UNIverse - Public Research Portal

Pathogen Evolution (Diard)

Publications

42 found
Show per page

Cappio Barazzone, Elisa et al. (2024) ‘Diagnosing and engineering gut microbiomes’, EMBO Molecular Medicine, 16(11), pp. 2660–2677. Available at: https://doi.org/10.1038/s44321-024-00149-4.

URLs
URLs

Berdejo, Daniel et al. (2024) ‘Evolutionary trade-off between heat shock resistance, growth at high temperature, and virulence expression in SalmonellaTyphimurium’, mBio, 15(3). Available at: https://doi.org/10.1128/mbio.03105-23.

URLs
URLs

Gül, Ersin et al. (2023) ‘The microbiota conditions a gut milieu that selects for wild-type Salmonella Typhimurium virulence’, PLoS Biology, 21(8 August). Available at: https://doi.org/10.1371/journal.pbio.3002253.

URLs
URLs

Sobota, M. (2023) <<The>> expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium.

URLs
URLs

Bakkeren, Erik et al. (2022) ‘Impact of horizontal gene transfer on emergence and stability of cooperative virulence in Salmonella Typhimurium’, Nature Communications, 13(1), p. 1939. Available at: https://doi.org/10.1038/s41467-022-29597-7.

URLs
URLs

Lentsch, Verena et al. (2022) ‘Combined oral vaccination with niche competition can generate sterilizing immunity against entero-pathogenic bacteria’. biorxiv.org. Available at: https://doi.org/10.1101/2022.07.20.498444.

URLs
URLs

Ramirez Garcia, Alejandro et al. (2022) ‘Pathogenic and Commensal Gut Bacteria Harboring Glycerol/Diol Dehydratase Metabolize Glycerol and Produce DNA-Reactive Acrolein’, Chemical research in toxicology, 35(10), pp. 1840–1850. Available at: https://doi.org/10.1021/acs.chemrestox.2c00137.

URLs
URLs

Slack, Emma and Diard, Médéric (2022) ‘Resistance is futile? Mucosal immune mechanisms in the context of microbial ecology and evolution’, Mucosal Immunology, 15(6), pp. 1188–1198. Available at: https://doi.org/10.1038/s41385-022-00574-z.

URLs
URLs

Sobota, Malgorzata et al. (2022) ‘The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium’, PLoS Biology, 20(4), p. e3001608. Available at: https://doi.org/10.1371/journal.pbio.3001608.

URLs
URLs

Bakkeren, Erik et al. (2021) ‘Cooperative virulence can emerge via horizontal gene transfer but is stabilized by transmission’. biorxiv.org. Available at: https://doi.org/10.1101/2021.02.11.430745.

URLs
URLs

Bakkeren, Erik et al. (2021) ‘Pathogen invasion-dependent tissue reservoirs and plasmid-encoded antibiotic degradation boost plasmid spread in the gut’, eLife, 10, p. e69744. Available at: https://doi.org/10.7554/elife.69744.

URLs
URLs

Benz, Fabienne et al. (2021) ‘Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo’, The ISME journal, 15(3), pp. 862–878. Available at: https://doi.org/10.1038/s41396-020-00819-4.

URLs
URLs

Diard, Médéric et al. (2021) ‘A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants’, Nature Microbiology, 6(7), pp. 830–841. Available at: https://doi.org/10.1038/s41564-021-00911-1.

URLs
URLs

Sobota, Malgorzata et al. (2021) ‘The expression of virulence increases outer-membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium’. biorxiv.org. Available at: https://doi.org/10.1101/2021.06.08.447568.

URLs
URLs

Bakkeren, Erik, Diard, Médéric and Hardt, Wolf-Dietrich (2020) ‘Evolutionary causes and consequences of bacterial antibiotic persistence’, Nature reviews. Microbiology, 18(9), pp. 479–490. Available at: https://doi.org/10.1038/s41579-020-0378-z.

URLs
URLs

Hausmann, Annika et al. (2020) ‘Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen Salmonella Typhimurium due to site-specific bacterial PAMP expression’, Mucosal Immunology, 13(3), pp. 530–544. Available at: https://doi.org/10.1038/s41385-019-0247-0.

URLs
URLs

Hoces, Daniel et al. (2020) ‘Growing, evolving and sticking in a flowing environment: understanding IgA interactions with bacteria in the gut’, Immunology, 159(1), pp. 52–62. Available at: https://doi.org/10.1111/imm.13156.

URLs
URLs

Sangermani, Matteo et al. (2019) ‘Tad pili play a dynamic role in caulobacter crescentus surface colonization’, mBio. 18.06.2019, 10(3). Available at: https://doi.org/10.1128/mBio.01237-19.

URLs
URLs

Assis, Nadine G. et al. (2019) ‘Identification of Hfq-binding RNAs in Caulobacter crescentus’, RNA Biology, 16, pp. 719–726. Available at: https://doi.org/10.1080/15476286.2019.1593091.

URLs
URLs

Bakkeren, Erik et al. (2019) ‘Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut’, Nature, 573(7773), pp. 276–280. Available at: https://doi.org/10.1038/s41586-019-1521-8.

URLs
URLs

Bansept, Florence et al. (2019) ‘Enchained growth and cluster dislocation: A possible mechanism for microbiota homeostasis’, PLoS computational biology, 15(5), p. e1006986. Available at: https://doi.org/10.1371/journal.pcbi.1006986.

URLs
URLs

Diard, Médéric et al. (2019) ‘Rationally designed oral vaccines can set an evolutionary trap for Salmonella Typhimurium’. bioRxiv. Available at: https://doi.org/10.1101/824821.

URLs
URLs

Wotzka, Sandra Y. et al. (2019) ‘Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice’, Nature microbiology, 4(12), pp. 2164–2174. Available at: https://doi.org/10.1038/s41564-019-0568-5.

URLs
URLs

Diard, Médéric et al. (2017) ‘Inflammation boosts bacteriophage transfer between Salmonella spp’, Science, 355(6330), pp. 1211–1215. Available at: https://doi.org/10.1126/science.aaf8451.

URLs
URLs

Diard, Médéric and Hardt, Wolf-Dietrich (2017) ‘Basic Processes in Salmonella-Host Interactions: Within-Host Evolution and the Transmission of the Virulent Genotype’, Microbiology Spectrum, 5(5), p. epub. Available at: https://doi.org/10.1128/microbiolspec.mtbp-0012-2016.

URLs
URLs

Diard, Médéric and Hardt, Wolf-Dietrich (2017) ‘Evolution of bacterial virulence’, FEMS Microbiology Reviews, 41(5), pp. 679–697. Available at: https://doi.org/10.1093/femsre/fux023.

URLs
URLs

Moor, Kathrin et al. (2017) ‘High-avidity IgA protects the intestine by enchaining growing bacteria’, Nature, 544(7651), pp. 498–502. Available at: https://doi.org/10.1038/nature22058.

URLs
URLs

Colgan, Aoife M. et al. (2016) ‘The Impact of 18 Ancestral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium’, PLoS genetics, 12(8), p. e1006258. Available at: https://doi.org/10.1371/journal.pgen.1006258.

URLs
URLs

Curkić, Ismeta et al. (2016) ‘Epitope-Tagged Autotransporters as Single-Cell Reporters for Gene Expression by a Salmonella Typhimurium wbaP Mutant’, PloS one, 11(5), p. e0154828. Available at: https://doi.org/10.1371/journal.pone.0154828.

URLs
URLs

Moor, Kathrin et al. (2016) ‘Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species’, Frontiers in Immunology, 7(34), p. 34. Available at: https://doi.org/10.3389/fimmu.2016.00034.

URLs
URLs

Maier, Lisa et al. (2015) ‘Correction: Granulocytes Impose a Tight Bottleneck upon the Gut Luminal Pathogen Population during Salmonella Typhimurium Colitis’, PLoS Pathogens, 11(7), p. e1005047. Available at: https://doi.org/10.1371/journal.ppat.1005047.

URLs
URLs

Arnoldini, Markus et al. (2014) ‘Bistable expression of virulence genes in salmonella leads to the formation of an antibiotic-tolerant subpopulation’, PLoS Biology, 12(8), p. e1001928. Available at: https://doi.org/10.1371/journal.pbio.1001928.

URLs
URLs

Diard, Médéric et al. (2014) ‘Antibiotic treatment selects for cooperative virulence of Salmonella typhimurium’, Current Biology, 24(17), pp. 2000–2005. Available at: https://doi.org/10.1016/j.cub.2014.07.028.

URLs
URLs

Maier, Lisa et al. (2014) ‘Granulocytes impose a tight bottleneck upon the gut luminal pathogen population during Salmonella typhimurium colitis’, PLoS Pathogens, 10(12), p. e1004557. Available at: https://doi.org/10.1371/journal.ppat.1004557.

URLs
URLs

Sellin, Mikael E. et al. (2014) ‘Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa’, Cell Host & Microbe, 16(2), pp. 237–248. Available at: https://doi.org/10.1016/j.chom.2014.07.001.

URLs
URLs

Diard, Médéric et al. (2013) ‘Stabilization of cooperative virulence by the expression of an avirulent phenotype’, Nature, 494(7437), pp. 353–356. Available at: https://doi.org/10.1038/nature11913.

URLs
URLs

Kaiser, Patrick et al. (2012) ‘The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response’, Immunological Reviews, 245(1), pp. 56–83. Available at: https://doi.org/10.1111/j.1600-065x.2011.01070.x.

URLs
URLs

Baeriswyl, Simon et al. (2010) ‘Modulation of aging profiles in isogenic populations of Caenorhabditis elegans by bacteria causing different extrinsic mortality rates’, Biogerontology, 11(1), pp. 53–65. Available at: https://doi.org/10.1007/s10522-009-9228-0.

URLs
URLs

Diard, Médéric et al. (2010) ‘Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization’, Journal of Bacteriology, 192(19), pp. 4885–4893. Available at: https://doi.org/10.1128/jb.00804-10.

URLs
URLs

Tourret, Jérôme et al. (2010) ‘Effects of single and multiple pathogenicity island deletions on uropathogenic Escherichia coli strain 536 intrinsic extra-intestinal virulence’, International Journal of Medical Microbiology : IJMM, 300(7), pp. 435–439. Available at: https://doi.org/10.1016/j.ijmm.2010.04.013.

URLs
URLs

Touchon, Marie et al. (2009) ‘Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths’, PLoS Genetics, 5(1), p. e1000344. Available at: https://doi.org/10.1371/journal.pgen.1000344.

URLs
URLs

Diard, Médéric et al. (2007) ‘Caenorhabditis elegans as a simple model to study phenotypic and genetic virulence determinants of extraintestinal pathogenic Escherichia coli’, Microbes and Infection, 9(2), pp. 214–223. Available at: https://doi.org/10.1016/j.micinf.2006.11.009.

URLs
URLs