Faculty of Science
Faculty of Science
UNIverse - Public Research Portal

Infection Biology (Basler)

Publications

57 found
Show per page

Stubbusch, Astrid K.M. et al. (2024) ‘Antagonism as a foraging strategy in microbial communities’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.11.04.621785.

URLs
URLs

Smith, William P. J. et al. (2024) ‘Multiplicity of Type 6 Secretion System toxins limits the evolution of resistance’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.07.30.605577.

URLs
URLs

George, M. et al. (2024) ‘Initiation of H1-T6SS dueling between Pseudomonas aeruginosa’, mBio, 15(8). Available at: https://doi.org/10.1128/mbio.00355-24.

URLs
URLs

Plum, Miro Thorsten Wilhelm et al. (2024) ‘Burkholderia thailandensis uses a type VI secretion system to lyse protrusions without triggering host cell responses’, Cell Host & Microbe, 32(5), pp. 676–692.e5. Available at: https://doi.org/10.1016/j.chom.2024.03.013.

URLs
URLs

Trotta, Kristine L. et al. (2023) ‘Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin’, PLoS Pathogens, 19(6), p. e1011454. Available at: https://doi.org/10.1371/journal.ppat.1011454.

URLs
URLs

Trotta, Kristine L. et al. (2023) ‘Lipopolysaccharide integrity primes bacterial sensitivity to a cell wall-degrading intermicrobial toxin’. bioRxiv. Available at: https://doi.org/10.1101/2023.01.20.524922.

URLs
URLs

Adamer, Michael F. et al. (2022) ‘reComBat: batch-effect removal in large-scale multi-source gene-expression data integration’, Bioinformatics Advances, 2(1), p. vbac071. Available at: https://doi.org/10.1093/bioadv/vbac071.

URLs
URLs

Lin, Lin et al. (2022) ‘Subcellular localization of Type VI secretion system assembly in response to cell-cell contact’, The EMBO Journal, 41(13), p. e108595. Available at: https://doi.org/10.15252/embj.2021108595.

URLs
URLs

Adamer, Michael R. et al. (2021) ‘reComBat: Batch effect removal in large-scale, multi-source omics data integration’. biorxiv.org. Available at: https://doi.org/10.1101/2021.11.22.469488.

URLs
URLs

Brodmann, Maj, Schnider, Sophie T. and Basler, Marek (2021) ‘Type VI Secretion System and Its Effectors PdpC, PdpD, and OpiA Contribute to; Francisella; Virulence in Galleria mellonella Larvae’, Infection and immunity, 89(7), p. e0057920. Available at: https://doi.org/10.1128/iai.00579-20.

URLs
URLs

García-Bayona, Leonor et al. (2020) ‘Nanaerobic growth enables direct visualization of dynamic cellular processes in human gut symbionts’, Proceedings of the National Academy of Sciences of the United States of America, 117(39), pp. 24484–24493. Available at: https://doi.org/10.1073/pnas.2009556117.

URLs
URLs

Smith, William P. J. et al. (2020) ‘The evolution of tit-for-tat in bacteria via the type VI secretion system’, Nature communications, 11(1), p. 5395. Available at: https://doi.org/10.1038/s41467-020-19017-z.

URLs
URLs

Smith, William P. J. et al. (2020) ‘The evolution of the type VI secretion system as a disintegration weapon’, PLoS biology, 18(5), p. e3000720. Available at: https://doi.org/10.1371/journal.pbio.3000720.

URLs
URLs

Basler, M. (2019) ‘Cellular microbiology interview—Dr Marek Basler’, Cellular Microbiology, 21(4). Available at: https://doi.org/10.1111/cmi.12991.

URLs
URLs

Agnetti, Jessica et al. (2019) ‘Clinical impact of the type VI secretion system on virulence of Campylobacter species during infection’, BMC infectious diseases, 19(1), p. 237. Available at: https://doi.org/10.1186/s12879-019-3858-x.

URLs
URLs

Lin, Lin et al. (2019) ‘Abundance of bacterial Type VI secretion system components measured by targeted proteomics’, Nature Communications, 10(1), p. 2584. Available at: https://doi.org/10.1038/s41467-019-10466-9.

URLs
URLs

Lin, Lin et al. (2019) ‘DNA Uptake upon T6SS-Dependent Prey Cell Lysis Induces SOS Response and Reduces Fitness of Acinetobacter baylyi’, Cell reports, 29(6), pp. 1633–1644.e4. Available at: https://doi.org/10.1016/j.celrep.2019.09.083.

URLs
URLs

Schneider, Johannes Paul et al. (2019) ‘Diverse roles of TssA-like proteins in the assembly of bacterial type VI secretion systems’, The EMBO journal, 38(18), p. e100825. Available at: https://doi.org/10.15252/embj.2018100825.

URLs
URLs

Wang, Jing, Brodmann, Maj and Basler, Marek (2019) ‘Assembly and Subcellular Localization of Bacterial Type VI Secretion Systems’, Annual Review of Microbiology, 73, pp. 621–638. Available at: https://doi.org/10.1146/annurev-micro-020518-115420.

URLs
URLs

Basler, M. and Shao, F. (2018) ‘Bacterial infection and symbiosis’. American Society for Cell Biologyascbinfo@ascb.org, pp. 683–684. Available at: https://doi.org/10.1091/mbc.E17-11-0668.

URLs
URLs

Brackmann, Maximilian, Wang, Jing and Basler, Marek (2018) ‘Type VI secretion system sheath inter-subunit interactions modulate its contraction’, EMBO reports, 19(2), pp. 225–233. Available at: https://doi.org/10.15252/embr.201744416.

URLs
URLs

Brodmann, Maj et al. (2018) ‘Mobilizable Plasmids for Tunable Gene Expression in Francisella novicida’, Frontiers in cellular and infection microbiology, 8, p. 284. Available at: https://doi.org/10.3389/fcimb.2018.00284.

URLs
URLs

Nazarov, Sergey et al. (2018) ‘Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end’, The EMBO journal, 37(4), p. e97103. Available at: https://doi.org/10.15252/embj.201797103.

URLs
URLs

Brackmann, Maximilian, Wang, Jing and Basler, Marek (2017) ‘VipA N-terminal linker and VipB-VipB interaction modulate the contraction of Type VI secretion system sheath’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/152785.

URLs
URLs

Brackmann, Maximilian et al. (2017) ‘Using Force to Punch Holes: Mechanics of Contractile Nanomachines’, Trends in Cell Biology, 27(9), pp. 623–632. Available at: https://doi.org/10.1016/j.tcb.2017.05.003.

URLs
URLs

Brodmann, Maj et al. (2017) ‘Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape’, Nature Communications, 8, p. 15853. Available at: https://doi.org/10.1038/ncomms15853.

URLs
URLs

Ringel, Peter David, Hu, Di and Basler, Marek (2017) ‘The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer’, Cell Reports, 21(13), pp. 3927–3940. Available at: https://doi.org/10.1016/j.celrep.2017.12.020.

URLs
URLs

Vettiger, Andrea et al. (2017) ‘The type VI secretion system sheath assembles at the end distal from the membrane anchor’, Nature Communications, 8, p. 16088. Available at: https://doi.org/10.1038/ncomms16088.

URLs
URLs

Wang, Jing et al. (2017) ‘Cryo-EM structure of the extended type VI secretion system sheath-tube complex’, Nature Microbiology, 2(11), pp. 1507–1512. Available at: https://doi.org/10.1038/s41564-017-0020-7.

URLs
URLs

Nelson, Michaeline B. et al. (2016) ‘The Microbial Olympics 2016’, Nature Microbiology, 1(8), p. 16122. Available at: https://doi.org/10.1038/nmicrobiol.2016.122.

URLs
URLs

Schneider, Johannes P. and Basler, Marek (2016) ‘Shedding light on biology of bacterial cells’, Philosophical Transactions of the Royal Society of London, Series B : Biological Sciences, 371(1707), p. 20150499. Available at: https://doi.org/10.1098/rstb.2015.0499.

URLs
URLs

Vettiger, Andrea and Basler, Marek (2016) ‘Type VI Secretion System Substrates Are Transferred and Reused among Sister Cells’, Cell, 167(1), pp. 99–110.e12. Available at: https://doi.org/10.1016/j.cell.2016.08.023.

URLs
URLs

Basler, Marek (2015) ‘Type VI secretion system : secretion by a contractile nanomachine’, Philosophical Transactions : the Royal Society of London, 370(1679), p. 20150021. Available at: https://doi.org/10.1098/rstb.2015.0021.

URLs
URLs

Borenstein, David Bruce et al. (2015) ‘Established microbial colonies can survive type VI secretion assault’, PLoS Computational Biology, 11(10), p. e1004520. Available at: https://doi.org/10.1371/journal.pcbi.1004520.

URLs
URLs

Kudryashev, Mikhail et al. (2015) ‘Structure of the Type VI Secretion System Contractile Sheath’, Cell, 160(5), pp. 952–62. Available at: https://doi.org/10.1016/j.cell.2015.01.037.

URLs
URLs

Wang, Ray Yu-Ruei et al. (2015) ‘De novo protein structure determination from near-atomic-resolution cryo-EM maps’, Nature methods, 12(4), pp. 335–8. Available at: https://doi.org/10.1038/nmeth.3287.

URLs
URLs

Basler, Marek, Ho, Brian T. and Mekalanos, John J. (2013) ‘Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions’, Cell, 152(4), pp. 884–94. Available at: https://doi.org/10.1016/j.cell.2013.01.042.

URLs
URLs

Ho, Brian T., Basler, Marek and Mekalanos, John J. (2013) ‘Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer’, Science, 342(6155), pp. 250–3. Available at: https://doi.org/10.1126/science.1243745.

URLs
URLs

Shneider, Mikhail M. et al. (2013) ‘PAAR-repeat proteins sharpen and diversify the type VI secretion system spike’, Nature, 500(7462), pp. 350–353. Available at: https://doi.org/10.1038/nature12453.

URLs
URLs

Basler, M. and Mekalanos, J. J. (2012) ‘Type 6 secretion dynamics within and between bacterial cells’, Science, 337(6096), p. 815. Available at: https://doi.org/10.1126/science.1222901.

URLs
URLs

Basler, M. et al. (2012) ‘Type VI secretion requires a dynamic contractile phage tail-like structure’, Nature, 483(7388), pp. 182–6. Available at: https://doi.org/10.1038/nature10846.

URLs
URLs

Fiser, Radovan et al. (2012) ‘Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores’, PLoS Pathogens, 8(4), p. e1002580. Available at: https://doi.org/10.1371/journal.ppat.1002580.

URLs
URLs

Horváthová, Lenka et al. (2012) ‘Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome’, Genome Biology and Evolution, 4(10), pp. 1017–29. Available at: https://doi.org/10.1093/gbe/evs078.

URLs
URLs

Rao, Jayasimha et al. (2011) ‘Comparisons of Two Proteomic Analyses of Non-Mucoid and Mucoid Pseudomonas aeruginosa Clinical Isolates from a Cystic Fibrosis Patient’, Frontiers in Microbiology, 2, p. 162. Available at: https://doi.org/10.3389/fmicb.2011.00162.

URLs
URLs

Linhartová, Irena et al. (2010) ‘RTX proteins: a highly diverse family secreted by a common mechanism’, FEMS Microbiology Reviews, 34(6), pp. 1076–112. Available at: https://doi.org/10.1111/j.1574-6976.2010.00231.x.

URLs
URLs

Osickova, Adriana et al. (2010) ‘Adenylate cyclase toxin translocates across target cell membrane without forming a pore’, Molecular Microbiology, 75(6), pp. 1550–62. Available at: https://doi.org/10.1111/j.1365-2958.2010.07077.x.

URLs
URLs

Leiman, Petr G. et al. (2009) ‘Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin’, Proceedings of the National Academy of Sciences, 106(11), pp. 4154–9. Available at: https://doi.org/10.1073/pnas.0813360106.

URLs
URLs

Vojtova-Vodolanova, Jana et al. (2009) ‘Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin’, FASEB Journal, 23(9), pp. 2831–43. Available at: https://doi.org/10.1096/fj.09-131250.

URLs
URLs

Pánek, Josef et al. (2008) ‘Biocomputational prediction of small non-coding RNAs in Streptomyces’, BMC Genomics, 9, p. 217. Available at: https://doi.org/10.1186/1471-2164-9-217.

URLs
URLs

Basler, Marek et al. (2007) ‘Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin’, Journal of Biological Chemistry, 282(17), pp. 12419–29. Available at: https://doi.org/10.1074/jbc.m611226200.

URLs
URLs

Fiser, Radovan et al. (2007) ‘Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities’, Journal of Biological Chemistry, 282(5), pp. 2808–20. Available at: https://doi.org/10.1074/jbc.m609979200.

URLs
URLs

Frýdlová, Ivana et al. (2007) ‘Special type of pheromone-induced invasive growth in Saccharomyces cerevisiae’, Current Genetics, 52(2), pp. 87–95. Available at: https://doi.org/10.1007/s00294-007-0141-2.

URLs
URLs

Sasková, Lenka et al. (2007) ‘Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae’, Journal of Bacteriology, 189(11), pp. 4168–79. Available at: https://doi.org/10.1128/jb.01616-06.

URLs
URLs

Basler, Marek et al. (2006) ‘The iron-regulated transcriptome and proteome of Neisseria meningitidis serogroup C’, Proteomics, 6(23), pp. 6194–6206. Available at: https://doi.org/10.1002/pmic.200600312.

URLs
URLs

Basler, Marek et al. (2006) ‘Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes’, Infection and Immunity, 74(4), pp. 2207–14. Available at: https://doi.org/10.1128/iai.74.4.2207-2214.2006.

URLs
URLs

Linhartova, Irena et al. (2006) ‘Meningococcal adhesion suppresses proapoptotic gene expression and promotes expression of genes supporting early embryonic and cytoprotective signaling of human endothelial cells’, FEMS Microbiology Letters, 263(1), pp. 109–18. Available at: https://doi.org/10.1111/j.1574-6968.2006.00407.x.

URLs
URLs

Masin, Jiri et al. (2005) ‘Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells’, Biochemistry, 44(38), pp. 12759–66. Available at: https://doi.org/10.1021/bi050459b.

URLs
URLs