Biophysics Facility (Sharpe)
Publications
48 found
Show per page
Dörner, Kerstin et al. (2024) ‘Tag with Caution - How protein tagging influences the formation of condensates’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.10.04.616694.
Dörner, Kerstin et al. (2024) ‘Tag with Caution - How protein tagging influences the formation of condensates’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.10.04.616694.
Abel, Anne-Catherine et al. (2024) ‘Bridging the maytansine and vinca sites: Cryptophycins target β-tubulin’s T5-loop’, Journal of Biological Chemistry, 300(6). Available at: https://doi.org/10.1016/j.jbc.2024.107363.
Abel, Anne-Catherine et al. (2024) ‘Bridging the maytansine and vinca sites: Cryptophycins target β-tubulin’s T5-loop’, Journal of Biological Chemistry, 300(6). Available at: https://doi.org/10.1016/j.jbc.2024.107363.
Abiko, Layara Akemi et al. (2022) ‘Filling of a water-free void explains the allosteric regulation of the β1-adrenergic receptor by cholesterol’, Nature Chemistry, 14(10), pp. 1133–1141. Available at: https://doi.org/10.1038/s41557-022-01009-9.
Abiko, Layara Akemi et al. (2022) ‘Filling of a water-free void explains the allosteric regulation of the β1-adrenergic receptor by cholesterol’, Nature Chemistry, 14(10), pp. 1133–1141. Available at: https://doi.org/10.1038/s41557-022-01009-9.
Collu, Gabriella et al. (2022) ‘Chimeric single α-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology’, Structure, 30(1), pp. 95–106.e7. Available at: https://doi.org/10.1016/j.str.2021.09.002.
Collu, Gabriella et al. (2022) ‘Chimeric single α-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology’, Structure, 30(1), pp. 95–106.e7. Available at: https://doi.org/10.1016/j.str.2021.09.002.
Cramer, Jonathan et al. (2021) ‘Poly-l-lysine Glycoconjugates Inhibit DC-SIGN-mediated Attachment of Pandemic Viruses’, ChemMedChem, 16(15), pp. 2345–2353. Available at: https://doi.org/10.1002/cmdc.202100348.
Cramer, Jonathan et al. (2021) ‘Poly-l-lysine Glycoconjugates Inhibit DC-SIGN-mediated Attachment of Pandemic Viruses’, ChemMedChem, 16(15), pp. 2345–2353. Available at: https://doi.org/10.1002/cmdc.202100348.
Li-Blatter, Xiaochun, Zweifel, Ludovit and Sharpe, Timothy (2021) ‘A Familiar Protein-Ligand Interaction Revisited with Multiple Methods’, Methods in Molecular Biology, 2263, pp. 47–79. Available at: https://doi.org/10.1007/978-1-0716-1197-5_2.
Li-Blatter, Xiaochun, Zweifel, Ludovit and Sharpe, Timothy (2021) ‘A Familiar Protein-Ligand Interaction Revisited with Multiple Methods’, Methods in Molecular Biology, 2263, pp. 47–79. Available at: https://doi.org/10.1007/978-1-0716-1197-5_2.
López-Méndez, Blanca et al. (2021) ‘Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study’, European Biophysics Journal, 50(3-4), pp. 411–427. Available at: https://doi.org/10.1007/s00249-021-01532-6.
López-Méndez, Blanca et al. (2021) ‘Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study’, European Biophysics Journal, 50(3-4), pp. 411–427. Available at: https://doi.org/10.1007/s00249-021-01532-6.
López-Méndez, Blanca et al. (2021) ‘Correction to: Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study (European Biophysics Journal, (2021), 50, 3-4, (411-427), 10.1007/s00249-021-01532-6)’, European Biophysics Journal, 50, pp. 1159–1160. Available at: https://doi.org/10.1007/s00249-021-01573-x.
López-Méndez, Blanca et al. (2021) ‘Correction to: Reproducibility and accuracy of microscale thermophoresis in the NanoTemper Monolith: a multi laboratory benchmark study (European Biophysics Journal, (2021), 50, 3-4, (411-427), 10.1007/s00249-021-01532-6)’, European Biophysics Journal, 50, pp. 1159–1160. Available at: https://doi.org/10.1007/s00249-021-01573-x.
Scott, Duncan E. et al. (2021) ‘A small-molecule inhibitor of the BRCA2-RAD51 interaction modulates RAD51 assembly and potentiates DNA damage-induced cell death’, Cell chemical biology, 28(6), p. 835–+. Available at: https://doi.org/10.1016/j.chembiol.2021.02.006.
Scott, Duncan E. et al. (2021) ‘A small-molecule inhibitor of the BRCA2-RAD51 interaction modulates RAD51 assembly and potentiates DNA damage-induced cell death’, Cell chemical biology, 28(6), p. 835–+. Available at: https://doi.org/10.1016/j.chembiol.2021.02.006.
Fiedler, Thomas et al. (2020) ‘Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of Dictyostelium discoideum’, FEBS Letters, 594(13), pp. 2116–2127. Available at: https://doi.org/10.1002/1873-3468.13787.
Fiedler, Thomas et al. (2020) ‘Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of Dictyostelium discoideum’, FEBS Letters, 594(13), pp. 2116–2127. Available at: https://doi.org/10.1002/1873-3468.13787.
Grahl, Anne et al. (2020) ‘A high-resolution description of β1-adrenergic receptor functional dynamics and allosteric coupling from backbone NMR’, Nature communications, 11(1), p. 2216. Available at: https://doi.org/10.1038/s41467-020-15864-y.
Grahl, Anne et al. (2020) ‘A high-resolution description of β1-adrenergic receptor functional dynamics and allosteric coupling from backbone NMR’, Nature communications, 11(1), p. 2216. Available at: https://doi.org/10.1038/s41467-020-15864-y.
Julou, Thomas et al. (2020) ‘Subpopulations of sensorless bacteria drive fitness in fluctuating environments’, PLoS biology, 18(12), p. e3000952. Available at: https://doi.org/10.1371/journal.pbio.3000952.
Julou, Thomas et al. (2020) ‘Subpopulations of sensorless bacteria drive fitness in fluctuating environments’, PLoS biology, 18(12), p. e3000952. Available at: https://doi.org/10.1371/journal.pbio.3000952.
Mas, Guillaume et al. (2020) ‘Regulation of chaperone function by coupled folding and oligomerization’, Science advances, 6(43), p. eabc5822. Available at: https://doi.org/10.1126/sciadv.abc5822.
Mas, Guillaume et al. (2020) ‘Regulation of chaperone function by coupled folding and oligomerization’, Science advances, 6(43), p. eabc5822. Available at: https://doi.org/10.1126/sciadv.abc5822.
Rath, Parthasarathi, Sharpe, Timothy and Hiller, Sebastian (2020) ‘The electrostatic core of the outer membrane protein X from E. coli’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1862(1), p. 183031. Available at: https://doi.org/10.1016/j.bbamem.2019.183031.
Rath, Parthasarathi, Sharpe, Timothy and Hiller, Sebastian (2020) ‘The electrostatic core of the outer membrane protein X from E. coli’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1862(1), p. 183031. Available at: https://doi.org/10.1016/j.bbamem.2019.183031.
Stress, Cedric J. et al. (2019) ‘Eine DNA‐kodierte Molekülbibliothek mit Elementen natürlicher Makrocyclen’, Angewandte Chemie. 02.04.2019, 131(28), pp. 9671–9675. Available at: https://doi.org/10.1002/ange.201902513.
Stress, Cedric J. et al. (2019) ‘Eine DNA‐kodierte Molekülbibliothek mit Elementen natürlicher Makrocyclen’, Angewandte Chemie. 02.04.2019, 131(28), pp. 9671–9675. Available at: https://doi.org/10.1002/ange.201902513.
Luther, Anatol et al. (2019) ‘Chimeric peptidomimetic antibiotics against Gram-negative bacteria’, Nature, 576(7787), pp. 452–458. Available at: https://doi.org/10.1038/s41586-019-1665-6.
Luther, Anatol et al. (2019) ‘Chimeric peptidomimetic antibiotics against Gram-negative bacteria’, Nature, 576(7787), pp. 452–458. Available at: https://doi.org/10.1038/s41586-019-1665-6.
Rath, Parthasarathi et al. (2019) ‘Two-state folding of the outer membrane protein X into a lipid bilayer membrane’, Angewandte Chemie International Edition, 58(9), pp. 2665–2669. Available at: https://doi.org/10.1002/anie.201812321.
Rath, Parthasarathi et al. (2019) ‘Two-state folding of the outer membrane protein X into a lipid bilayer membrane’, Angewandte Chemie International Edition, 58(9), pp. 2665–2669. Available at: https://doi.org/10.1002/anie.201812321.
Stress, Cedric J. et al. (2019) ‘A DNA-Encoded Chemical Library Incorporating Elements of Natural Macrocycles’, Angewandte Chemie International Edition, 58(28), pp. 9570–9574. Available at: https://doi.org/10.1002/anie.201902513.
Stress, Cedric J. et al. (2019) ‘A DNA-Encoded Chemical Library Incorporating Elements of Natural Macrocycles’, Angewandte Chemie International Edition, 58(28), pp. 9570–9574. Available at: https://doi.org/10.1002/anie.201902513.
Canning, Peter et al. (2018) ‘CDKL Family Kinases Have Evolved Distinct Structural Features and Ciliary Function’, Cell Reports, 22(4), pp. 885–894. Available at: https://doi.org/10.1016/j.celrep.2017.12.083.
Canning, Peter et al. (2018) ‘CDKL Family Kinases Have Evolved Distinct Structural Features and Ciliary Function’, Cell Reports, 22(4), pp. 885–894. Available at: https://doi.org/10.1016/j.celrep.2017.12.083.
Kuenzl, Tilmann et al. (2018) ‘Mutant Variants of the Substrate-Binding Protein DppA from Escherichia coli Enhance Growth on Nonstandard γ-Glutamyl Amide-Containing Peptides’, Applied and Environmental Microbiology, 84(13), pp. e00340–18. Available at: https://doi.org/10.1128/aem.00340-18.
Kuenzl, Tilmann et al. (2018) ‘Mutant Variants of the Substrate-Binding Protein DppA from Escherichia coli Enhance Growth on Nonstandard γ-Glutamyl Amide-Containing Peptides’, Applied and Environmental Microbiology, 84(13), pp. e00340–18. Available at: https://doi.org/10.1128/aem.00340-18.
Zihlmann, Pascal et al. (2018) ‘KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists’, Chemistry (Weinheim an der Bergstrasse, Germany), 24(49), pp. 13049–13057. Available at: https://doi.org/10.1002/chem.201802599.
Zihlmann, Pascal et al. (2018) ‘KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists’, Chemistry (Weinheim an der Bergstrasse, Germany), 24(49), pp. 13049–13057. Available at: https://doi.org/10.1002/chem.201802599.
Johnson, Christopher and Sharpe, Timothy (2018) ‘Protein Folding, Energy Landscapes and Downhill Protein Folding Scenarios’, in Roberts, Gordon; Watts, Anthony (ed.) Encyclopedia of Biophysics. Berlin: Springer (Encyclopedia of Biophysics), pp. 1–19. Available at: https://doi.org/10.1007/978-3-642-35943-9_10068-1.
Johnson, Christopher and Sharpe, Timothy (2018) ‘Protein Folding, Energy Landscapes and Downhill Protein Folding Scenarios’, in Roberts, Gordon; Watts, Anthony (ed.) Encyclopedia of Biophysics. Berlin: Springer (Encyclopedia of Biophysics), pp. 1–19. Available at: https://doi.org/10.1007/978-3-642-35943-9_10068-1.
Dixon-Clarke, Sarah E. et al. (2017) ‘Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16.’, Biochemical Journal, 474(5), pp. 699–713. Available at: https://doi.org/10.1042/bcj20160941.
Dixon-Clarke, Sarah E. et al. (2017) ‘Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16.’, Biochemical Journal, 474(5), pp. 699–713. Available at: https://doi.org/10.1042/bcj20160941.
Morgado, Leonor et al. (2017) ‘The dynamic dimer structure of the chaperone Trigger Factor’, Nature Communications, 8(1), p. 1992. Available at: https://doi.org/10.1038/s41467-017-02196-7.
Morgado, Leonor et al. (2017) ‘The dynamic dimer structure of the chaperone Trigger Factor’, Nature Communications, 8(1), p. 1992. Available at: https://doi.org/10.1038/s41467-017-02196-7.
Benjamin, D. et al. (2016) ‘Syrosingopine sensitizes cancer cells to killing by metformin’, Science Advances, 2(12), p. e1601756. Available at: https://doi.org/10.1126/sciadv.1601756.
Benjamin, D. et al. (2016) ‘Syrosingopine sensitizes cancer cells to killing by metformin’, Science Advances, 2(12), p. e1601756. Available at: https://doi.org/10.1126/sciadv.1601756.
He, Lichun et al. (2016) ‘A molecular mechanism of chaperone-client recognition’, Science Advances, 2(11), p. e1601625. Available at: https://doi.org/10.1126/sciadv.1601625.
He, Lichun et al. (2016) ‘A molecular mechanism of chaperone-client recognition’, Science Advances, 2(11), p. e1601625. Available at: https://doi.org/10.1126/sciadv.1601625.
Moschetti, Tommaso et al. (2016) ‘Engineering Archeal Surrogate Systems for the Development of Protein-Protein Interaction Inhibitors against Human RAD51’, Journal of Molecular Biology, 428(23), pp. 4589–4607. Available at: https://doi.org/10.1016/j.jmb.2016.10.009.
Moschetti, Tommaso et al. (2016) ‘Engineering Archeal Surrogate Systems for the Development of Protein-Protein Interaction Inhibitors against Human RAD51’, Journal of Molecular Biology, 428(23), pp. 4589–4607. Available at: https://doi.org/10.1016/j.jmb.2016.10.009.
Stanger, Frédéric V. et al. (2016) ‘Intrinsic regulation of FIC-domain AMP-transferases by oligomerization and automodification’, Proceedings of the National Academy of Sciences of the United States of America, 113(5), pp. E529–37. Available at: https://doi.org/10.1073/pnas.1516930113.
Stanger, Frédéric V. et al. (2016) ‘Intrinsic regulation of FIC-domain AMP-transferases by oligomerization and automodification’, Proceedings of the National Academy of Sciences of the United States of America, 113(5), pp. E529–37. Available at: https://doi.org/10.1073/pnas.1516930113.
Kleeb, Simon et al. (2015) ‘FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile’, Journal of Medicinal Chemistry, 58(5), pp. 2221–39. Available at: https://doi.org/10.1021/jm501524q.
Kleeb, Simon et al. (2015) ‘FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile’, Journal of Medicinal Chemistry, 58(5), pp. 2221–39. Available at: https://doi.org/10.1021/jm501524q.
Sundriyal, Amit et al. (2014) ‘Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger c-di-GMP’, Journal of Biological Chemistry, 289(10), pp. 6978–90. Available at: https://doi.org/10.1074/jbc.m113.516195.
Sundriyal, Amit et al. (2014) ‘Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger c-di-GMP’, Journal of Biological Chemistry, 289(10), pp. 6978–90. Available at: https://doi.org/10.1074/jbc.m113.516195.
Smith, Clive A. et al. (2013) ‘Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry’, Analytical Chemistry, pp. 3812–6. Available at: https://doi.org/10.1021/ac400453t.
Smith, Clive A. et al. (2013) ‘Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry’, Analytical Chemistry, pp. 3812–6. Available at: https://doi.org/10.1021/ac400453t.
Adams, Cassandra J. et al. (2012) ‘The p53 cofactor Strap exhibits an unexpected TPR motif and oligonucleotide-binding (OB)-fold structure.’, Proceedings of the National Academy of Sciences, 109(10), pp. 3778–3783. Available at: https://doi.org/10.1073/pnas.1113731109.
Adams, Cassandra J. et al. (2012) ‘The p53 cofactor Strap exhibits an unexpected TPR motif and oligonucleotide-binding (OB)-fold structure.’, Proceedings of the National Academy of Sciences, 109(10), pp. 3778–3783. Available at: https://doi.org/10.1073/pnas.1113731109.
Valkov, Eugene et al. (2012) ‘Targeting protein-protein interactions and fragment-based drug discovery’, Topics in Current Chemistry, 317, pp. 145–79. Available at: https://doi.org/10.1007/128_2011_265.
Valkov, Eugene et al. (2012) ‘Targeting protein-protein interactions and fragment-based drug discovery’, Topics in Current Chemistry, 317, pp. 145–79. Available at: https://doi.org/10.1007/128_2011_265.
Arbely, Eyal et al. (2010) ‘The human peripheral subunit-binding domain folds rapidly while overcoming repulsive Coulomb forces’, Protein Science, 19(9), pp. 1704–1713. Available at: https://doi.org/10.1002/pro.453.
Arbely, Eyal et al. (2010) ‘The human peripheral subunit-binding domain folds rapidly while overcoming repulsive Coulomb forces’, Protein Science, 19(9), pp. 1704–1713. Available at: https://doi.org/10.1002/pro.453.
Arbely, Eyal et al. (2010) ‘Carboxyl pK(a) values and acid denaturation of BBL’, Journal of Molecular Biology, 403(2), pp. 313–27. Available at: https://doi.org/10.1016/j.jmb.2010.08.052.
Arbely, Eyal et al. (2010) ‘Carboxyl pK(a) values and acid denaturation of BBL’, Journal of Molecular Biology, 403(2), pp. 313–27. Available at: https://doi.org/10.1016/j.jmb.2010.08.052.
Filippakopoulos, Panagis et al. (2010) ‘Structural basis for Par-4 recognition by the SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4’, Journal of Molecular Biology, 401(3), pp. 389–402. Available at: https://doi.org/10.1016/j.jmb.2010.06.017.
Filippakopoulos, Panagis et al. (2010) ‘Structural basis for Par-4 recognition by the SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4’, Journal of Molecular Biology, 401(3), pp. 389–402. Available at: https://doi.org/10.1016/j.jmb.2010.06.017.
Arbely, Eyal et al. (2009) ‘Downhill versus barrier-limited folding of BBL 1: energetic and structural perturbation effects upon protonation of a histidine of unusually low pKa’, Journal of Molecular Biology, 387(4), pp. 986–92. Available at: https://doi.org/10.1016/j.jmb.2008.12.055.
Arbely, Eyal et al. (2009) ‘Downhill versus barrier-limited folding of BBL 1: energetic and structural perturbation effects upon protonation of a histidine of unusually low pKa’, Journal of Molecular Biology, 387(4), pp. 986–92. Available at: https://doi.org/10.1016/j.jmb.2008.12.055.
Neuweiler, Hannes et al. (2009) ‘Downhill versus barrier-limited folding of BBL 2: mechanistic insights from kinetics of folding monitored by independent tryptophan probes’, Journal of Molecular Biology, 387(4), pp. 975–85. Available at: https://doi.org/10.1016/j.jmb.2008.12.056.
Neuweiler, Hannes et al. (2009) ‘Downhill versus barrier-limited folding of BBL 2: mechanistic insights from kinetics of folding monitored by independent tryptophan probes’, Journal of Molecular Biology, 387(4), pp. 975–85. Available at: https://doi.org/10.1016/j.jmb.2008.12.056.
Neuweiler, Hannes et al. (2009) ‘The folding mechanism of BBL: Plasticity of transition-state structure observed within an ultrafast folding protein family’, Journal of Molecular Biology, 390(5), pp. 1060–1073. Available at: https://doi.org/10.1016/j.jmb.2009.05.011.
Neuweiler, Hannes et al. (2009) ‘The folding mechanism of BBL: Plasticity of transition-state structure observed within an ultrafast folding protein family’, Journal of Molecular Biology, 390(5), pp. 1060–1073. Available at: https://doi.org/10.1016/j.jmb.2009.05.011.
Sharpe, Timothy D. et al. (2008) ‘Conservation of transition state structure in fast folding peripheral subunit-binding domains’, Journal of Molecular Biology, 383(1), pp. 224–37. Available at: https://doi.org/10.1016/j.jmb.2008.06.081.
Sharpe, Timothy D. et al. (2008) ‘Conservation of transition state structure in fast folding peripheral subunit-binding domains’, Journal of Molecular Biology, 383(1), pp. 224–37. Available at: https://doi.org/10.1016/j.jmb.2008.06.081.
Ferguson, Neil et al. (2007) ‘Structural biology: analysis of `downhill` protein folding’, Nature, 445(7129), p. E14–5; discussion E17–8. Available at: https://doi.org/10.1038/nature05643.
Ferguson, Neil et al. (2007) ‘Structural biology: analysis of `downhill` protein folding’, Nature, 445(7129), p. E14–5; discussion E17–8. Available at: https://doi.org/10.1038/nature05643.
Huang, Fang et al. (2007) ‘Distinguishing between cooperative and unimodal downhill protein folding’, Proceedings of the National Academy of Sciences of the United States of America, 104(1), pp. 123–7. Available at: https://doi.org/10.1073/pnas.0609717104.
Huang, Fang et al. (2007) ‘Distinguishing between cooperative and unimodal downhill protein folding’, Proceedings of the National Academy of Sciences of the United States of America, 104(1), pp. 123–7. Available at: https://doi.org/10.1073/pnas.0609717104.
Sharpe, Tim et al. (2007) ‘The role of the turn in b-hairpin formation during WW domain folding’, Protein Science, 1, pp. 2233–2239. Available at: https://doi.org/10.1110/ps.073004907.
Sharpe, Tim et al. (2007) ‘The role of the turn in b-hairpin formation during WW domain folding’, Protein Science, 1, pp. 2233–2239. Available at: https://doi.org/10.1110/ps.073004907.
Ferguson, Neil et al. (2006) ‘General structural motifs of amyloid protofilaments’, Proceedings of the National Academy of Sciences of the United States of America, 103(44), pp. 16248–53. Available at: https://doi.org/10.1073/pnas.0607815103.
Ferguson, Neil et al. (2006) ‘General structural motifs of amyloid protofilaments’, Proceedings of the National Academy of Sciences of the United States of America, 103(44), pp. 16248–53. Available at: https://doi.org/10.1073/pnas.0607815103.
Ferguson, Neil et al. (2006) ‘The transition state for folding of a peripheral subunit-binding domain contains robust and ionic-strength dependent characteristics’, Journal of Molecular Biology, 356(5), pp. 1237–1247. Available at: https://doi.org/10.1016/j.jmb.2005.12.016.
Ferguson, Neil et al. (2006) ‘The transition state for folding of a peripheral subunit-binding domain contains robust and ionic-strength dependent characteristics’, Journal of Molecular Biology, 356(5), pp. 1237–1247. Available at: https://doi.org/10.1016/j.jmb.2005.12.016.
Ferguson, Neil et al. (2005) ‘Ultra-fast barrier-limited folding in the peripheral subunit-binding domain family’, Journal of Molecular Biology, 353(2), pp. 427–46. Available at: https://doi.org/10.1016/j.jmb.2005.08.031.
Ferguson, Neil et al. (2005) ‘Ultra-fast barrier-limited folding in the peripheral subunit-binding domain family’, Journal of Molecular Biology, 353(2), pp. 427–46. Available at: https://doi.org/10.1016/j.jmb.2005.08.031.
Ferguson, Neil et al. (2004) ‘One-state downhill versus conventional protein folding’, Journal of Molecular Biology, 344(2), pp. 295–301. Available at: https://doi.org/10.1016/j.jmb.2004.09.069.
Ferguson, Neil et al. (2004) ‘One-state downhill versus conventional protein folding’, Journal of Molecular Biology, 344(2), pp. 295–301. Available at: https://doi.org/10.1016/j.jmb.2004.09.069.
Ferguson, Neil et al. (2003) ‘Rapid amyloid fiber formation from the fast-folding WW domain FBP28’, Proceedings of the National Academy of Sciences of the United States of America, 100(17), pp. 9814–9. Available at: https://doi.org/10.1073/pnas.1333907100.
Ferguson, Neil et al. (2003) ‘Rapid amyloid fiber formation from the fast-folding WW domain FBP28’, Proceedings of the National Academy of Sciences of the United States of America, 100(17), pp. 9814–9. Available at: https://doi.org/10.1073/pnas.1333907100.