Infection Biology (Basler)
Publications
57 found
Show per page
Stubbusch, Astrid K.M. et al. (2024) ‘Antagonism as a foraging strategy in microbial communities’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.11.04.621785.
Stubbusch, Astrid K.M. et al. (2024) ‘Antagonism as a foraging strategy in microbial communities’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.11.04.621785.
Smith, William P. J. et al. (2024) ‘Multiplicity of Type 6 Secretion System toxins limits the evolution of resistance’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.07.30.605577.
Smith, William P. J. et al. (2024) ‘Multiplicity of Type 6 Secretion System toxins limits the evolution of resistance’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.07.30.605577.
George, M. et al. (2024) ‘Initiation of H1-T6SS dueling between Pseudomonas aeruginosa’, mBio, 15(8). Available at: https://doi.org/10.1128/mbio.00355-24.
George, M. et al. (2024) ‘Initiation of H1-T6SS dueling between Pseudomonas aeruginosa’, mBio, 15(8). Available at: https://doi.org/10.1128/mbio.00355-24.
Plum, Miro Thorsten Wilhelm et al. (2024) ‘Burkholderia thailandensis uses a type VI secretion system to lyse protrusions without triggering host cell responses’, Cell Host & Microbe, 32(5), pp. 676–692.e5. Available at: https://doi.org/10.1016/j.chom.2024.03.013.
Plum, Miro Thorsten Wilhelm et al. (2024) ‘Burkholderia thailandensis uses a type VI secretion system to lyse protrusions without triggering host cell responses’, Cell Host & Microbe, 32(5), pp. 676–692.e5. Available at: https://doi.org/10.1016/j.chom.2024.03.013.
Trotta, Kristine L. et al. (2023) ‘Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin’, PLoS Pathogens, 19(6), p. e1011454. Available at: https://doi.org/10.1371/journal.ppat.1011454.
Trotta, Kristine L. et al. (2023) ‘Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin’, PLoS Pathogens, 19(6), p. e1011454. Available at: https://doi.org/10.1371/journal.ppat.1011454.
Trotta, Kristine L. et al. (2023) ‘Lipopolysaccharide integrity primes bacterial sensitivity to a cell wall-degrading intermicrobial toxin’. bioRxiv. Available at: https://doi.org/10.1101/2023.01.20.524922.
Trotta, Kristine L. et al. (2023) ‘Lipopolysaccharide integrity primes bacterial sensitivity to a cell wall-degrading intermicrobial toxin’. bioRxiv. Available at: https://doi.org/10.1101/2023.01.20.524922.
Adamer, Michael F. et al. (2022) ‘reComBat: batch-effect removal in large-scale multi-source gene-expression data integration’, Bioinformatics Advances, 2(1), p. vbac071. Available at: https://doi.org/10.1093/bioadv/vbac071.
Adamer, Michael F. et al. (2022) ‘reComBat: batch-effect removal in large-scale multi-source gene-expression data integration’, Bioinformatics Advances, 2(1), p. vbac071. Available at: https://doi.org/10.1093/bioadv/vbac071.
Lin, Lin et al. (2022) ‘Subcellular localization of Type VI secretion system assembly in response to cell-cell contact’, The EMBO Journal, 41(13), p. e108595. Available at: https://doi.org/10.15252/embj.2021108595.
Lin, Lin et al. (2022) ‘Subcellular localization of Type VI secretion system assembly in response to cell-cell contact’, The EMBO Journal, 41(13), p. e108595. Available at: https://doi.org/10.15252/embj.2021108595.
Adamer, Michael R. et al. (2021) ‘reComBat: Batch effect removal in large-scale, multi-source omics data integration’. biorxiv.org. Available at: https://doi.org/10.1101/2021.11.22.469488.
Adamer, Michael R. et al. (2021) ‘reComBat: Batch effect removal in large-scale, multi-source omics data integration’. biorxiv.org. Available at: https://doi.org/10.1101/2021.11.22.469488.
Brodmann, Maj, Schnider, Sophie T. and Basler, Marek (2021) ‘Type VI Secretion System and Its Effectors PdpC, PdpD, and OpiA Contribute to; Francisella; Virulence in Galleria mellonella Larvae’, Infection and immunity, 89(7), p. e0057920. Available at: https://doi.org/10.1128/iai.00579-20.
Brodmann, Maj, Schnider, Sophie T. and Basler, Marek (2021) ‘Type VI Secretion System and Its Effectors PdpC, PdpD, and OpiA Contribute to; Francisella; Virulence in Galleria mellonella Larvae’, Infection and immunity, 89(7), p. e0057920. Available at: https://doi.org/10.1128/iai.00579-20.
García-Bayona, Leonor et al. (2020) ‘Nanaerobic growth enables direct visualization of dynamic cellular processes in human gut symbionts’, Proceedings of the National Academy of Sciences of the United States of America, 117(39), pp. 24484–24493. Available at: https://doi.org/10.1073/pnas.2009556117.
García-Bayona, Leonor et al. (2020) ‘Nanaerobic growth enables direct visualization of dynamic cellular processes in human gut symbionts’, Proceedings of the National Academy of Sciences of the United States of America, 117(39), pp. 24484–24493. Available at: https://doi.org/10.1073/pnas.2009556117.
Smith, William P. J. et al. (2020) ‘The evolution of tit-for-tat in bacteria via the type VI secretion system’, Nature communications, 11(1), p. 5395. Available at: https://doi.org/10.1038/s41467-020-19017-z.
Smith, William P. J. et al. (2020) ‘The evolution of tit-for-tat in bacteria via the type VI secretion system’, Nature communications, 11(1), p. 5395. Available at: https://doi.org/10.1038/s41467-020-19017-z.
Smith, William P. J. et al. (2020) ‘The evolution of the type VI secretion system as a disintegration weapon’, PLoS biology, 18(5), p. e3000720. Available at: https://doi.org/10.1371/journal.pbio.3000720.
Smith, William P. J. et al. (2020) ‘The evolution of the type VI secretion system as a disintegration weapon’, PLoS biology, 18(5), p. e3000720. Available at: https://doi.org/10.1371/journal.pbio.3000720.
Basler, M. (2019) ‘Cellular microbiology interview—Dr Marek Basler’, Cellular Microbiology, 21(4). Available at: https://doi.org/10.1111/cmi.12991.
Basler, M. (2019) ‘Cellular microbiology interview—Dr Marek Basler’, Cellular Microbiology, 21(4). Available at: https://doi.org/10.1111/cmi.12991.
Agnetti, Jessica et al. (2019) ‘Clinical impact of the type VI secretion system on virulence of Campylobacter species during infection’, BMC infectious diseases, 19(1), p. 237. Available at: https://doi.org/10.1186/s12879-019-3858-x.
Agnetti, Jessica et al. (2019) ‘Clinical impact of the type VI secretion system on virulence of Campylobacter species during infection’, BMC infectious diseases, 19(1), p. 237. Available at: https://doi.org/10.1186/s12879-019-3858-x.
Lin, Lin et al. (2019) ‘Abundance of bacterial Type VI secretion system components measured by targeted proteomics’, Nature Communications, 10(1), p. 2584. Available at: https://doi.org/10.1038/s41467-019-10466-9.
Lin, Lin et al. (2019) ‘Abundance of bacterial Type VI secretion system components measured by targeted proteomics’, Nature Communications, 10(1), p. 2584. Available at: https://doi.org/10.1038/s41467-019-10466-9.
Lin, Lin et al. (2019) ‘DNA Uptake upon T6SS-Dependent Prey Cell Lysis Induces SOS Response and Reduces Fitness of Acinetobacter baylyi’, Cell reports, 29(6), pp. 1633–1644.e4. Available at: https://doi.org/10.1016/j.celrep.2019.09.083.
Lin, Lin et al. (2019) ‘DNA Uptake upon T6SS-Dependent Prey Cell Lysis Induces SOS Response and Reduces Fitness of Acinetobacter baylyi’, Cell reports, 29(6), pp. 1633–1644.e4. Available at: https://doi.org/10.1016/j.celrep.2019.09.083.
Schneider, Johannes Paul et al. (2019) ‘Diverse roles of TssA-like proteins in the assembly of bacterial type VI secretion systems’, The EMBO journal, 38(18), p. e100825. Available at: https://doi.org/10.15252/embj.2018100825.
Schneider, Johannes Paul et al. (2019) ‘Diverse roles of TssA-like proteins in the assembly of bacterial type VI secretion systems’, The EMBO journal, 38(18), p. e100825. Available at: https://doi.org/10.15252/embj.2018100825.
Wang, Jing, Brodmann, Maj and Basler, Marek (2019) ‘Assembly and Subcellular Localization of Bacterial Type VI Secretion Systems’, Annual Review of Microbiology, 73, pp. 621–638. Available at: https://doi.org/10.1146/annurev-micro-020518-115420.
Wang, Jing, Brodmann, Maj and Basler, Marek (2019) ‘Assembly and Subcellular Localization of Bacterial Type VI Secretion Systems’, Annual Review of Microbiology, 73, pp. 621–638. Available at: https://doi.org/10.1146/annurev-micro-020518-115420.
Basler, M. and Shao, F. (2018) ‘Bacterial infection and symbiosis’. American Society for Cell Biologyascbinfo@ascb.org, pp. 683–684. Available at: https://doi.org/10.1091/mbc.E17-11-0668.
Basler, M. and Shao, F. (2018) ‘Bacterial infection and symbiosis’. American Society for Cell Biologyascbinfo@ascb.org, pp. 683–684. Available at: https://doi.org/10.1091/mbc.E17-11-0668.
Brackmann, Maximilian, Wang, Jing and Basler, Marek (2018) ‘Type VI secretion system sheath inter-subunit interactions modulate its contraction’, EMBO reports, 19(2), pp. 225–233. Available at: https://doi.org/10.15252/embr.201744416.
Brackmann, Maximilian, Wang, Jing and Basler, Marek (2018) ‘Type VI secretion system sheath inter-subunit interactions modulate its contraction’, EMBO reports, 19(2), pp. 225–233. Available at: https://doi.org/10.15252/embr.201744416.
Brodmann, Maj et al. (2018) ‘Mobilizable Plasmids for Tunable Gene Expression in Francisella novicida’, Frontiers in cellular and infection microbiology, 8, p. 284. Available at: https://doi.org/10.3389/fcimb.2018.00284.
Brodmann, Maj et al. (2018) ‘Mobilizable Plasmids for Tunable Gene Expression in Francisella novicida’, Frontiers in cellular and infection microbiology, 8, p. 284. Available at: https://doi.org/10.3389/fcimb.2018.00284.
Nazarov, Sergey et al. (2018) ‘Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end’, The EMBO journal, 37(4), p. e97103. Available at: https://doi.org/10.15252/embj.201797103.
Nazarov, Sergey et al. (2018) ‘Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end’, The EMBO journal, 37(4), p. e97103. Available at: https://doi.org/10.15252/embj.201797103.
Brackmann, Maximilian, Wang, Jing and Basler, Marek (2017) ‘VipA N-terminal linker and VipB-VipB interaction modulate the contraction of Type VI secretion system sheath’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/152785.
Brackmann, Maximilian, Wang, Jing and Basler, Marek (2017) ‘VipA N-terminal linker and VipB-VipB interaction modulate the contraction of Type VI secretion system sheath’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/152785.
Brackmann, Maximilian et al. (2017) ‘Using Force to Punch Holes: Mechanics of Contractile Nanomachines’, Trends in Cell Biology, 27(9), pp. 623–632. Available at: https://doi.org/10.1016/j.tcb.2017.05.003.
Brackmann, Maximilian et al. (2017) ‘Using Force to Punch Holes: Mechanics of Contractile Nanomachines’, Trends in Cell Biology, 27(9), pp. 623–632. Available at: https://doi.org/10.1016/j.tcb.2017.05.003.
Brodmann, Maj et al. (2017) ‘Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape’, Nature Communications, 8, p. 15853. Available at: https://doi.org/10.1038/ncomms15853.
Brodmann, Maj et al. (2017) ‘Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape’, Nature Communications, 8, p. 15853. Available at: https://doi.org/10.1038/ncomms15853.
Ringel, Peter David, Hu, Di and Basler, Marek (2017) ‘The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer’, Cell Reports, 21(13), pp. 3927–3940. Available at: https://doi.org/10.1016/j.celrep.2017.12.020.
Ringel, Peter David, Hu, Di and Basler, Marek (2017) ‘The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer’, Cell Reports, 21(13), pp. 3927–3940. Available at: https://doi.org/10.1016/j.celrep.2017.12.020.
Vettiger, Andrea et al. (2017) ‘The type VI secretion system sheath assembles at the end distal from the membrane anchor’, Nature Communications, 8, p. 16088. Available at: https://doi.org/10.1038/ncomms16088.
Vettiger, Andrea et al. (2017) ‘The type VI secretion system sheath assembles at the end distal from the membrane anchor’, Nature Communications, 8, p. 16088. Available at: https://doi.org/10.1038/ncomms16088.
Wang, Jing et al. (2017) ‘Cryo-EM structure of the extended type VI secretion system sheath-tube complex’, Nature Microbiology, 2(11), pp. 1507–1512. Available at: https://doi.org/10.1038/s41564-017-0020-7.
Wang, Jing et al. (2017) ‘Cryo-EM structure of the extended type VI secretion system sheath-tube complex’, Nature Microbiology, 2(11), pp. 1507–1512. Available at: https://doi.org/10.1038/s41564-017-0020-7.
Nelson, Michaeline B. et al. (2016) ‘The Microbial Olympics 2016’, Nature Microbiology, 1(8), p. 16122. Available at: https://doi.org/10.1038/nmicrobiol.2016.122.
Nelson, Michaeline B. et al. (2016) ‘The Microbial Olympics 2016’, Nature Microbiology, 1(8), p. 16122. Available at: https://doi.org/10.1038/nmicrobiol.2016.122.
Schneider, Johannes P. and Basler, Marek (2016) ‘Shedding light on biology of bacterial cells’, Philosophical Transactions of the Royal Society of London, Series B : Biological Sciences, 371(1707), p. 20150499. Available at: https://doi.org/10.1098/rstb.2015.0499.
Schneider, Johannes P. and Basler, Marek (2016) ‘Shedding light on biology of bacterial cells’, Philosophical Transactions of the Royal Society of London, Series B : Biological Sciences, 371(1707), p. 20150499. Available at: https://doi.org/10.1098/rstb.2015.0499.
Vettiger, Andrea and Basler, Marek (2016) ‘Type VI Secretion System Substrates Are Transferred and Reused among Sister Cells’, Cell, 167(1), pp. 99–110.e12. Available at: https://doi.org/10.1016/j.cell.2016.08.023.
Vettiger, Andrea and Basler, Marek (2016) ‘Type VI Secretion System Substrates Are Transferred and Reused among Sister Cells’, Cell, 167(1), pp. 99–110.e12. Available at: https://doi.org/10.1016/j.cell.2016.08.023.
Basler, Marek (2015) ‘Type VI secretion system : secretion by a contractile nanomachine’, Philosophical Transactions : the Royal Society of London, 370(1679), p. 20150021. Available at: https://doi.org/10.1098/rstb.2015.0021.
Basler, Marek (2015) ‘Type VI secretion system : secretion by a contractile nanomachine’, Philosophical Transactions : the Royal Society of London, 370(1679), p. 20150021. Available at: https://doi.org/10.1098/rstb.2015.0021.
Borenstein, David Bruce et al. (2015) ‘Established microbial colonies can survive type VI secretion assault’, PLoS Computational Biology, 11(10), p. e1004520. Available at: https://doi.org/10.1371/journal.pcbi.1004520.
Borenstein, David Bruce et al. (2015) ‘Established microbial colonies can survive type VI secretion assault’, PLoS Computational Biology, 11(10), p. e1004520. Available at: https://doi.org/10.1371/journal.pcbi.1004520.
Kudryashev, Mikhail et al. (2015) ‘Structure of the Type VI Secretion System Contractile Sheath’, Cell, 160(5), pp. 952–62. Available at: https://doi.org/10.1016/j.cell.2015.01.037.
Kudryashev, Mikhail et al. (2015) ‘Structure of the Type VI Secretion System Contractile Sheath’, Cell, 160(5), pp. 952–62. Available at: https://doi.org/10.1016/j.cell.2015.01.037.
Wang, Ray Yu-Ruei et al. (2015) ‘De novo protein structure determination from near-atomic-resolution cryo-EM maps’, Nature methods, 12(4), pp. 335–8. Available at: https://doi.org/10.1038/nmeth.3287.
Wang, Ray Yu-Ruei et al. (2015) ‘De novo protein structure determination from near-atomic-resolution cryo-EM maps’, Nature methods, 12(4), pp. 335–8. Available at: https://doi.org/10.1038/nmeth.3287.
Basler, Marek, Ho, Brian T. and Mekalanos, John J. (2013) ‘Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions’, Cell, 152(4), pp. 884–94. Available at: https://doi.org/10.1016/j.cell.2013.01.042.
Basler, Marek, Ho, Brian T. and Mekalanos, John J. (2013) ‘Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions’, Cell, 152(4), pp. 884–94. Available at: https://doi.org/10.1016/j.cell.2013.01.042.
Ho, Brian T., Basler, Marek and Mekalanos, John J. (2013) ‘Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer’, Science, 342(6155), pp. 250–3. Available at: https://doi.org/10.1126/science.1243745.
Ho, Brian T., Basler, Marek and Mekalanos, John J. (2013) ‘Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer’, Science, 342(6155), pp. 250–3. Available at: https://doi.org/10.1126/science.1243745.
Shneider, Mikhail M. et al. (2013) ‘PAAR-repeat proteins sharpen and diversify the type VI secretion system spike’, Nature, 500(7462), pp. 350–353. Available at: https://doi.org/10.1038/nature12453.
Shneider, Mikhail M. et al. (2013) ‘PAAR-repeat proteins sharpen and diversify the type VI secretion system spike’, Nature, 500(7462), pp. 350–353. Available at: https://doi.org/10.1038/nature12453.
Basler, M. and Mekalanos, J. J. (2012) ‘Type 6 secretion dynamics within and between bacterial cells’, Science, 337(6096), p. 815. Available at: https://doi.org/10.1126/science.1222901.
Basler, M. and Mekalanos, J. J. (2012) ‘Type 6 secretion dynamics within and between bacterial cells’, Science, 337(6096), p. 815. Available at: https://doi.org/10.1126/science.1222901.
Basler, M. et al. (2012) ‘Type VI secretion requires a dynamic contractile phage tail-like structure’, Nature, 483(7388), pp. 182–6. Available at: https://doi.org/10.1038/nature10846.
Basler, M. et al. (2012) ‘Type VI secretion requires a dynamic contractile phage tail-like structure’, Nature, 483(7388), pp. 182–6. Available at: https://doi.org/10.1038/nature10846.
Fiser, Radovan et al. (2012) ‘Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores’, PLoS Pathogens, 8(4), p. e1002580. Available at: https://doi.org/10.1371/journal.ppat.1002580.
Fiser, Radovan et al. (2012) ‘Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores’, PLoS Pathogens, 8(4), p. e1002580. Available at: https://doi.org/10.1371/journal.ppat.1002580.
Horváthová, Lenka et al. (2012) ‘Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome’, Genome Biology and Evolution, 4(10), pp. 1017–29. Available at: https://doi.org/10.1093/gbe/evs078.
Horváthová, Lenka et al. (2012) ‘Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome’, Genome Biology and Evolution, 4(10), pp. 1017–29. Available at: https://doi.org/10.1093/gbe/evs078.
Rao, Jayasimha et al. (2011) ‘Comparisons of Two Proteomic Analyses of Non-Mucoid and Mucoid Pseudomonas aeruginosa Clinical Isolates from a Cystic Fibrosis Patient’, Frontiers in Microbiology, 2, p. 162. Available at: https://doi.org/10.3389/fmicb.2011.00162.
Rao, Jayasimha et al. (2011) ‘Comparisons of Two Proteomic Analyses of Non-Mucoid and Mucoid Pseudomonas aeruginosa Clinical Isolates from a Cystic Fibrosis Patient’, Frontiers in Microbiology, 2, p. 162. Available at: https://doi.org/10.3389/fmicb.2011.00162.
Linhartová, Irena et al. (2010) ‘RTX proteins: a highly diverse family secreted by a common mechanism’, FEMS Microbiology Reviews, 34(6), pp. 1076–112. Available at: https://doi.org/10.1111/j.1574-6976.2010.00231.x.
Linhartová, Irena et al. (2010) ‘RTX proteins: a highly diverse family secreted by a common mechanism’, FEMS Microbiology Reviews, 34(6), pp. 1076–112. Available at: https://doi.org/10.1111/j.1574-6976.2010.00231.x.
Osickova, Adriana et al. (2010) ‘Adenylate cyclase toxin translocates across target cell membrane without forming a pore’, Molecular Microbiology, 75(6), pp. 1550–62. Available at: https://doi.org/10.1111/j.1365-2958.2010.07077.x.
Osickova, Adriana et al. (2010) ‘Adenylate cyclase toxin translocates across target cell membrane without forming a pore’, Molecular Microbiology, 75(6), pp. 1550–62. Available at: https://doi.org/10.1111/j.1365-2958.2010.07077.x.
Leiman, Petr G. et al. (2009) ‘Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin’, Proceedings of the National Academy of Sciences, 106(11), pp. 4154–9. Available at: https://doi.org/10.1073/pnas.0813360106.
Leiman, Petr G. et al. (2009) ‘Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin’, Proceedings of the National Academy of Sciences, 106(11), pp. 4154–9. Available at: https://doi.org/10.1073/pnas.0813360106.
Vojtova-Vodolanova, Jana et al. (2009) ‘Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin’, FASEB Journal, 23(9), pp. 2831–43. Available at: https://doi.org/10.1096/fj.09-131250.
Vojtova-Vodolanova, Jana et al. (2009) ‘Oligomerization is involved in pore formation by Bordetella adenylate cyclase toxin’, FASEB Journal, 23(9), pp. 2831–43. Available at: https://doi.org/10.1096/fj.09-131250.
Pánek, Josef et al. (2008) ‘Biocomputational prediction of small non-coding RNAs in Streptomyces’, BMC Genomics, 9, p. 217. Available at: https://doi.org/10.1186/1471-2164-9-217.
Pánek, Josef et al. (2008) ‘Biocomputational prediction of small non-coding RNAs in Streptomyces’, BMC Genomics, 9, p. 217. Available at: https://doi.org/10.1186/1471-2164-9-217.
Basler, Marek et al. (2007) ‘Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin’, Journal of Biological Chemistry, 282(17), pp. 12419–29. Available at: https://doi.org/10.1074/jbc.m611226200.
Basler, Marek et al. (2007) ‘Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin’, Journal of Biological Chemistry, 282(17), pp. 12419–29. Available at: https://doi.org/10.1074/jbc.m611226200.
Fiser, Radovan et al. (2007) ‘Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities’, Journal of Biological Chemistry, 282(5), pp. 2808–20. Available at: https://doi.org/10.1074/jbc.m609979200.
Fiser, Radovan et al. (2007) ‘Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities’, Journal of Biological Chemistry, 282(5), pp. 2808–20. Available at: https://doi.org/10.1074/jbc.m609979200.
Frýdlová, Ivana et al. (2007) ‘Special type of pheromone-induced invasive growth in Saccharomyces cerevisiae’, Current Genetics, 52(2), pp. 87–95. Available at: https://doi.org/10.1007/s00294-007-0141-2.
Frýdlová, Ivana et al. (2007) ‘Special type of pheromone-induced invasive growth in Saccharomyces cerevisiae’, Current Genetics, 52(2), pp. 87–95. Available at: https://doi.org/10.1007/s00294-007-0141-2.
Sasková, Lenka et al. (2007) ‘Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae’, Journal of Bacteriology, 189(11), pp. 4168–79. Available at: https://doi.org/10.1128/jb.01616-06.
Sasková, Lenka et al. (2007) ‘Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae’, Journal of Bacteriology, 189(11), pp. 4168–79. Available at: https://doi.org/10.1128/jb.01616-06.
Basler, Marek et al. (2006) ‘The iron-regulated transcriptome and proteome of Neisseria meningitidis serogroup C’, Proteomics, 6(23), pp. 6194–6206. Available at: https://doi.org/10.1002/pmic.200600312.
Basler, Marek et al. (2006) ‘The iron-regulated transcriptome and proteome of Neisseria meningitidis serogroup C’, Proteomics, 6(23), pp. 6194–6206. Available at: https://doi.org/10.1002/pmic.200600312.
Basler, Marek et al. (2006) ‘Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes’, Infection and Immunity, 74(4), pp. 2207–14. Available at: https://doi.org/10.1128/iai.74.4.2207-2214.2006.
Basler, Marek et al. (2006) ‘Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes’, Infection and Immunity, 74(4), pp. 2207–14. Available at: https://doi.org/10.1128/iai.74.4.2207-2214.2006.
Linhartova, Irena et al. (2006) ‘Meningococcal adhesion suppresses proapoptotic gene expression and promotes expression of genes supporting early embryonic and cytoprotective signaling of human endothelial cells’, FEMS Microbiology Letters, 263(1), pp. 109–18. Available at: https://doi.org/10.1111/j.1574-6968.2006.00407.x.
Linhartova, Irena et al. (2006) ‘Meningococcal adhesion suppresses proapoptotic gene expression and promotes expression of genes supporting early embryonic and cytoprotective signaling of human endothelial cells’, FEMS Microbiology Letters, 263(1), pp. 109–18. Available at: https://doi.org/10.1111/j.1574-6968.2006.00407.x.
Masin, Jiri et al. (2005) ‘Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells’, Biochemistry, 44(38), pp. 12759–66. Available at: https://doi.org/10.1021/bi050459b.
Masin, Jiri et al. (2005) ‘Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells’, Biochemistry, 44(38), pp. 12759–66. Available at: https://doi.org/10.1021/bi050459b.