Proteomics (Schmidt)
Publications
111 found
Show per page
Ivo Fierro-Monti et al. (2024) ‘Assessment of Data-Independent Acquisition Mass Spectrometry (DIA-MS) for the Identification of Single Amino Acid Variants’, Proteomes , 12(4), p. 33. Available at: https://doi.org/10.3390/proteomes12040033.
Ivo Fierro-Monti et al. (2024) ‘Assessment of Data-Independent Acquisition Mass Spectrometry (DIA-MS) for the Identification of Single Amino Acid Variants’, Proteomes , 12(4), p. 33. Available at: https://doi.org/10.3390/proteomes12040033.
Antelo-Varela, Minia, Bumann, Dirk and Schmidt, Alexander (2024) ‘Optimizing SureQuant for Targeted Peptide Quantification: a Technical Comparison with PRM and SWATH-MS Methods’, Analytical Chemistry, 96(45), pp. 18061–18069. Available at: https://doi.org/10.1021/acs.analchem.4c03622.
Antelo-Varela, Minia, Bumann, Dirk and Schmidt, Alexander (2024) ‘Optimizing SureQuant for Targeted Peptide Quantification: a Technical Comparison with PRM and SWATH-MS Methods’, Analytical Chemistry, 96(45), pp. 18061–18069. Available at: https://doi.org/10.1021/acs.analchem.4c03622.
Mori, Matteo et al. (2024) ‘Author Correction: From coarse to fine: the absolute Escherichia coli proteome under diverse growth conditions’, Molecular Systems Biology [Preprint]. Available at: https://doi.org/10.1038/s44320-024-00062-5.
Mori, Matteo et al. (2024) ‘Author Correction: From coarse to fine: the absolute Escherichia coli proteome under diverse growth conditions’, Molecular Systems Biology [Preprint]. Available at: https://doi.org/10.1038/s44320-024-00062-5.
Mittal, Nitish et al. (2024) ‘Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice’, npj Regenerative Medicine, 9(1). Available at: https://doi.org/10.1038/s41536-024-00369-9.
Mittal, Nitish et al. (2024) ‘Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice’, npj Regenerative Medicine, 9(1). Available at: https://doi.org/10.1038/s41536-024-00369-9.
Banerjee, Arka et al. (2024) ‘Ribosomal protein RPL39L is an efficiency factor in the cotranslational folding of a subset of proteins with alpha helical domains’, Nucleic Acids Research, 52(15), pp. 9028–9048. Available at: https://doi.org/10.1093/nar/gkae630.
Banerjee, Arka et al. (2024) ‘Ribosomal protein RPL39L is an efficiency factor in the cotranslational folding of a subset of proteins with alpha helical domains’, Nucleic Acids Research, 52(15), pp. 9028–9048. Available at: https://doi.org/10.1093/nar/gkae630.
Ataman, Meric et al. (2024) ‘Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles’, Communications Biology, 7(1). Available at: https://doi.org/10.1038/s42003-024-06679-4.
Ataman, Meric et al. (2024) ‘Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles’, Communications Biology, 7(1). Available at: https://doi.org/10.1038/s42003-024-06679-4.
Szentgyörgyi, Viktória et al. (2024) ‘Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis’, Journal of cell biology, 223(11). Available at: https://doi.org/10.1083/jcb.202401167.
Szentgyörgyi, Viktória et al. (2024) ‘Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis’, Journal of cell biology, 223(11). Available at: https://doi.org/10.1083/jcb.202401167.
Franziscus, Curdin A. et al. (2024) ‘The protein tyrosine phosphatase PPH-7 is required for fertility and embryonic development in C. elegans at elevated temperatures’, FEBS Open Bio, 14(3), pp. 390–409. Available at: https://doi.org/10.1002/2211-5463.13771.
Franziscus, Curdin A. et al. (2024) ‘The protein tyrosine phosphatase PPH-7 is required for fertility and embryonic development in C. elegans at elevated temperatures’, FEBS Open Bio, 14(3), pp. 390–409. Available at: https://doi.org/10.1002/2211-5463.13771.
Jauslin, Werner Theodor et al. (2024) ‘Correction: A high affinity pan-PI3K binding module supports selective targeted protein degradation of PI3Kα’, Chemical Science, 15(4), pp. 1520–1520. Available at: https://doi.org/10.1039/d4sc90011a.
Jauslin, Werner Theodor et al. (2024) ‘Correction: A high affinity pan-PI3K binding module supports selective targeted protein degradation of PI3Kα’, Chemical Science, 15(4), pp. 1520–1520. Available at: https://doi.org/10.1039/d4sc90011a.
Kyriakakis, Emmanouil et al. (2024) ‘Bacterial RNA promotes proteostasis through inter-tissue communication in C. elegans’, BioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.03.13.584467.
Kyriakakis, Emmanouil et al. (2024) ‘Bacterial RNA promotes proteostasis through inter-tissue communication in C. elegans’, BioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.03.13.584467.
Zmyslia, Mariia et al. (2023) ‘Deep Proteomic Investigation of Metabolic Adaptation in Mycobacteria under Different Growth Conditions’, Proteomes, 11(4), p. 39. Available at: https://doi.org/10.3390/proteomes11040039.
Zmyslia, Mariia et al. (2023) ‘Deep Proteomic Investigation of Metabolic Adaptation in Mycobacteria under Different Growth Conditions’, Proteomes, 11(4), p. 39. Available at: https://doi.org/10.3390/proteomes11040039.
Chaaban, Mansoor et al. (2023) ‘Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification’, Biomaterials, 303. Available at: https://doi.org/10.1016/j.biomaterials.2023.122387.
Chaaban, Mansoor et al. (2023) ‘Harnessing human adipose-derived stromal cell chondrogenesis in vitro for enhanced endochondral ossification’, Biomaterials, 303. Available at: https://doi.org/10.1016/j.biomaterials.2023.122387.
Lai, Wei-Yun et al. (2023) ‘ALK signalling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.30.555570.
Lai, Wei-Yun et al. (2023) ‘ALK signalling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.30.555570.
Hübers, Corinne et al. (2023) ‘Primary tumor-derived systemic nANGPTL4 inhibits metastasis’, Journal of Experimental Medicine, 220(1), pp. 1–18. Available at: https://doi.org/10.1084/jem.20202595.
Hübers, Corinne et al. (2023) ‘Primary tumor-derived systemic nANGPTL4 inhibits metastasis’, Journal of Experimental Medicine, 220(1), pp. 1–18. Available at: https://doi.org/10.1084/jem.20202595.
Thommen, Basil T. et al. (2023) ‘Genetic validation of PfFKBP35 as an antimalarial drug target’, eLife, 12. Available at: https://doi.org/10.7554/elife.86975.
Thommen, Basil T. et al. (2023) ‘Genetic validation of PfFKBP35 as an antimalarial drug target’, eLife, 12. Available at: https://doi.org/10.7554/elife.86975.
Adaixo, Ricardo et al. (2022) ‘Cryo-EM structure of native human thyroglobulin’, Nature communications, 13(1), p. 61. Available at: https://doi.org/10.1038/s41467-021-27693-8.
Adaixo, Ricardo et al. (2022) ‘Cryo-EM structure of native human thyroglobulin’, Nature communications, 13(1), p. 61. Available at: https://doi.org/10.1038/s41467-021-27693-8.
Eckhardt, Jan et al. (2022) ‘Quantitative proteomic analysis of skeletal muscles from wild type and transgenic mice carrying recessive Ryr1 mutations linked to congenital myopathies’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2022.09.26.509474.
Eckhardt, Jan et al. (2022) ‘Quantitative proteomic analysis of skeletal muscles from wild type and transgenic mice carrying recessive Ryr1 mutations linked to congenital myopathies’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2022.09.26.509474.
Fröhlich, Klemens et al. (2022) ‘Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity’, Nature Communications, 13(1), p. 2622. Available at: https://doi.org/10.1038/s41467-022-30094-0.
Fröhlich, Klemens et al. (2022) ‘Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity’, Nature Communications, 13(1), p. 2622. Available at: https://doi.org/10.1038/s41467-022-30094-0.
Ghosh, Souvik et al. (2022) ‘CFIm-mediated alternative polyadenylation remodels cellular signaling and miRNA biogenesis’, Nucleic Acids Research, 50(6), pp. 3096–3114. Available at: https://doi.org/10.1093/nar/gkac114.
Ghosh, Souvik et al. (2022) ‘CFIm-mediated alternative polyadenylation remodels cellular signaling and miRNA biogenesis’, Nucleic Acids Research, 50(6), pp. 3096–3114. Available at: https://doi.org/10.1093/nar/gkac114.
Haas, Thomas M. et al. (2022) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, Angewandte Chemie International Edition, 61(22), p. e202201731. Available at: https://doi.org/10.1002/anie.202201731.
Haas, Thomas M. et al. (2022) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, Angewandte Chemie International Edition, 61(22), p. e202201731. Available at: https://doi.org/10.1002/anie.202201731.
Hauser, David et al. (2022) ‘Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition’, Neuron, 110(13), pp. 2094–2109.e10. Available at: https://doi.org/10.1016/j.neuron.2022.04.017.
Hauser, David et al. (2022) ‘Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition’, Neuron, 110(13), pp. 2094–2109.e10. Available at: https://doi.org/10.1016/j.neuron.2022.04.017.
Litsios, Athanasios et al. (2022) ‘The timing of Start is determined primarily by increased synthesis of the Cln3 activator rather than dilution of the Whi5 inhibitor’, Molecular Biology of the Cell, 33(5), p. rp2. Available at: https://doi.org/10.1091/mbc.e21-07-0349.
Litsios, Athanasios et al. (2022) ‘The timing of Start is determined primarily by increased synthesis of the Cln3 activator rather than dilution of the Whi5 inhibitor’, Molecular Biology of the Cell, 33(5), p. rp2. Available at: https://doi.org/10.1091/mbc.e21-07-0349.
Mele, Valentina et al. (2022) ‘Identification of TPM2 and CNN1 as Novel Prognostic Markers in Functionally Characterized Human Colon Cancer-Associated Stromal Cells’, Cancers, 14(8), pp. 1–12. Available at: https://doi.org/10.3390/cancers14082024.
Mele, Valentina et al. (2022) ‘Identification of TPM2 and CNN1 as Novel Prognostic Markers in Functionally Characterized Human Colon Cancer-Associated Stromal Cells’, Cancers, 14(8), pp. 1–12. Available at: https://doi.org/10.3390/cancers14082024.
Ng, Charlotte K. Y. et al. (2022) ‘Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages’, Nature Communications, 13(1), p. 2436. Available at: https://doi.org/10.1038/s41467-022-29960-8.
Ng, Charlotte K. Y. et al. (2022) ‘Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages’, Nature Communications, 13(1), p. 2436. Available at: https://doi.org/10.1038/s41467-022-29960-8.
Varela, Minia Antelo and Schmidt, Alexander (2022) ‘The Emerging Potential of Advanced Targeted Mass Spectrometry to Become a Routine Tool for Protein Quantification in Biomedical Research’, Chimia, 76(1-2), pp. 81–89. Available at: https://doi.org/10.2533/chimia.2022.81.
Varela, Minia Antelo and Schmidt, Alexander (2022) ‘The Emerging Potential of Advanced Targeted Mass Spectrometry to Become a Routine Tool for Protein Quantification in Biomedical Research’, Chimia, 76(1-2), pp. 81–89. Available at: https://doi.org/10.2533/chimia.2022.81.
Haas, Thomas M. et al. (2021) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.12.15.472736.
Haas, Thomas M. et al. (2021) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.12.15.472736.
Burigotto, Matteo et al. (2021) ‘Centriolar distal appendages activate the centrosome-PIDDosome-p53 signalling axis via ANKRD26’, The EMBO journal, 40(4), p. e104844. Available at: https://doi.org/10.15252/embj.2020104844.
Burigotto, Matteo et al. (2021) ‘Centriolar distal appendages activate the centrosome-PIDDosome-p53 signalling axis via ANKRD26’, The EMBO journal, 40(4), p. e104844. Available at: https://doi.org/10.15252/embj.2020104844.
Correia, Ana Luísa et al. (2021) ‘Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy’, Nature, 594(7864), pp. 566–571. Available at: https://doi.org/10.1038/s41586-021-03614-z.
Correia, Ana Luísa et al. (2021) ‘Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy’, Nature, 594(7864), pp. 566–571. Available at: https://doi.org/10.1038/s41586-021-03614-z.
Donato, Cinzia et al. (2021) ‘Mass spectrometry analysis of circulating breast cancer cells from a Xenograft mouse model’, STAR Protocols, 2(2), p. 100480. Available at: https://doi.org/10.1016/j.xpro.2021.100480.
Donato, Cinzia et al. (2021) ‘Mass spectrometry analysis of circulating breast cancer cells from a Xenograft mouse model’, STAR Protocols, 2(2), p. 100480. Available at: https://doi.org/10.1016/j.xpro.2021.100480.
Mori, Matteo et al. (2021) ‘From coarse to fine: the absolute Escherichia coli proteome under diverse growth conditions’, Molecular systems biology, 17(5), p. e9536. Available at: https://doi.org/10.15252/msb.20209536.
Mori, Matteo et al. (2021) ‘From coarse to fine: the absolute Escherichia coli proteome under diverse growth conditions’, Molecular systems biology, 17(5), p. e9536. Available at: https://doi.org/10.15252/msb.20209536.
Pérez-Schindler, Joaquín et al. (2021) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’, Proceedings of the National Academy of Sciences of the United States of America, 118(36), p. e2105951118. Available at: https://doi.org/10.1073/pnas.2105951118.
Pérez-Schindler, Joaquín et al. (2021) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’, Proceedings of the National Academy of Sciences of the United States of America, 118(36), p. e2105951118. Available at: https://doi.org/10.1073/pnas.2105951118.
Striednig, Bianca et al. (2021) ‘Quorum sensing governs a transmissive Legionella subpopulation at the pathogen vacuole periphery’, EMBO reports, 22(9), p. e52972. Available at: https://doi.org/10.15252/embr.202152972.
Striednig, Bianca et al. (2021) ‘Quorum sensing governs a transmissive Legionella subpopulation at the pathogen vacuole periphery’, EMBO reports, 22(9), p. e52972. Available at: https://doi.org/10.15252/embr.202152972.
Manfredi, Pablo et al. (2021) ‘Defining Proteomic Signatures to Predict Multidrug Persistence in Pseudomonas aeruginosa’, in Verstraeten, Natalie; Michiels, Jan (ed.) Bacterial Persistence: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 161–175. Available at: https://doi.org/10.1007/978-1-0716-1621-5_11.
Manfredi, Pablo et al. (2021) ‘Defining Proteomic Signatures to Predict Multidrug Persistence in Pseudomonas aeruginosa’, in Verstraeten, Natalie; Michiels, Jan (ed.) Bacterial Persistence: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 161–175. Available at: https://doi.org/10.1007/978-1-0716-1621-5_11.
Burmann, Björn M. et al. (2020) ‘Regulation of α-synuclein by chaperones in mammalian cells’, Nature, 577(7788), pp. 127–132. Available at: https://doi.org/10.1038/s41586-019-1808-9.
Burmann, Björn M. et al. (2020) ‘Regulation of α-synuclein by chaperones in mammalian cells’, Nature, 577(7788), pp. 127–132. Available at: https://doi.org/10.1038/s41586-019-1808-9.
Fabrice, Tohnyui Ndinyanka et al. (2020) ‘Interactome and F-Actin Interaction Analysis of Dictyostelium discoideum Coronin A’, International journal of molecular sciences, 21(4), p. 1469. Available at: https://doi.org/10.3390/ijms21041469.
Fabrice, Tohnyui Ndinyanka et al. (2020) ‘Interactome and F-Actin Interaction Analysis of Dictyostelium discoideum Coronin A’, International journal of molecular sciences, 21(4), p. 1469. Available at: https://doi.org/10.3390/ijms21041469.
Ghosh, Souvik et al. (2020) ‘Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation’, The EMBO Journal, 39(18), p. e103922. Available at: https://doi.org/10.15252/embj.2019103922.
Ghosh, Souvik et al. (2020) ‘Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation’, The EMBO Journal, 39(18), p. e103922. Available at: https://doi.org/10.15252/embj.2019103922.
Guimaraes, Joao C. et al. (2020) ‘A rare codon-based translational program of cell proliferation’, Genome Biology, 21(1), p. 44. Available at: https://doi.org/10.1186/s13059-020-1943-5.
Guimaraes, Joao C. et al. (2020) ‘A rare codon-based translational program of cell proliferation’, Genome Biology, 21(1), p. 44. Available at: https://doi.org/10.1186/s13059-020-1943-5.
Ham, Alexander S. et al. (2020) ‘mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice’, Journal of Cachexia, Sarcopenia and Muscle, 11(1), pp. 259–273. Available at: https://doi.org/10.1002/jcsm.12505.
Ham, Alexander S. et al. (2020) ‘mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice’, Journal of Cachexia, Sarcopenia and Muscle, 11(1), pp. 259–273. Available at: https://doi.org/10.1002/jcsm.12505.
Kohl, Bastian et al. (2020) ‘Protocol for High-Yield Production of Photo-Leucine-Labeled Proteins in Escherichia coli’, Journal of Proteome Research, 19(8), pp. 3100–3108. Available at: https://doi.org/10.1021/acs.jproteome.0c00105.
Kohl, Bastian et al. (2020) ‘Protocol for High-Yield Production of Photo-Leucine-Labeled Proteins in Escherichia coli’, Journal of Proteome Research, 19(8), pp. 3100–3108. Available at: https://doi.org/10.1021/acs.jproteome.0c00105.
Prautsch, Katharina M. et al. (2020) ‘Modulation of Human Adipose Stem Cells” Neurotrophic Capacity Using a Variety of Growth Factors for Neural Tissue Engineering Applications: Axonal Growth, Transcriptional, and Phosphoproteomic Analyses In Vitro’, Cells, 9(9), pp. 1–21. Available at: https://doi.org/10.3390/cells9091939.
Prautsch, Katharina M. et al. (2020) ‘Modulation of Human Adipose Stem Cells” Neurotrophic Capacity Using a Variety of Growth Factors for Neural Tissue Engineering Applications: Axonal Growth, Transcriptional, and Phosphoproteomic Analyses In Vitro’, Cells, 9(9), pp. 1–21. Available at: https://doi.org/10.3390/cells9091939.
Schmidt, Alexander et al. (2020) ‘Immunoaffinity Targeted Mass Spectrometry Analysis of Human Plasma Samples Reveals an Imbalance of Active and Inactive CXCL10 in Primary Sjögren’s Syndrome Disease Patients’, Journal of proteome research, 19(10), pp. 4196–4209. Available at: https://doi.org/10.1021/acs.jproteome.0c00494.
Schmidt, Alexander et al. (2020) ‘Immunoaffinity Targeted Mass Spectrometry Analysis of Human Plasma Samples Reveals an Imbalance of Active and Inactive CXCL10 in Primary Sjögren’s Syndrome Disease Patients’, Journal of proteome research, 19(10), pp. 4196–4209. Available at: https://doi.org/10.1021/acs.jproteome.0c00494.
Dreier, Roland Felix et al. (2019) ‘Global Ion Suppression Limits the Potential of Mass Spectrometry Based Phosphoproteomics’, Journal of proteome research, 18(1), pp. 493–507. Available at: https://doi.org/10.1021/acs.jproteome.8b00812.
Dreier, Roland Felix et al. (2019) ‘Global Ion Suppression Limits the Potential of Mass Spectrometry Based Phosphoproteomics’, Journal of proteome research, 18(1), pp. 493–507. Available at: https://doi.org/10.1021/acs.jproteome.8b00812.
Jourdan, Joëlle et al. (2019) ‘Stochastic protein alkylation by antimalarial peroxides’, ACS Infectious Diseases, 5(12), pp. 2067–2075. Available at: https://doi.org/10.1021/acsinfecdis.9b00264.
Jourdan, Joëlle et al. (2019) ‘Stochastic protein alkylation by antimalarial peroxides’, ACS Infectious Diseases, 5(12), pp. 2067–2075. Available at: https://doi.org/10.1021/acsinfecdis.9b00264.
Lin, Lin et al. (2019) ‘Abundance of bacterial Type VI secretion system components measured by targeted proteomics’, Nature Communications, 10(1), p. 2584. Available at: https://doi.org/10.1038/s41467-019-10466-9.
Lin, Lin et al. (2019) ‘Abundance of bacterial Type VI secretion system components measured by targeted proteomics’, Nature Communications, 10(1), p. 2584. Available at: https://doi.org/10.1038/s41467-019-10466-9.
Litsios, Athanasios et al. (2019) ‘Differential scaling between G1 protein production and cell size dynamics promotes commitment to the cell division cycle in budding yeast’, Nature cell biology, 21(11), pp. 1382–1392. Available at: https://doi.org/10.1038/s41556-019-0413-3.
Litsios, Athanasios et al. (2019) ‘Differential scaling between G1 protein production and cell size dynamics promotes commitment to the cell division cycle in budding yeast’, Nature cell biology, 21(11), pp. 1382–1392. Available at: https://doi.org/10.1038/s41556-019-0413-3.
Monteiro, Francisca et al. (2019) ‘Measuring glycolytic flux in single yeast cells with an orthogonal synthetic biosensor’, Molecular systems biology, 15(12), p. e9071. Available at: https://doi.org/10.15252/msb.20199071.
Monteiro, Francisca et al. (2019) ‘Measuring glycolytic flux in single yeast cells with an orthogonal synthetic biosensor’, Molecular systems biology, 15(12), p. e9071. Available at: https://doi.org/10.15252/msb.20199071.
Personnic, Nicolas et al. (2019) ‘Quorum sensing modulates the formation of virulent Legionella persisters within infected cells’, Nature communications, 10(1), p. 5216. Available at: https://doi.org/10.1038/s41467-019-13021-8.
Personnic, Nicolas et al. (2019) ‘Quorum sensing modulates the formation of virulent Legionella persisters within infected cells’, Nature communications, 10(1), p. 5216. Available at: https://doi.org/10.1038/s41467-019-13021-8.
Riba, Andrea et al. (2019) ‘Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates’, Proceedings of the National Academy of Sciences, 116(30), pp. 15023–15032. Available at: https://doi.org/10.1073/pnas.1817299116.
Riba, Andrea et al. (2019) ‘Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates’, Proceedings of the National Academy of Sciences, 116(30), pp. 15023–15032. Available at: https://doi.org/10.1073/pnas.1817299116.
Gumienny, Rafal et al. (2017) ‘High-throughput identification of C/D box snoRNA targets with CLIP and RiboMeth-seq’, Nucleic Acids Research, 45(5), pp. 2341–2353. Available at: https://doi.org/10.1093/nar/gkw1321.
Gumienny, Rafal et al. (2017) ‘High-throughput identification of C/D box snoRNA targets with CLIP and RiboMeth-seq’, Nucleic Acids Research, 45(5), pp. 2341–2353. Available at: https://doi.org/10.1093/nar/gkw1321.
Mittal, Nitish et al. (2017) ‘The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan’, Nature Communications, 8(457), pp. 1–12. Available at: https://doi.org/10.1038/s41467-017-00539-y.
Mittal, Nitish et al. (2017) ‘The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan’, Nature Communications, 8(457), pp. 1–12. Available at: https://doi.org/10.1038/s41467-017-00539-y.
Ahrné, Erik et al. (2016) ‘Evaluation and Improvement of Quantification Accuracy in Isobaric Mass Tag-Based Protein Quantification Experiments’, Journal of Proteome Research, 15(8), pp. 2537–47. Available at: https://doi.org/10.1021/acs.jproteome.6b00066.
Ahrné, Erik et al. (2016) ‘Evaluation and Improvement of Quantification Accuracy in Isobaric Mass Tag-Based Protein Quantification Experiments’, Journal of Proteome Research, 15(8), pp. 2537–47. Available at: https://doi.org/10.1021/acs.jproteome.6b00066.
Oettinghaus, B et al. (2016) ‘Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons’, Cell death and differentiation, 23(1), pp. 18–28. Available at: https://doi.org/10.1038/cdd.2015.39.
Oettinghaus, B et al. (2016) ‘Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons’, Cell death and differentiation, 23(1), pp. 18–28. Available at: https://doi.org/10.1038/cdd.2015.39.
Radzikowski, Jakub Leszek et al. (2016) ‘Bacterial persistence is an active σS stress response to metabolic flux limitation’, Molecular Systems Biology, 12(9), p. 882. Available at: https://doi.org/10.15252/msb.20166998.
Radzikowski, Jakub Leszek et al. (2016) ‘Bacterial persistence is an active σS stress response to metabolic flux limitation’, Molecular Systems Biology, 12(9), p. 882. Available at: https://doi.org/10.15252/msb.20166998.
Schmidt, Alexander et al. (2016) ‘The quantitative and condition-dependent Escherichia coli proteome’, Nature biotechnology, 34(1), pp. 104–110. Available at: https://doi.org/10.1038/nbt.3418.
Schmidt, Alexander et al. (2016) ‘The quantitative and condition-dependent Escherichia coli proteome’, Nature biotechnology, 34(1), pp. 104–110. Available at: https://doi.org/10.1038/nbt.3418.
Ahrné, Erik et al. (2015) ‘Exploiting the multiplexing capabilities of tandem mass tags for high-throughput estimation of cellular protein abundances by mass spectrometry’, Methods, 85, pp. 100–7. Available at: https://doi.org/10.1016/j.ymeth.2015.04.032.
Ahrné, Erik et al. (2015) ‘Exploiting the multiplexing capabilities of tandem mass tags for high-throughput estimation of cellular protein abundances by mass spectrometry’, Methods, 85, pp. 100–7. Available at: https://doi.org/10.1016/j.ymeth.2015.04.032.
Glatter, Timo, Ahrné, Erik and Schmidt, Alexander (2015) ‘Comparison of Different Sample Preparation Protocols Reveals Lysis Buffer-Specific Extraction Biases in Gram-Negative Bacteria and Human Cells’, Journal of Proteome Research, 14(11), pp. 4472–85. Available at: https://doi.org/10.1021/acs.jproteome.5b00654.
Glatter, Timo, Ahrné, Erik and Schmidt, Alexander (2015) ‘Comparison of Different Sample Preparation Protocols Reveals Lysis Buffer-Specific Extraction Biases in Gram-Negative Bacteria and Human Cells’, Journal of Proteome Research, 14(11), pp. 4472–85. Available at: https://doi.org/10.1021/acs.jproteome.5b00654.
Janssens, Georges E et al. (2015) ‘Protein biogenesis machinery is a driver of replicative aging in yeast’, eLife, 4, p. e08527. Available at: https://doi.org/10.7554/elife.08527.
Janssens, Georges E et al. (2015) ‘Protein biogenesis machinery is a driver of replicative aging in yeast’, eLife, 4, p. e08527. Available at: https://doi.org/10.7554/elife.08527.
Sjostrom, Martin et al. (2015) ‘A Combined Shotgun and Targeted Mass Spectrometry Strategy for Breast Cancer Biomarker Discovery’, Journal of Proteome Research, 14(7), pp. 2807–2818. Available at: https://doi.org/10.1021/acs.jproteome.5b00315.
Sjostrom, Martin et al. (2015) ‘A Combined Shotgun and Targeted Mass Spectrometry Strategy for Breast Cancer Biomarker Discovery’, Journal of Proteome Research, 14(7), pp. 2807–2818. Available at: https://doi.org/10.1021/acs.jproteome.5b00315.
Bauer, Manuel et al. (2014) ‘Evaluation of data-dependent and -independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites’, Journal of proteome research, 13(12), pp. 5973–88. Available at: https://doi.org/10.1021/pr500860c.
Bauer, Manuel et al. (2014) ‘Evaluation of data-dependent and -independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites’, Journal of proteome research, 13(12), pp. 5973–88. Available at: https://doi.org/10.1021/pr500860c.
Clément-Ziza, Mathieu et al. (2014) ‘Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast’, Molecular systems biology, 10(11), p. 764. Available at: https://doi.org/10.15252/msb.20145123.
Clément-Ziza, Mathieu et al. (2014) ‘Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast’, Molecular systems biology, 10(11), p. 764. Available at: https://doi.org/10.15252/msb.20145123.
Fengos, Georgios et al. (2014) ‘Spatial proteomic and phospho-proteomic organization in three prototypical cell migration modes’, Proteome science, 12, p. 23. Available at: https://doi.org/10.1186/1477-5956-12-23.
Fengos, Georgios et al. (2014) ‘Spatial proteomic and phospho-proteomic organization in three prototypical cell migration modes’, Proteome science, 12, p. 23. Available at: https://doi.org/10.1186/1477-5956-12-23.
Pieles, Kathrin et al. (2014) ‘An experimental strategy for the identification of AMPylation targets from complex protein samples’, Proteomics, 14(9), pp. 1048–1052. Available at: https://doi.org/10.1002/pmic.201300470.
Pieles, Kathrin et al. (2014) ‘An experimental strategy for the identification of AMPylation targets from complex protein samples’, Proteomics, 14(9), pp. 1048–1052. Available at: https://doi.org/10.1002/pmic.201300470.
Ahrné, Erik et al. (2013) ‘Critical assessment of proteome-wide label-free absolute abundance estimation strategies’, Proteomics, 13(17), pp. 2567–78. Available at: https://doi.org/10.1002/pmic.201300135.
Ahrné, Erik et al. (2013) ‘Critical assessment of proteome-wide label-free absolute abundance estimation strategies’, Proteomics, 13(17), pp. 2567–78. Available at: https://doi.org/10.1002/pmic.201300135.
Berti, Matteo et al. (2013) ‘Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition.’, Nature structural & molecular biology, 20(3), pp. 347–54. Available at: https://doi.org/10.1038/nsmb.2501.
Berti, Matteo et al. (2013) ‘Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition.’, Nature structural & molecular biology, 20(3), pp. 347–54. Available at: https://doi.org/10.1038/nsmb.2501.
Gunaratne, Jayantha et al. (2013) ‘Extensive mass spectrometry-based analysis of the fission yeast proteome : the Schizosaccharomyces pombe Peptide Atlas’, Molecular & cellular proteomics, 12(6), pp. 1741–51. Available at: https://doi.org/10.1074/mcp.m112.023754.
Gunaratne, Jayantha et al. (2013) ‘Extensive mass spectrometry-based analysis of the fission yeast proteome : the Schizosaccharomyces pombe Peptide Atlas’, Molecular & cellular proteomics, 12(6), pp. 1741–51. Available at: https://doi.org/10.1074/mcp.m112.023754.
Kochanowski, Karl et al. (2013) ‘Functioning of a metabolic flux sensor in Escherichia coli’, Proceedings of the National Academy of Sciences of the United States of America, 110(3), pp. 1130–5. Available at: https://doi.org/10.1073/pnas.1202582110.
Kochanowski, Karl et al. (2013) ‘Functioning of a metabolic flux sensor in Escherichia coli’, Proceedings of the National Academy of Sciences of the United States of America, 110(3), pp. 1130–5. Available at: https://doi.org/10.1073/pnas.1202582110.
Lehtinen, Sonja et al. (2013) ‘Stress induces remodelling of yeast interaction and co-expression networks’, Molecular biosystems, 9(7), pp. 1697–707. Available at: https://doi.org/10.1039/c3mb25548d.
Lehtinen, Sonja et al. (2013) ‘Stress induces remodelling of yeast interaction and co-expression networks’, Molecular biosystems, 9(7), pp. 1697–707. Available at: https://doi.org/10.1039/c3mb25548d.
Picotti, Paola et al. (2013) ‘A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis’, Nature, 494(7436), pp. 266–70. Available at: https://doi.org/10.1038/nature11835.
Picotti, Paola et al. (2013) ‘A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis’, Nature, 494(7436), pp. 266–70. Available at: https://doi.org/10.1038/nature11835.
Québatte, Maxime et al. (2013) ‘Dual input control : activation of the Bartonella henselae VirB/D4 type IV secretion system by the stringent sigma factor RpoH1 and the BatR/BatS two-component system’, Molecular microbiology, 90(4), pp. 756–75. Available at: https://doi.org/10.1111/mmi.12396.
Québatte, Maxime et al. (2013) ‘Dual input control : activation of the Bartonella henselae VirB/D4 type IV secretion system by the stringent sigma factor RpoH1 and the BatR/BatS two-component system’, Molecular microbiology, 90(4), pp. 756–75. Available at: https://doi.org/10.1111/mmi.12396.
Stützer, Ina et al. (2013) ‘Systematic proteomic analysis identifies beta-site amyloid precursor protein cleaving enzyme 2 and 1 (BACE2 and BACE1) substrates in pancreatic beta-cells’, Journal of biological chemistry, 288(15), pp. 10536–47. Available at: https://doi.org/10.1074/jbc.m112.444703.
Stützer, Ina et al. (2013) ‘Systematic proteomic analysis identifies beta-site amyloid precursor protein cleaving enzyme 2 and 1 (BACE2 and BACE1) substrates in pancreatic beta-cells’, Journal of biological chemistry, 288(15), pp. 10536–47. Available at: https://doi.org/10.1074/jbc.m112.444703.
von Meyenn, Ferdinand et al. (2013) ‘Glucagon-Induced Acetylation of Foxa2 Regulates Hepatic Lipid Metabolism’, Cell metabolism, 17(3), pp. 436–47. Available at: https://doi.org/10.1016/j.cmet.2013.01.014.
von Meyenn, Ferdinand et al. (2013) ‘Glucagon-Induced Acetylation of Foxa2 Regulates Hepatic Lipid Metabolism’, Cell metabolism, 17(3), pp. 436–47. Available at: https://doi.org/10.1016/j.cmet.2013.01.014.
Wong, Catherine C L et al. (2013) ‘Proteomics of Pyrococcus furiosus (Pfu) : Identification of Extracted Proteins by Three Independent Methods’, Journal of Proteome Research, 12(2), pp. 763–70. Available at: https://doi.org/10.1021/pr300840j.
Wong, Catherine C L et al. (2013) ‘Proteomics of Pyrococcus furiosus (Pfu) : Identification of Extracted Proteins by Three Independent Methods’, Journal of Proteome Research, 12(2), pp. 763–70. Available at: https://doi.org/10.1021/pr300840j.
Danzer, Carsten et al. (2012) ‘Comprehensive description of the N-glycoproteome of mouse pancreatic ?-cells and human islets’, Journal of Proteome Research, 11(3), pp. 1598–608. Available at: https://doi.org/10.1021/pr2007895.
Danzer, Carsten et al. (2012) ‘Comprehensive description of the N-glycoproteome of mouse pancreatic ?-cells and human islets’, Journal of Proteome Research, 11(3), pp. 1598–608. Available at: https://doi.org/10.1021/pr2007895.
Glatter, Timo et al. (2012) ‘Large-Scale Quantitative Assessment of Different In-Solution Protein Digestion Protocols Reveals Superior Cleavage Efficiency of Tandem Lys-C/Trypsin Proteolysis over Trypsin Digestion’, Journal of proteome research, 11(11), pp. 5145–5156. Available at: https://doi.org/10.1021/pr300273g.
Glatter, Timo et al. (2012) ‘Large-Scale Quantitative Assessment of Different In-Solution Protein Digestion Protocols Reveals Superior Cleavage Efficiency of Tandem Lys-C/Trypsin Proteolysis over Trypsin Digestion’, Journal of proteome research, 11(11), pp. 5145–5156. Available at: https://doi.org/10.1021/pr300273g.
Ludwig, Christina et al. (2012) ‘Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry’, Molecular and Cellular Proteomics, 11(3), p. M111.013987. Available at: https://doi.org/10.1074/mcp.m111.013987.
Ludwig, Christina et al. (2012) ‘Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry’, Molecular and Cellular Proteomics, 11(3), p. M111.013987. Available at: https://doi.org/10.1074/mcp.m111.013987.
Marguerat, Samuel et al. (2012) ‘Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells.’, Cell, 151(3), pp. 671–83. Available at: https://doi.org/10.1016/j.cell.2012.09.019.
Marguerat, Samuel et al. (2012) ‘Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells.’, Cell, 151(3), pp. 671–83. Available at: https://doi.org/10.1016/j.cell.2012.09.019.
Nesper, J. et al. (2012) ‘A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins’, Journal of Proteomics, 75(15), pp. 4874–4878. Available at: https://doi.org/10.1016/j.jprot.2012.05.033.
Nesper, J. et al. (2012) ‘A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins’, Journal of Proteomics, 75(15), pp. 4874–4878. Available at: https://doi.org/10.1016/j.jprot.2012.05.033.
Beck, Martin et al. (2011) ‘The quantitative proteome of a human cell line’, Molecular Systems Biology, 7, p. 549. Available at: https://doi.org/10.1038/msb.2011.82.
Beck, Martin et al. (2011) ‘The quantitative proteome of a human cell line’, Molecular Systems Biology, 7, p. 549. Available at: https://doi.org/10.1038/msb.2011.82.
Esterházy, Daria et al. (2011) ‘Bace2 Is a Beta-Cell-Enriched Protease that Regulates Pancreatic Beta-Cell Function and Mass’, Cell Metabolism, 14(3), pp. 365–77. Available at: https://doi.org/10.1016/j.cmet.2011.06.018.
Esterházy, Daria et al. (2011) ‘Bace2 Is a Beta-Cell-Enriched Protease that Regulates Pancreatic Beta-Cell Function and Mass’, Cell Metabolism, 14(3), pp. 365–77. Available at: https://doi.org/10.1016/j.cmet.2011.06.018.
Glatter, Timo et al. (2011) ‘Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome’, Molecular Systems Biology, 7, p. 547. Available at: https://doi.org/10.1038/msb.2011.79.
Glatter, Timo et al. (2011) ‘Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome’, Molecular Systems Biology, 7, p. 547. Available at: https://doi.org/10.1038/msb.2011.79.
Higdon, Roger et al. (2011) ‘IPM: An integrated protein model for false discovery rate estimation and identification in high-throughput proteomics’, Journal of Proteomics, 75(1), pp. 116–21. Available at: https://doi.org/10.1016/j.jprot.2011.06.003.
Higdon, Roger et al. (2011) ‘IPM: An integrated protein model for false discovery rate estimation and identification in high-throughput proteomics’, Journal of Proteomics, 75(1), pp. 116–21. Available at: https://doi.org/10.1016/j.jprot.2011.06.003.
Iijima, Takatoshi et al. (2011) ‘SAM68 regulates neuronal activity-dependent alternative splicing of Neurexin-1’, Cell, 147(7), pp. 1601–14. Available at: https://doi.org/10.1016/j.cell.2011.11.028.
Iijima, Takatoshi et al. (2011) ‘SAM68 regulates neuronal activity-dependent alternative splicing of Neurexin-1’, Cell, 147(7), pp. 1601–14. Available at: https://doi.org/10.1016/j.cell.2011.11.028.
Maier, Tobias et al. (2011) ‘Quantification of mRNA and protein and integration with protein turnover in a bacterium’, Molecular Systems Biology, 7, p. 511. Available at: https://doi.org/10.1038/msb.2011.38.
Maier, Tobias et al. (2011) ‘Quantification of mRNA and protein and integration with protein turnover in a bacterium’, Molecular Systems Biology, 7, p. 511. Available at: https://doi.org/10.1038/msb.2011.38.
Santamaria, Anna et al. (2011) ‘The Plk1-dependent phosphoproteome of the early mitotic spindle’, Molecular & cellular proteomics, 10(1), p. M110.004457. Available at: https://doi.org/10.1074/mcp.m110.004457.
Santamaria, Anna et al. (2011) ‘The Plk1-dependent phosphoproteome of the early mitotic spindle’, Molecular & cellular proteomics, 10(1), p. M110.004457. Available at: https://doi.org/10.1074/mcp.m110.004457.
Schmidt, Alexander et al. (2011) ‘Absolute quantification of microbial proteomes at different states by directed mass spectrometry’, Molecular Systems Biology, 7, p. 510. Available at: https://doi.org/10.1038/msb.2011.37.
Schmidt, Alexander et al. (2011) ‘Absolute quantification of microbial proteomes at different states by directed mass spectrometry’, Molecular Systems Biology, 7, p. 510. Available at: https://doi.org/10.1038/msb.2011.37.
Strübbe, Gero et al. (2011) ‘Polycomb purification by in vivo biotinylation tagging reveals cohesin and Trithorax group proteins as interaction partners’, Proceedings of the National Academy of Sciences, 108(14), pp. 5572–7. Available at: https://doi.org/10.1073/pnas.1007916108.
Strübbe, Gero et al. (2011) ‘Polycomb purification by in vivo biotinylation tagging reveals cohesin and Trithorax group proteins as interaction partners’, Proceedings of the National Academy of Sciences, 108(14), pp. 5572–7. Available at: https://doi.org/10.1073/pnas.1007916108.
Bensimon, Ariel et al. (2010) ‘ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage’, Science Signaling, 3(151), p. rs3. Available at: https://doi.org/10.1126/scisignal.2001034.
Bensimon, Ariel et al. (2010) ‘ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage’, Science Signaling, 3(151), p. rs3. Available at: https://doi.org/10.1126/scisignal.2001034.
Hofmann, Andreas et al. (2010) ‘Proteomic cell surface phenotyping of differentiating acute myeloid leukemia cells’, Blood, 116(13), pp. e26–34. Available at: https://doi.org/10.1182/blood-2010-02-271270.
Hofmann, Andreas et al. (2010) ‘Proteomic cell surface phenotyping of differentiating acute myeloid leukemia cells’, Blood, 116(13), pp. e26–34. Available at: https://doi.org/10.1182/blood-2010-02-271270.
Beck, Martin et al. (2009) ‘Visual proteomics of the human pathogen Leptospira interrogans’, Nature Methods, 6(11), pp. 817–23. Available at: https://doi.org/10.1038/nmeth.1390.
Beck, Martin et al. (2009) ‘Visual proteomics of the human pathogen Leptospira interrogans’, Nature Methods, 6(11), pp. 817–23. Available at: https://doi.org/10.1038/nmeth.1390.
Kühner, Sebastian et al. (2009) ‘Proteome organization in a genome-reduced bacterium’, Science, 326(5957), pp. 1235–40. Available at: https://doi.org/10.1126/science.1176343.
Kühner, Sebastian et al. (2009) ‘Proteome organization in a genome-reduced bacterium’, Science, 326(5957), pp. 1235–40. Available at: https://doi.org/10.1126/science.1176343.
Leidel, Sebastian et al. (2009) ‘Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA’, Nature, 458(7235), pp. 228–32. Available at: https://doi.org/10.1038/nature07643.
Leidel, Sebastian et al. (2009) ‘Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA’, Nature, 458(7235), pp. 228–32. Available at: https://doi.org/10.1038/nature07643.
Malmström, Johan et al. (2009) ‘Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans’, Nature, 460(7256), pp. 762–5. Available at: https://doi.org/10.1038/nature08184.
Malmström, Johan et al. (2009) ‘Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans’, Nature, 460(7256), pp. 762–5. Available at: https://doi.org/10.1038/nature08184.
Reiter, Lukas et al. (2009) ‘Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry’, Molecular and Cellular Proteomics, 8(11), pp. 2405–17. Available at: https://doi.org/10.1074/mcp.m900317-mcp200.
Reiter, Lukas et al. (2009) ‘Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry’, Molecular and Cellular Proteomics, 8(11), pp. 2405–17. Available at: https://doi.org/10.1074/mcp.m900317-mcp200.
Schiess, Ralph et al. (2009) ‘Analysis of cell surface proteome changes via label-free, quantitative mass spectrometry’, Molecular and Cellular Proteomics, 8(4), pp. 624–38. Available at: https://doi.org/10.1074/mcp.m800172-mcp200.
Schiess, Ralph et al. (2009) ‘Analysis of cell surface proteome changes via label-free, quantitative mass spectrometry’, Molecular and Cellular Proteomics, 8(4), pp. 624–38. Available at: https://doi.org/10.1074/mcp.m800172-mcp200.
Schmidt, Alexander, Bisle, Birgit and Kislinger, Thomas (2009) ‘Quantitative peptide and protein profiling by mass spectrometry’, Methods in Molecular Biology, 492, pp. 21–38. Available at: https://doi.org/10.1007/978-1-59745-493-3_2.
Schmidt, Alexander, Bisle, Birgit and Kislinger, Thomas (2009) ‘Quantitative peptide and protein profiling by mass spectrometry’, Methods in Molecular Biology, 492, pp. 21–38. Available at: https://doi.org/10.1007/978-1-59745-493-3_2.
Schmidt, Alexander, Claassen, Manfred and Aebersold, Ruedi (2009) ‘Directed mass spectrometry: towards hypothesis-driven proteomics’, Current Opinion in Chemical Biology, 13(5-6), pp. 510–7. Available at: https://doi.org/10.1016/j.cbpa.2009.08.016.
Schmidt, Alexander, Claassen, Manfred and Aebersold, Ruedi (2009) ‘Directed mass spectrometry: towards hypothesis-driven proteomics’, Current Opinion in Chemical Biology, 13(5-6), pp. 510–7. Available at: https://doi.org/10.1016/j.cbpa.2009.08.016.
Tebbe, Andreas et al. (2009) ‘Life-style changes of a halophilic archaeon analyzed by quantitative proteomics’, Proteomics, 9(15), pp. 3843–55. Available at: https://doi.org/10.1002/pmic.200800944.
Tebbe, Andreas et al. (2009) ‘Life-style changes of a halophilic archaeon analyzed by quantitative proteomics’, Proteomics, 9(15), pp. 3843–55. Available at: https://doi.org/10.1002/pmic.200800944.
Wepf, Alexander et al. (2009) ‘Quantitative interaction proteomics using mass spectrometry’, Nature Methods, 6(3), pp. 203–5. Available at: https://doi.org/10.1038/nmeth.1302.
Wepf, Alexander et al. (2009) ‘Quantitative interaction proteomics using mass spectrometry’, Nature Methods, 6(3), pp. 203–5. Available at: https://doi.org/10.1038/nmeth.1302.
Klimek, John et al. (2008) ‘The standard protein mix database: a diverse data set to assist in the production of improved Peptide and protein identification software tools’, Journal of Proteome Research, 7(1), pp. 96–103. Available at: https://doi.org/10.1021/pr070244j.
Klimek, John et al. (2008) ‘The standard protein mix database: a diverse data set to assist in the production of improved Peptide and protein identification software tools’, Journal of Proteome Research, 7(1), pp. 96–103. Available at: https://doi.org/10.1021/pr070244j.
Letarte, Simon et al. (2008) ‘Differential Plasma Glycoproteome of p19 Skin Cancer Mouse Model Using the Corra Label-Free LC-MS Proteomics Platform’, Clinical Proteomics, 4(3-4), p. 105. Available at: https://doi.org/10.1007/s12014-008-9018-8.
Letarte, Simon et al. (2008) ‘Differential Plasma Glycoproteome of p19 Skin Cancer Mouse Model Using the Corra Label-Free LC-MS Proteomics Platform’, Clinical Proteomics, 4(3-4), p. 105. Available at: https://doi.org/10.1007/s12014-008-9018-8.