘Molecular-ion quantum technologies’, Arxiv [Preprint]. Cornell University (Arxiv). Available at: https://doi.org/10.48550/arxiv.2204.08814.
Sinhal, Mudit and Willitsch, Stefan (2022) ‘Molecular-ion quantum technologies’, Arxiv [Preprint]. Cornell University (Arxiv). Available at: https://doi.org/10.48550/arxiv.2204.08814.
Xing, Xiaodong et al. (2022) ‘Ion-loss events in a hybrid trap of cold Rb-Ca+ : Photodissociation, blackbody radiation, and nonradiative charge exchange’, Physical Review A, 106(6), p. 062809. Available at: https://doi.org/10.1103/physreva.106.062809.
Xing, Xiaodong et al. (2022) ‘Ion-loss events in a hybrid trap of cold Rb-Ca+ : Photodissociation, blackbody radiation, and nonradiative charge exchange’, Physical Review A, 106(6), p. 062809. Available at: https://doi.org/10.1103/physreva.106.062809.
Damjanovic, T. (2021) A novel travelling-wave Zeeman decelerator for production of cold radicals.
Damjanovic, T. (2021) A novel travelling-wave Zeeman decelerator for production of cold radicals.
Damjanovic, Tomislav et al. (2021) ‘A new design for a traveling-wave Zeeman decelerator: II. Experiment’, New Journal of Physics, 23(10), p. 105007. Available at: https://doi.org/10.1088/1367-2630/ac2c2b.
Damjanovic, Tomislav et al. (2021) ‘A new design for a traveling-wave Zeeman decelerator: II. Experiment’, New Journal of Physics, 23(10), p. 105007. Available at: https://doi.org/10.1088/1367-2630/ac2c2b.
Damjanovic, Tomislav et al. (2021) ‘A new design for a traveling-wave Zeeman decelerator: I. Theory’, New Journal of Physics, 23(10), p. 105006. Available at: https://doi.org/10.1088/1367-2630/ac2b52.
Damjanovic, Tomislav et al. (2021) ‘A new design for a traveling-wave Zeeman decelerator: I. Theory’, New Journal of Physics, 23(10), p. 105006. Available at: https://doi.org/10.1088/1367-2630/ac2b52.
D’Astolfo, P. (2021) Assemblies and polymerizations - Exploring the electrical and mechanical properties of organic molecules on metal surfaces.
D’Astolfo, P. (2021) Assemblies and polymerizations - Exploring the electrical and mechanical properties of organic molecules on metal surfaces.
Hegi, G.V. (2021) Towards A Non-Destructive Single Molecular Ion State Readout
And Rotational Inelastic Collisions Between Molecular Nitrogen Ions and Argon Atoms.
Hegi, G.V. (2021) Towards A Non-Destructive Single Molecular Ion State Readout
And Rotational Inelastic Collisions Between Molecular Nitrogen Ions and Argon Atoms.
Husmann, Dominik et al. (2021) ‘SI-traceable frequency dissemination at 1572.06 nm in a stabilized fiber network with ring topology’, Optics express, 29(16), pp. 24592–24605. Available at: https://doi.org/10.1364/oe.427921.
Husmann, Dominik et al. (2021) ‘SI-traceable frequency dissemination at 1572.06 nm in a stabilized fiber network with ring topology’, Optics express, 29(16), pp. 24592–24605. Available at: https://doi.org/10.1364/oe.427921.
Kilaj, Ardita et al. (2021) ‘Conformer-specific polar cycloaddition of dibromobutadiene with trapped propene ions’, Nature Communications, 12(1), p. 6047. Available at: https://doi.org/10.1038/s41467-021-26309-5.
Kilaj, Ardita et al. (2021) ‘Conformer-specific polar cycloaddition of dibromobutadiene with trapped propene ions’, Nature Communications, 12(1), p. 6047. Available at: https://doi.org/10.1038/s41467-021-26309-5.
Najafian, K. (2021) Quantum manipulation of a single trapped molecular ion.
Najafian, K. (2021) Quantum manipulation of a single trapped molecular ion.
Ploenes, Ludger et al. (2021) ‘A novel crossed-molecular-beam experiment for investigating reactions of state- and conformationally selected strong-field-seeking molecules’, Molecular Physics, 119(17-18), p. e1965234. Available at: https://doi.org/10.1080/00268976.2021.1965234.
Ploenes, Ludger et al. (2021) ‘A novel crossed-molecular-beam experiment for investigating reactions of state- and conformationally selected strong-field-seeking molecules’, Molecular Physics, 119(17-18), p. e1965234. Available at: https://doi.org/10.1080/00268976.2021.1965234.
Rivero, Uxia et al. (2021) ‘Reactive atomistic simulations of Diels-Alder-type reactions: conformational and dynamic effects in the polar cycloaddition of 2,3-dibromobutadiene radical ions with maleic anhydride’, Molecular Physics, 119(1-2), p. e1825852. Available at: https://doi.org/10.1080/00268976.2020.1825852.
Rivero, Uxia et al. (2021) ‘Reactive atomistic simulations of Diels-Alder-type reactions: conformational and dynamic effects in the polar cycloaddition of 2,3-dibromobutadiene radical ions with maleic anhydride’, Molecular Physics, 119(1-2), p. e1825852. Available at: https://doi.org/10.1080/00268976.2020.1825852.
Sinhal, M. (2021) Quantum Control of Single Molecular Ions.
Sinhal, M. (2021) Quantum Control of Single Molecular Ions.
Sinhal, Mudit, Meir, Ziv and Willitsch, Stefan (2021) ‘Non-destructive State Detection and Spectroscopy of Single Molecules’, Chimia, 75(4), pp. 291–295. Available at: https://doi.org/10.2533/chimia.2021.291.
Sinhal, Mudit, Meir, Ziv and Willitsch, Stefan (2021) ‘Non-destructive State Detection and Spectroscopy of Single Molecules’, Chimia, 75(4), pp. 291–295. Available at: https://doi.org/10.2533/chimia.2021.291.
Stranak, Patrik et al. (2021) ‘Development and characterization of high-repetition-rate sources for supersonic beams of fluorine radicals’, Review of Scientific Instruments, 92(10), p. 103203. Available at: https://doi.org/10.1063/5.0065498.
Stranak, Patrik et al. (2021) ‘Development and characterization of high-repetition-rate sources for supersonic beams of fluorine radicals’, Review of Scientific Instruments, 92(10), p. 103203. Available at: https://doi.org/10.1063/5.0065498.
Willitsch, Stefan (2021) ‘Fundamental Research in Chemistry and the SCS: Past, Present, Future’, Chimia, 75(6), pp. 557–558. Available at: https://doi.org/10.2533/chimia.2021.557.
Willitsch, Stefan (2021) ‘Fundamental Research in Chemistry and the SCS: Past, Present, Future’, Chimia, 75(6), pp. 557–558. Available at: https://doi.org/10.2533/chimia.2021.557.
Willitsch, S. et al. (2020) ‘Editorial’, Molecular Physics, 118(11). Available at: https://doi.org/10.1080/00268976.2020.1759289.
Willitsch, S. et al. (2020) ‘Editorial’, Molecular Physics, 118(11). Available at: https://doi.org/10.1080/00268976.2020.1759289.
Sinhal, M. et al. (2020) ‘Quantum-nondemolition state detection and spectroscopy of single trapped molecules’, Science, 367(6483), pp. 1213–1218. Available at: https://doi.org/10.1126/science.aaw1666.
Sinhal, M. et al. (2020) ‘Quantum-nondemolition state detection and spectroscopy of single trapped molecules’, Science, 367(6483), pp. 1213–1218. Available at: https://doi.org/10.1126/science.aaw1666.
Damjanovic, T. et al. (2020) ‘A traveling wave Zeeman decelerator’, in Journal of Physics: Conference Series. IOP Publishing: IOP Publishing (Journal of Physics: Conference Series). Available at: https://doi.org/10.1088/1742-6596/1412/12/122014.
Damjanovic, T. et al. (2020) ‘A traveling wave Zeeman decelerator’, in Journal of Physics: Conference Series. IOP Publishing: IOP Publishing (Journal of Physics: Conference Series). Available at: https://doi.org/10.1088/1742-6596/1412/12/122014.
Doerfler, A. D. et al. (2020) ‘Rotational-state-changing collisions between N-2(+) and Rb at low energies’, Physical Review A, 101(1), p. 012706. Available at: https://doi.org/10.1103/physreva.101.012706.
Doerfler, A. D. et al. (2020) ‘Rotational-state-changing collisions between N-2(+) and Rb at low energies’, Physical Review A, 101(1), p. 012706. Available at: https://doi.org/10.1103/physreva.101.012706.
Eberle, P. (2020) Increased Control over Reaction Conditions in a Hybrid Trap.
Eberle, P. (2020) Increased Control over Reaction Conditions in a Hybrid Trap.
Fountas, P. (2020) Theoretical study and experimental implementation of an ion-nanowire hybrid system. Available at: https://doi.org/10.5451/unibas-007231648.
Fountas, P. (2020) Theoretical study and experimental implementation of an ion-nanowire hybrid system. Available at: https://doi.org/10.5451/unibas-007231648.
Kilaj, A. (2020) Reactions of trapped ions with state- and conformer-selected neural molecules. Available at: https://doi.org/10.5451/unibas-007221568.
Kilaj, A. (2020) Reactions of trapped ions with state- and conformer-selected neural molecules. Available at: https://doi.org/10.5451/unibas-007221568.
Kilaj, Ardita et al. (2020) ‘Quantum-chemistry-aided identification, synthesis and experimental validation of model systems for conformationally controlled reaction studies: separation of the conformers of 2,3-dibromobuta-1,3-diene in the gas phase’, Physical Chemistry Chemical Physics, 22(24), pp. 13431–13439. Available at: https://doi.org/10.1039/d0cp01396j.
Kilaj, Ardita et al. (2020) ‘Quantum-chemistry-aided identification, synthesis and experimental validation of model systems for conformationally controlled reaction studies: separation of the conformers of 2,3-dibromobuta-1,3-diene in the gas phase’, Physical Chemistry Chemical Physics, 22(24), pp. 13431–13439. Available at: https://doi.org/10.1039/d0cp01396j.
Meir, Ziv et al. (2020) ‘Combining experiments and relativistic theory for establishing accurate radiative quantities in atoms: The lifetime of the P-2(3/2) state in Ca-40(+)’, Physical Review A, 101(1), p. 012509. Available at: https://doi.org/10.1103/physreva.101.012509.
Meir, Ziv et al. (2020) ‘Combining experiments and relativistic theory for establishing accurate radiative quantities in atoms: The lifetime of the P-2(3/2) state in Ca-40(+)’, Physical Review A, 101(1), p. 012509. Available at: https://doi.org/10.1103/physreva.101.012509.
Najafian, Kaveh et al. (2020) ‘Identification of molecular quantum states using phase-sensitive forces’, Nature Communications, 11(1), p. 4470. Available at: https://doi.org/10.1038/s41467-020-18170-9.
Najafian, Kaveh et al. (2020) ‘Identification of molecular quantum states using phase-sensitive forces’, Nature Communications, 11(1), p. 4470. Available at: https://doi.org/10.1038/s41467-020-18170-9.
Najafian, Kaveh, Meir, Ziv and Willitsch, Stefan (2020) ‘From megahertz to terahertz qubits encoded in molecular ions: theoretical analysis of dipole-forbidden spectroscopic transitions in N-2(+)’, Physical Chemistry Chemical Physics, 22(40), pp. 23083–23098. Available at: https://doi.org/10.1039/d0cp03906c.
Najafian, Kaveh, Meir, Ziv and Willitsch, Stefan (2020) ‘From megahertz to terahertz qubits encoded in molecular ions: theoretical analysis of dipole-forbidden spectroscopic transitions in N-2(+)’, Physical Chemistry Chemical Physics, 22(40), pp. 23083–23098. Available at: https://doi.org/10.1039/d0cp03906c.
Sinhal, Mudit et al. (2020) ‘Quantum-nondemolition state detection and spectroscopy of single trapped molecules’, Science, 367(6483), pp. 1213–1218. Available at: https://doi.org/10.1126/science.aaz9837.
Sinhal, Mudit et al. (2020) ‘Quantum-nondemolition state detection and spectroscopy of single trapped molecules’, Science, 367(6483), pp. 1213–1218. Available at: https://doi.org/10.1126/science.aaz9837.
von Planta, C. (2020) A Cryogenic Molecular Ion-Neutral Hybrid Trap.
von Planta, C. (2020) A Cryogenic Molecular Ion-Neutral Hybrid Trap.
Wang, Jia et al. (2020) ‘Spatial Separation of the Conformers of Methyl Vinyl Ketone’, The journal of physical chemistry. A, 124(40), pp. 8341–8345. Available at: https://doi.org/10.1021/acs.jpca.0c05893.
Wang, Jia et al. (2020) ‘Spatial Separation of the Conformers of Methyl Vinyl Ketone’, The journal of physical chemistry. A, 124(40), pp. 8341–8345. Available at: https://doi.org/10.1021/acs.jpca.0c05893.
Ahmed, M. et al. (2019) ‘Controlling internal degrees: General discussion’, Faraday Discussions, 217, pp. 138–171. Available at: https://doi.org/10.1039/c9fd90032b.
Ahmed, M. et al. (2019) ‘Controlling internal degrees: General discussion’, Faraday Discussions, 217, pp. 138–171. Available at: https://doi.org/10.1039/c9fd90032b.
Dessent, C. et al. (2019) ‘Exotic systems: General discussion’, Faraday Discussions, 217, pp. 601–622. Available at: https://doi.org/10.1039/c9fd90035g.
Dessent, C. et al. (2019) ‘Exotic systems: General discussion’, Faraday Discussions, 217, pp. 601–622. Available at: https://doi.org/10.1039/c9fd90035g.
Dörfler, A. (2019) Cold molecular ion-neutral collisions in a dynamic ion-atom hybrid trap. Available at: https://doi.org/10.5451/unibas-007173662.
Dörfler, A. (2019) Cold molecular ion-neutral collisions in a dynamic ion-atom hybrid trap. Available at: https://doi.org/10.5451/unibas-007173662.
Dörfler, Alexander D. et al. (2019) ‘Long-range versus short-range effects in cold molecular ion-neutral collisions’, Nature Communications, 10(1), p. 5429. Available at: https://doi.org/10.1038/s41467-019-13218-x.
Dörfler, Alexander D. et al. (2019) ‘Long-range versus short-range effects in cold molecular ion-neutral collisions’, Nature Communications, 10(1), p. 5429. Available at: https://doi.org/10.1038/s41467-019-13218-x.
Fountas, P. N., Poggio, M. and Willitsch, S. (2019) ‘Classical and quantum dynamics of a trapped ion coupled to a charged nanowire’, New Journal of Physics, 21, p. 013030. Available at: https://doi.org/10.1088/1367-2630/aaf8f5.
Fountas, P. N., Poggio, M. and Willitsch, S. (2019) ‘Classical and quantum dynamics of a trapped ion coupled to a charged nanowire’, New Journal of Physics, 21, p. 013030. Available at: https://doi.org/10.1088/1367-2630/aaf8f5.
Gianturco, F. A. et al. (2019) ‘N-2(+)((2)Sigma(g)) and Rb(S-2) in a hybrid trap: modeling ion losses from radiative association paths’, Physical Chemistry Chemical Physics, 21(16), pp. 8342–8351. Available at: https://doi.org/10.1039/c8cp06761a.
Gianturco, F. A. et al. (2019) ‘N-2(+)((2)Sigma(g)) and Rb(S-2) in a hybrid trap: modeling ion losses from radiative association paths’, Physical Chemistry Chemical Physics, 21(16), pp. 8342–8351. Available at: https://doi.org/10.1039/c8cp06761a.
Haas, D. (2019) Towards hybrid trapping of cold molecules and cold molecular ions. Available at: https://doi.org/10.5451/unibas-007140779.
Haas, D. (2019) Towards hybrid trapping of cold molecules and cold molecular ions. Available at: https://doi.org/10.5451/unibas-007140779.
Haas, Dominik et al. (2019) ‘Long-term trapping of Stark-decelerated molecules’, Communications physics, 2, p. 101. Available at: https://doi.org/10.1038/s42005-019-0199-4.
Haas, Dominik et al. (2019) ‘Long-term trapping of Stark-decelerated molecules’, Communications physics, 2, p. 101. Available at: https://doi.org/10.1038/s42005-019-0199-4.
Meir, Ziv et al. (2019) ‘State-selective coherent motional excitation as a new approach for the manipulation, spectroscopy and state-to-state chemistry of single molecular ions’, Faraday Discussions, 217, pp. 561–583. Available at: https://doi.org/10.1039/c8fd00195b.
Meir, Ziv et al. (2019) ‘State-selective coherent motional excitation as a new approach for the manipulation, spectroscopy and state-to-state chemistry of single molecular ions’, Faraday Discussions, 217, pp. 561–583. Available at: https://doi.org/10.1039/c8fd00195b.
Rivero, U. (2019) Computational insights into reactions of controlled molecules. Available at: https://doi.org/10.5451/unibas-007175092.
Rivero, U. (2019) Computational insights into reactions of controlled molecules. Available at: https://doi.org/10.5451/unibas-007175092.
Rivero, Uxia et al. (2019) ‘Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations’, Journal of Chemical Physics, 151(10), p. 104301. Available at: https://doi.org/10.1063/1.5114981.
Rivero, Uxia et al. (2019) ‘Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations’, Journal of Chemical Physics, 151(10), p. 104301. Available at: https://doi.org/10.1063/1.5114981.
Rouse, Ian and Willitsch, Stefan (2019) ‘The energy distribution of an ion in a radiofrequency trap interacting with a nonuniform neutral buffer gas’, Molecular Physics, 117(21), pp. 3120–3131. Available at: https://doi.org/10.1080/00268976.2019.1581952.
Rouse, Ian and Willitsch, Stefan (2019) ‘The energy distribution of an ion in a radiofrequency trap interacting with a nonuniform neutral buffer gas’, Molecular Physics, 117(21), pp. 3120–3131. Available at: https://doi.org/10.1080/00268976.2019.1581952.
Simons, J. et al. (2019) ‘Pushing resolution in frequency and time: General discussion’, Faraday Discussions, 217, pp. 290–321. Available at: https://doi.org/10.1039/c9fd90033k.
Simons, J. et al. (2019) ‘Pushing resolution in frequency and time: General discussion’, Faraday Discussions, 217, pp. 290–321. Available at: https://doi.org/10.1039/c9fd90033k.
Kilaj, Ardita et al. (2018) ‘Observation of different reactivities of para and ortho-water towards trapped diazenylium ions’, Nature Communications, 9(1), p. 2096. Available at: https://doi.org/10.1038/s41467-018-04483-3.
Kilaj, Ardita et al. (2018) ‘Observation of different reactivities of para and ortho-water towards trapped diazenylium ions’, Nature Communications, 9(1), p. 2096. Available at: https://doi.org/10.1038/s41467-018-04483-3.
Meir, Ziv, Zhang, Dongdong and Willitsch, Stefan (2018) ‘Cold molecules: techniques and applications’, SPG Mitteilungen, 55, pp. 31–33.
Meir, Ziv, Zhang, Dongdong and Willitsch, Stefan (2018) ‘Cold molecules: techniques and applications’, SPG Mitteilungen, 55, pp. 31–33.
Rouse, I.J. (2018) A miniaturised hybrid ion-atom chip trap and the non-equilibrium statistical mechanics of trapped ions. Available at: https://doi.org/10.5451/unibas-007057903.
Rouse, I.J. (2018) A miniaturised hybrid ion-atom chip trap and the non-equilibrium statistical mechanics of trapped ions. Available at: https://doi.org/10.5451/unibas-007057903.
Rouse, I. and Willitsch, S. (2018) ‘Energy distributions of an ion in a radio-frequency trap immersed in a buffer gas under the influence of additional external forces’, Physical Review A, 97(4), p. 042712. Available at: https://doi.org/10.1103/physreva.97.042712.
Rouse, I. and Willitsch, S. (2018) ‘Energy distributions of an ion in a radio-frequency trap immersed in a buffer gas under the influence of additional external forces’, Physical Review A, 97(4), p. 042712. Available at: https://doi.org/10.1103/physreva.97.042712.
Vander Auwera, Jean et al. (2018) ‘25th Colloquium on High-Resolution Molecular Spectroscopy: special issue dedicated to Michel Herman’, Molecular Physics, 116(23-24), pp. 3447–3462. Available at: https://doi.org/10.1080/00268976.2018.1494881.
Vander Auwera, Jean et al. (2018) ‘25th Colloquium on High-Resolution Molecular Spectroscopy: special issue dedicated to Michel Herman’, Molecular Physics, 116(23-24), pp. 3447–3462. Available at: https://doi.org/10.1080/00268976.2018.1494881.
Willitsch, Stefan (2018) ‘Probes of ion-neutral chemical dynamics with cold and controlled molecules’, Abstracts of papers of the American Chemical Society. American Chemical Society, 255.
Willitsch, Stefan (2018) ‘Probes of ion-neutral chemical dynamics with cold and controlled molecules’, Abstracts of papers of the American Chemical Society. American Chemical Society, 255.
Zhang, D. and Willitsch, S. (2018) ‘CHAPTER 10: Cold Ion Chemistry’, pp. 496–536. Available at: https://doi.org/10.1039/9781782626800-00496.
Zhang, D. and Willitsch, S. (2018) ‘CHAPTER 10: Cold Ion Chemistry’, pp. 496–536. Available at: https://doi.org/10.1039/9781782626800-00496.
Haas, Dominik et al. (2017) ‘Optimizing the density of Stark decelerated radicals at low final velocities: a tutorial review’, EPJ Techniques and Instrumentation. 25.09.2017, 4(1). Available at: https://doi.org/10.1140/epjti/s40485-017-0041-x.
Haas, Dominik et al. (2017) ‘Optimizing the density of Stark decelerated radicals at low final velocities: a tutorial review’, EPJ Techniques and Instrumentation. 25.09.2017, 4(1). Available at: https://doi.org/10.1140/epjti/s40485-017-0041-x.
Dulieu, O. and Willitsch, S. (2017) ‘Ion Coulomb crystals: From quantum technology to chemistry close to the absolute zero point’, Europhysics News, 48(2), pp. 17–20. Available at: https://doi.org/10.1051/epn/2017203.
Dulieu, O. and Willitsch, S. (2017) ‘Ion Coulomb crystals: From quantum technology to chemistry close to the absolute zero point’, Europhysics News, 48(2), pp. 17–20. Available at: https://doi.org/10.1051/epn/2017203.
Mokhberi, A., Schmied, R. and Willitsch, S. (2017) ‘Optimised surface-electrode ion-trap junctions for experiments with cold molecular ions’, New Journal of Physics, 19, p. 043023. Available at: https://doi.org/10.1088/1367-2630/aa6918.
Mokhberi, A., Schmied, R. and Willitsch, S. (2017) ‘Optimised surface-electrode ion-trap junctions for experiments with cold molecular ions’, New Journal of Physics, 19, p. 043023. Available at: https://doi.org/10.1088/1367-2630/aa6918.
Rivero, Uxia, Meuwly, Markus and Willitsch, Stefan (2017) ‘A computational study of the Diels-Alder reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride’, Chemical Physics Letters, 683, pp. 598–605. Available at: https://doi.org/10.1016/j.cplett.2017.03.063.
Rivero, Uxia, Meuwly, Markus and Willitsch, Stefan (2017) ‘A computational study of the Diels-Alder reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride’, Chemical Physics Letters, 683, pp. 598–605. Available at: https://doi.org/10.1016/j.cplett.2017.03.063.
Rösch, D. and Willitsch, S. (2017) ‘Physikalische Chemie 2016: Spektroskopie und Chemie mit kalten Ionen’, Nachrichten aus der Chemie, 65, pp. 326–329. Available at: https://doi.org/10.1002/nadc.20174060850.
Rösch, D. and Willitsch, S. (2017) ‘Physikalische Chemie 2016: Spektroskopie und Chemie mit kalten Ionen’, Nachrichten aus der Chemie, 65, pp. 326–329. Available at: https://doi.org/10.1002/nadc.20174060850.
Rouse, I. and Willitsch, S. (2017) ‘Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas’, Physical review letters, 118(14), p. 143401. Available at: https://doi.org/10.1103/physrevlett.118.143401.
Rouse, I. and Willitsch, S. (2017) ‘Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas’, Physical review letters, 118(14), p. 143401. Available at: https://doi.org/10.1103/physrevlett.118.143401.
Schlemmer, S., Willitsch, S. and Steimle, T. (2017) ‘Introduction to the special issue on molecular spectroscopy in traps’, Journal of Molecular Spectroscopy, 332, pp. 1–2. Available at: https://doi.org/10.1016/j.jms.2016.12.005.
Schlemmer, S., Willitsch, S. and Steimle, T. (2017) ‘Introduction to the special issue on molecular spectroscopy in traps’, Journal of Molecular Spectroscopy, 332, pp. 1–2. Available at: https://doi.org/10.1016/j.jms.2016.12.005.
Sergachev, I. (2017) High-power and narrow-linewidth optimizations of mid-infrared quantum cascade lasers. Available at: https://doi.org/10.5451/unibas-006771214.
Sergachev, I. (2017) High-power and narrow-linewidth optimizations of mid-infrared quantum cascade lasers. Available at: https://doi.org/10.5451/unibas-006771214.
Willitsch, Stefan (2017) ‘Chemistry with Controlled Ions’, in Rice, Stuart A.; Dinner, Aaron R. (ed.) Advances in Chemical Physics. Hoboken: Wiley Interscience (Advances in Chemical Physics), pp. 307–340. Available at: https://doi.org/10.1002/9781119324560.ch5.
Willitsch, Stefan (2017) ‘Chemistry with Controlled Ions’, in Rice, Stuart A.; Dinner, Aaron R. (ed.) Advances in Chemical Physics. Hoboken: Wiley Interscience (Advances in Chemical Physics), pp. 307–340. Available at: https://doi.org/10.1002/9781119324560.ch5.
Hegi, Gregor et al. (2016) ‘Precision Spectroscopy on Single Cold Trapped Molecular Nitrogen Ions ’, in 71st International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign (71st International Symposium on Molecular Spectroscopy). Available at: https://doi.org/10.15278/isms.2016.wi07.
Hegi, Gregor et al. (2016) ‘Precision Spectroscopy on Single Cold Trapped Molecular Nitrogen Ions ’, in 71st International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign (71st International Symposium on Molecular Spectroscopy). Available at: https://doi.org/10.15278/isms.2016.wi07.
Eberle, Pascal et al. (2016) ‘A Dynamic Ion-Atom Hybrid Trap for High-Resolution Cold-Collision Studies’, ChemPhysChem, 17(22), pp. 3769–3775. Available at: https://doi.org/10.1002/cphc.201600643.
Eberle, Pascal et al. (2016) ‘A Dynamic Ion-Atom Hybrid Trap for High-Resolution Cold-Collision Studies’, ChemPhysChem, 17(22), pp. 3769–3775. Available at: https://doi.org/10.1002/cphc.201600643.
Germann, Matthias (2016) Dipole-forbidden vibrational transitions in molecular ions. A novel route to precision spectroscopy and studying effects of interest to fundamental pyhsics. Dissertation. Universität Basel.
Germann, Matthias (2016) Dipole-forbidden vibrational transitions in molecular ions. A novel route to precision spectroscopy and studying effects of interest to fundamental pyhsics. Dissertation. Universität Basel.
Germann, M. (2016) Dipole-forbidden vibrational transitions in molecular ions : a novel route to precision spectroscopy and studying effects of interest to fundamental physics. Available at: https://doi.org/10.5451/unibas-006639566.
Germann, M. (2016) Dipole-forbidden vibrational transitions in molecular ions : a novel route to precision spectroscopy and studying effects of interest to fundamental physics. Available at: https://doi.org/10.5451/unibas-006639566.
Germann, Matthias and Willitsch, Stefan (2016) ‘Line strengths for fine- and hyperfine-resolved electric-quadrupole rotation-vibration transitions in Hund’s case b molecules’, Molecular Physics, 114(6), pp. 769–773. Available at: https://doi.org/10.1080/00268976.2015.1118568.
Germann, Matthias and Willitsch, Stefan (2016) ‘Line strengths for fine- and hyperfine-resolved electric-quadrupole rotation-vibration transitions in Hund’s case b molecules’, Molecular Physics, 114(6), pp. 769–773. Available at: https://doi.org/10.1080/00268976.2015.1118568.
Germann, Matthias and Willitsch, Stefan (2016) ‘Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations’, Journal of Chemical Physics, 145(4), p. 044315. Available at: https://doi.org/10.1063/1.4955303.
Germann, Matthias and Willitsch, Stefan (2016) ‘Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations’, Journal of Chemical Physics, 145(4), p. 044315. Available at: https://doi.org/10.1063/1.4955303.
Germann, Matthias and Willitsch, Stefan (2016) ‘Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization’, Journal of Chemical Physics, 145(4), p. 044314. Available at: https://doi.org/10.1063/1.4955301.
Germann, Matthias and Willitsch, Stefan (2016) ‘Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization’, Journal of Chemical Physics, 145(4), p. 044314. Available at: https://doi.org/10.1063/1.4955301.
Mokhberi, Arezoo (2016) Scalable microchip ion traps and guides for cold molecular ions. Dissertation. Universität Basel.
Mokhberi, Arezoo (2016) Scalable microchip ion traps and guides for cold molecular ions. Dissertation. Universität Basel.
Mokhberi, A. (2016) Scalable microchip ion traps and guides for cold molecular ions. Available at: https://doi.org/10.5451/unibas-006656237.
Mokhberi, A. (2016) Scalable microchip ion traps and guides for cold molecular ions. Available at: https://doi.org/10.5451/unibas-006656237.
Ploenes, Ludger et al. (2016) ‘Cold and intense OH radical beam sources’, Review of Scientific Instruments, 87(5), p. 053305. Available at: https://doi.org/10.1063/1.4948917.
Ploenes, Ludger et al. (2016) ‘Cold and intense OH radical beam sources’, Review of Scientific Instruments, 87(5), p. 053305. Available at: https://doi.org/10.1063/1.4948917.
Rösch, Daniel (2016) Reactive collisions with conformationally controlled molecules. Dissertation. Universität Basel.
Rösch, Daniel (2016) Reactive collisions with conformationally controlled molecules. Dissertation. Universität Basel.
Rösch, D. (2016) Reactive collisions with conformationally controlled molecules. Available at: https://doi.org/10.5451/unibas-006656212.
Rösch, D. (2016) Reactive collisions with conformationally controlled molecules. Available at: https://doi.org/10.5451/unibas-006656212.
Rösch, Daniel et al. (2016) ‘Design and characterization of a linear quadrupole ion trap for high-resolution Coulomb-crystal time-of-flight mass spectrometry’, EPJ Techniques and Instrumentation, 3, p. 5. Available at: https://doi.org/10.1140/epjti/s40485-016-0032-3.
Rösch, Daniel et al. (2016) ‘Design and characterization of a linear quadrupole ion trap for high-resolution Coulomb-crystal time-of-flight mass spectrometry’, EPJ Techniques and Instrumentation, 3, p. 5. Available at: https://doi.org/10.1140/epjti/s40485-016-0032-3.
Meuwly, M. and Willitsch, S. (2015) ‘Preface to the special issue dedicated to John P. Maier’, Molecular Physics, 113(15-16), pp. 2061–2062. Available at: https://doi.org/10.1080/00268976.2015.1062245.
Meuwly, M. and Willitsch, S. (2015) ‘Preface to the special issue dedicated to John P. Maier’, Molecular Physics, 113(15-16), pp. 2061–2062. Available at: https://doi.org/10.1080/00268976.2015.1062245.
Dörfler, A. et al. (2015) ‘A dynamic ion-atom hybrid trap for high-resolution cold-collision studies’. Available at: https://doi.org/10.1088/1742-6596/635/9/092048.
Dörfler, A. et al. (2015) ‘A dynamic ion-atom hybrid trap for high-resolution cold-collision studies’. Available at: https://doi.org/10.1088/1742-6596/635/9/092048.
Dulieu, Olivier and Willitsch, Stefan (2015) ‘Cristaux coulombiens: De la technologie quantique à la chimie proche du zéro absolu’, Reflets de la physique, 44-45, pp. 91–94. Available at: https://doi.org/10.1051/refdp/20154445091.
Dulieu, Olivier and Willitsch, Stefan (2015) ‘Cristaux coulombiens: De la technologie quantique à la chimie proche du zéro absolu’, Reflets de la physique, 44-45, pp. 91–94. Available at: https://doi.org/10.1051/refdp/20154445091.
Eberle, Pascal et al. (2015) ‘Ion-Atom and Ion-Molecule Hybrid Systems: Ion-Neutral Chemistry at Ultralow Energies’, Journal of Physics: Conference Series, 635(1), p. 012012. Available at: https://doi.org/10.1088/1742-6596/635/1/012012.
Eberle, Pascal et al. (2015) ‘Ion-Atom and Ion-Molecule Hybrid Systems: Ion-Neutral Chemistry at Ultralow Energies’, Journal of Physics: Conference Series, 635(1), p. 012012. Available at: https://doi.org/10.1088/1742-6596/635/1/012012.
Germann, Matthias, Tonga, Xin and Willitsch, Stefan (2015) ‘Forbidden Vibrational Transitions in Cold Molecular Ions: Experimental Observation and Potential Applications’, Chimia, 69(4), pp. 213–6. Available at: https://doi.org/10.2533/chimia.2015.213.
Germann, Matthias, Tonga, Xin and Willitsch, Stefan (2015) ‘Forbidden Vibrational Transitions in Cold Molecular Ions: Experimental Observation and Potential Applications’, Chimia, 69(4), pp. 213–6. Available at: https://doi.org/10.2533/chimia.2015.213.