Theoretical Physics of Living Systems (Brückner)
Publications
23 found
Show per page
Tavano, Stefania et al. (2025) ‘BMP-dependent patterning of ectoderm tissue material properties modulates lateral mesendoderm cell migration during early zebrafish gastrulation’, Cell Reports, 44(3). Available at: https://doi.org/10.1016/j.celrep.2025.115387.
Tavano, Stefania et al. (2025) ‘BMP-dependent patterning of ectoderm tissue material properties modulates lateral mesendoderm cell migration during early zebrafish gastrulation’, Cell Reports, 44(3). Available at: https://doi.org/10.1016/j.celrep.2025.115387.
Lehr, S. et al. (2025) ‘Self-organized pattern formation in the developing mouse neural tube by a temporal relay of BMP signaling’, Developmental Cell, 60(4), pp. 567–580.e14. Available at: https://doi.org/10.1016/j.devcel.2024.10.024.
Lehr, S. et al. (2025) ‘Self-organized pattern formation in the developing mouse neural tube by a temporal relay of BMP signaling’, Developmental Cell, 60(4), pp. 567–580.e14. Available at: https://doi.org/10.1016/j.devcel.2024.10.024.
Schwayer, C. et al. (2025) ‘Cell heterogeneity and fate bistability drive tissue patterning during intestinal regeneration’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2025.01.14.632683.
Schwayer, C. et al. (2025) ‘Cell heterogeneity and fate bistability drive tissue patterning during intestinal regeneration’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2025.01.14.632683.
Fortunato, Isabela Corina et al. (2024) ‘Single cell migration along and against confined haptotactic gradients’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.12.02.626413.
Fortunato, Isabela Corina et al. (2024) ‘Single cell migration along and against confined haptotactic gradients’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.12.02.626413.
Vercruysse, Eléonore et al. (2024) ‘Geometry-driven migration efficiency of autonomous epithelial cell clusters’, Nature Physics, 20(9), pp. 1492–1500. Available at: https://doi.org/10.1038/s41567-024-02532-x.
Vercruysse, Eléonore et al. (2024) ‘Geometry-driven migration efficiency of autonomous epithelial cell clusters’, Nature Physics, 20(9), pp. 1492–1500. Available at: https://doi.org/10.1038/s41567-024-02532-x.
Kalukula, Yohalie et al. (2024) ‘The actin cortex acts as a mechanical memory of morphology in confined migrating cells’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.08.05.606589.
Kalukula, Yohalie et al. (2024) ‘The actin cortex acts as a mechanical memory of morphology in confined migrating cells’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.08.05.606589.
Brückner, David B. and Hannezo, Edouard (2024) ‘Tissue Active Matter: Integrating Mechanics and Signaling into Dynamical Models’, Cold Spring Harbor Perspectives in Biology [Preprint]. Available at: https://doi.org/10.1101/cshperspect.a041653.
Brückner, David B. and Hannezo, Edouard (2024) ‘Tissue Active Matter: Integrating Mechanics and Signaling into Dynamical Models’, Cold Spring Harbor Perspectives in Biology [Preprint]. Available at: https://doi.org/10.1101/cshperspect.a041653.
Brückner, D.B. and Tkačik, G. (2024) ‘Information content and optimization of self-organized developmental systems’, Proceedings of the National Academy of Sciences of the United States of America, 121(23). Available at: https://doi.org/10.1073/pnas.2322326121.
Brückner, D.B. and Tkačik, G. (2024) ‘Information content and optimization of self-organized developmental systems’, Proceedings of the National Academy of Sciences of the United States of America, 121(23). Available at: https://doi.org/10.1073/pnas.2322326121.
Brückner, D.B. and Broedersz, C.P. (2024) ‘Learning dynamical models of single and collective cell migration: a review’, Reports on Progress in Physics, 87(5). Available at: https://doi.org/10.1088/1361-6633/ad36d2.
Brückner, D.B. and Broedersz, C.P. (2024) ‘Learning dynamical models of single and collective cell migration: a review’, Reports on Progress in Physics, 87(5). Available at: https://doi.org/10.1088/1361-6633/ad36d2.
Brandstätter, T. et al. (2023) ‘Curvature induces active velocity waves in rotating spherical tissues’, Nature Communications, 14(1). Available at: https://doi.org/10.1038/s41467-023-37054-2.
Brandstätter, T. et al. (2023) ‘Curvature induces active velocity waves in rotating spherical tissues’, Nature Communications, 14(1). Available at: https://doi.org/10.1038/s41467-023-37054-2.
Brückner, D.B. et al. (2023) ‘Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome’, Science, 380(6652), pp. 1357–1362. Available at: https://doi.org/10.1126/science.adf5568.
Brückner, D.B. et al. (2023) ‘Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome’, Science, 380(6652), pp. 1357–1362. Available at: https://doi.org/10.1126/science.adf5568.
Schwayer, C. and Brückner, D.B. (2023) ‘Connecting theory and experiment in cell and tissue mechanics’, Journal of Cell Science, 136(24). Available at: https://doi.org/10.1242/jcs.261515.
Schwayer, C. and Brückner, D.B. (2023) ‘Connecting theory and experiment in cell and tissue mechanics’, Journal of Cell Science, 136(24). Available at: https://doi.org/10.1242/jcs.261515.
Brückner, D.B. et al. (2022) ‘Geometry Adaptation of Protrusion and Polarity Dynamics in Confined Cell Migration’, Physical Review X, 12(3). Available at: https://doi.org/10.1103/PhysRevX.12.031041.
Brückner, D.B. et al. (2022) ‘Geometry Adaptation of Protrusion and Polarity Dynamics in Confined Cell Migration’, Physical Review X, 12(3). Available at: https://doi.org/10.1103/PhysRevX.12.031041.
Jia, H. et al. (2022) ‘3D printed protein-based robotic structures actuated by molecular motor assemblies’, Nature Materials, 21(6), pp. 703–709. Available at: https://doi.org/10.1038/s41563-022-01258-6.
Jia, H. et al. (2022) ‘3D printed protein-based robotic structures actuated by molecular motor assemblies’, Nature Materials, 21(6), pp. 703–709. Available at: https://doi.org/10.1038/s41563-022-01258-6.
Zisis, T. et al. (2022) ‘Disentangling cadherin-mediated cell-cell interactions in collective cancer cell migration’, Biophysical Journal, 121(1), pp. 44–60. Available at: https://doi.org/10.1016/j.bpj.2021.12.006.
Zisis, T. et al. (2022) ‘Disentangling cadherin-mediated cell-cell interactions in collective cancer cell migration’, Biophysical Journal, 121(1), pp. 44–60. Available at: https://doi.org/10.1016/j.bpj.2021.12.006.
Boudet, J.F. et al. (2021) ‘From collections of independent, mindless robots to flexible, mobile, and directional superstructures’, Science Robotics, 6(56). Available at: https://doi.org/10.1126/scirobotics.abd0272.
Boudet, J.F. et al. (2021) ‘From collections of independent, mindless robots to flexible, mobile, and directional superstructures’, Science Robotics, 6(56). Available at: https://doi.org/10.1126/scirobotics.abd0272.
Brückner, D.B. et al. (2021) ‘Learning the dynamics of cell–cell interactions in confined cell migration’, Proceedings of the National Academy of Sciences of the United States of America, 118(7). Available at: https://doi.org/10.1073/pnas.2016602118.
Brückner, D.B. et al. (2021) ‘Learning the dynamics of cell–cell interactions in confined cell migration’, Proceedings of the National Academy of Sciences of the United States of America, 118(7). Available at: https://doi.org/10.1073/pnas.2016602118.
Brückner, D.B., Ronceray, P. and Broedersz, C.P. (2020) ‘Inferring the Dynamics of Underdamped Stochastic Systems’, Physical Review Letters, 125(5). Available at: https://doi.org/10.1103/PhysRevLett.125.058103.
Brückner, D.B., Ronceray, P. and Broedersz, C.P. (2020) ‘Inferring the Dynamics of Underdamped Stochastic Systems’, Physical Review Letters, 125(5). Available at: https://doi.org/10.1103/PhysRevLett.125.058103.
Fink, A. et al. (2020) ‘Area and Geometry Dependence of Cell Migration in Asymmetric Two-State Micropatterns’, Biophysical Journal, 118(3), pp. 552–564. Available at: https://doi.org/10.1016/j.bpj.2019.11.3389.
Fink, A. et al. (2020) ‘Area and Geometry Dependence of Cell Migration in Asymmetric Two-State Micropatterns’, Biophysical Journal, 118(3), pp. 552–564. Available at: https://doi.org/10.1016/j.bpj.2019.11.3389.
Brückner, D.B. et al. (2020) ‘Disentangling the behavioural variability of confined cell migration’, Journal of the Royal Society Interface, 17(163). Available at: https://doi.org/10.1098/rsif.2019.0689.
Brückner, D.B. et al. (2020) ‘Disentangling the behavioural variability of confined cell migration’, Journal of the Royal Society Interface, 17(163). Available at: https://doi.org/10.1098/rsif.2019.0689.
Brückner, D.B. et al. (2019) ‘Stochastic nonlinear dynamics of confined cell migration in two-state systems’, Nature Physics, 15(6), pp. 595–601. Available at: https://doi.org/10.1038/s41567-019-0445-4.
Brückner, D.B. et al. (2019) ‘Stochastic nonlinear dynamics of confined cell migration in two-state systems’, Nature Physics, 15(6), pp. 595–601. Available at: https://doi.org/10.1038/s41567-019-0445-4.
Burelbach, J. et al. (2018) ‘Thermophoretic forces on a mesoscopic scale’, Soft Matter, 14(36), pp. 7446–7454. Available at: https://doi.org/10.1039/c8sm01132j.
Burelbach, J. et al. (2018) ‘Thermophoretic forces on a mesoscopic scale’, Soft Matter, 14(36), pp. 7446–7454. Available at: https://doi.org/10.1039/c8sm01132j.
Dietrich, M. et al. (2018) ‘Guiding 3D cell migration in deformed synthetic hydrogel microstructures’, Soft Matter, 14(15), pp. 2816–2826. Available at: https://doi.org/10.1039/c8sm00018b.
Dietrich, M. et al. (2018) ‘Guiding 3D cell migration in deformed synthetic hydrogel microstructures’, Soft Matter, 14(15), pp. 2816–2826. Available at: https://doi.org/10.1039/c8sm00018b.