Cell Biology (Arber)
Publications
134 found
Show per page
Kveim, V.A. (2025) Dissecting the contribution of developmentally-defined neuronal subpopulations to memory functions in the mouse hippocampus.
Kveim, V.A. (2025) Dissecting the contribution of developmentally-defined neuronal subpopulations to memory functions in the mouse hippocampus.
Afonso, A.R. (2023) Role of basal ganglia interactions with brainstem in control of movement
.
Afonso, A.R. (2023) Role of basal ganglia interactions with brainstem in control of movement
.
Cavallo, F. (2023) Brainstem neurons regulating backward locomotion.
Cavallo, F. (2023) Brainstem neurons regulating backward locomotion.
Fidelin, Kevin and Arber, Silvia (2023) ‘Brainstem circuits help zebrafish get into the swim of things’, Neuron, 111(3), pp. 294–296. Available at: https://doi.org/10.1016/j.neuron.2023.01.001.
Fidelin, Kevin and Arber, Silvia (2023) ‘Brainstem circuits help zebrafish get into the swim of things’, Neuron, 111(3), pp. 294–296. Available at: https://doi.org/10.1016/j.neuron.2023.01.001.
Gunapala, K. (2023) Characterization of rostral brainstem nuclei controlling locomotion directionality.
Gunapala, K. (2023) Characterization of rostral brainstem nuclei controlling locomotion directionality.
Peretti, V. (2023) A dedicated cortico-hippocampal network changes the behavioral output of learning ensembles in the striatum.
Peretti, V. (2023) A dedicated cortico-hippocampal network changes the behavioral output of learning ensembles in the striatum.
Yang, Wuzhou, Kanodia, Harsh and Arber, Silvia (2023) ‘Structural and functional map for forelimb movement phases between cortex and medulla’, Cell, 186(1), pp. 162–177.e18. Available at: https://doi.org/10.1016/j.cell.2022.12.009.
Yang, Wuzhou, Kanodia, Harsh and Arber, Silvia (2023) ‘Structural and functional map for forelimb movement phases between cortex and medulla’, Cell, 186(1), pp. 162–177.e18. Available at: https://doi.org/10.1016/j.cell.2022.12.009.
Zaina, G. (2023) Shared engagement deficit phenotype and circuit-mechanism in four mouse models of Autism Spectrum Disorders.
Zaina, G. (2023) Shared engagement deficit phenotype and circuit-mechanism in four mouse models of Autism Spectrum Disorders.
Arber, Silvia and Costa, Rui M. (2022) ‘Networking brainstem and basal ganglia circuits for movement’, Nature reviews. Neuroscience, 23(6), pp. 342–360. Available at: https://doi.org/10.1038/s41583-022-00581-w.
Arber, Silvia and Costa, Rui M. (2022) ‘Networking brainstem and basal ganglia circuits for movement’, Nature reviews. Neuroscience, 23(6), pp. 342–360. Available at: https://doi.org/10.1038/s41583-022-00581-w.
Krüttner, Sebastian et al. (2022) ‘Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling’, Neuron, 110(9), pp. 1468–1482.e5. Available at: https://doi.org/10.1016/j.neuron.2022.02.001.
Krüttner, Sebastian et al. (2022) ‘Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling’, Neuron, 110(9), pp. 1468–1482.e5. Available at: https://doi.org/10.1016/j.neuron.2022.02.001.
Yang, W. (2022) Cortical control of forelimb movement.
Yang, W. (2022) Cortical control of forelimb movement.
Arber, Silvia (2021) ‘A census of cell types in the brain’s motor cortex. Cell census will be a boon for future studies’, Nature, 598(7879), pp. 33–34. Available at: https://doi.org/10.1038/d41586-021-02493-8.
Arber, Silvia (2021) ‘A census of cell types in the brain’s motor cortex. Cell census will be a boon for future studies’, Nature, 598(7879), pp. 33–34. Available at: https://doi.org/10.1038/d41586-021-02493-8.
Bhandari, K. (2021) Neuronal network alterations underlying cognitive deficits in Fragile X syndrome model, Fmr1(y/-) mice.
Bhandari, K. (2021) Neuronal network alterations underlying cognitive deficits in Fragile X syndrome model, Fmr1(y/-) mice.
Ferreira-Pinto, Manuel J. et al. (2021) ‘Functional diversity for body actions in the mesencephalic locomotor region’, Cell, 184(17), pp. 4564–4578.e18. Available at: https://doi.org/10.1016/j.cell.2021.07.002.
Ferreira-Pinto, Manuel J. et al. (2021) ‘Functional diversity for body actions in the mesencephalic locomotor region’, Cell, 184(17), pp. 4564–4578.e18. Available at: https://doi.org/10.1016/j.cell.2021.07.002.
Neves Ferreira Pinto, M.J. (2021) Motor Control in the Mesencephalic Locomotor Region: Implications for Action Diversification and Deep Brain Stimulation.
Neves Ferreira Pinto, M.J. (2021) Motor Control in the Mesencephalic Locomotor Region: Implications for Action Diversification and Deep Brain Stimulation.
Ruder, L. (2021) Neuronal circuits in the brainstem and spinal cord involved in forelimb behaviors and locomotion.
Ruder, L. (2021) Neuronal circuits in the brainstem and spinal cord involved in forelimb behaviors and locomotion.
Ruder, Ludwig et al. (2021) ‘A functional map for diverse forelimb actions within brainstem circuitry’, Nature, 590(7846), pp. 445–450. Available at: https://doi.org/10.1038/s41586-020-03080-z.
Ruder, Ludwig et al. (2021) ‘A functional map for diverse forelimb actions within brainstem circuitry’, Nature, 590(7846), pp. 445–450. Available at: https://doi.org/10.1038/s41586-020-03080-z.
Schina, R. (2021) Brainstem circuits involved in skilled forelimb movements.
Schina, R. (2021) Brainstem circuits involved in skilled forelimb movements.
Maheshwari, Upasana et al. (2020) ‘Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets’, Cell reports, 31(11), p. 107767. Available at: https://doi.org/10.1016/j.celrep.2020.107767.
Maheshwari, Upasana et al. (2020) ‘Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets’, Cell reports, 31(11), p. 107767. Available at: https://doi.org/10.1016/j.celrep.2020.107767.
Matveeva, O. (2020) Cortical circuits underlying flexible learning.
Matveeva, O. (2020) Cortical circuits underlying flexible learning.
Arber, Silvia and Briscoe, James (2019) ‘Thomas M. Jessell (1951-2019)’, Development, 146(10), p. dev180505. Available at: https://doi.org/10.1242/dev.180505.
Arber, Silvia and Briscoe, James (2019) ‘Thomas M. Jessell (1951-2019)’, Development, 146(10), p. dev180505. Available at: https://doi.org/10.1242/dev.180505.
Heindorf, Matthias, Arber, Silvia and Keller, Georg B. (2019) ‘Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback’, Neuron, 101(6), p. 1202. Available at: https://doi.org/10.1016/j.neuron.2019.02.042.
Heindorf, Matthias, Arber, Silvia and Keller, Georg B. (2019) ‘Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback’, Neuron, 101(6), p. 1202. Available at: https://doi.org/10.1016/j.neuron.2019.02.042.
Ruder, Ludwig and Arber, Silvia (2019) ‘Brainstem Circuits Controlling Action Diversification’, Annual review of neuroscience, 42, pp. 485–504. Available at: https://doi.org/10.1146/annurev-neuro-070918-050201.
Ruder, Ludwig and Arber, Silvia (2019) ‘Brainstem Circuits Controlling Action Diversification’, Annual review of neuroscience, 42, pp. 485–504. Available at: https://doi.org/10.1146/annurev-neuro-070918-050201.
Takeoka, Aya and Arber, Silvia (2019) ‘Functional Local Proprioceptive Feedback Circuits Initiate and Maintain Locomotor Recovery after Spinal Cord Injury’, Cell reports, 27(1), pp. 71–85.e3. Available at: https://doi.org/10.1016/j.celrep.2019.03.010.
Takeoka, Aya and Arber, Silvia (2019) ‘Functional Local Proprioceptive Feedback Circuits Initiate and Maintain Locomotor Recovery after Spinal Cord Injury’, Cell reports, 27(1), pp. 71–85.e3. Available at: https://doi.org/10.1016/j.celrep.2019.03.010.
Arber, Silvia and Costa, Rui M. (2018) ‘Connecting neuronal circuits for movement’, Science, 360(6396), pp. 1403–1404. Available at: https://doi.org/10.1126/science.aat5994.
Arber, Silvia and Costa, Rui M. (2018) ‘Connecting neuronal circuits for movement’, Science, 360(6396), pp. 1403–1404. Available at: https://doi.org/10.1126/science.aat5994.
Ferreira-Pinto, Manuel J. et al. (2018) ‘Connecting Circuits for Supraspinal Control of Locomotion’, Neuron, 100(2), pp. 361–374. Available at: https://doi.org/10.1016/j.neuron.2018.09.015.
Ferreira-Pinto, Manuel J. et al. (2018) ‘Connecting Circuits for Supraspinal Control of Locomotion’, Neuron, 100(2), pp. 361–374. Available at: https://doi.org/10.1016/j.neuron.2018.09.015.
Heindorf, Matthias, Arber, Silvia and Keller, Georg B. (2018) ‘Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback’, Neuron, 99(5), pp. 1040–1054.e5. Available at: https://doi.org/10.1016/j.neuron.2018.07.046.
Heindorf, Matthias, Arber, Silvia and Keller, Georg B. (2018) ‘Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback’, Neuron, 99(5), pp. 1040–1054.e5. Available at: https://doi.org/10.1016/j.neuron.2018.07.046.
Pecho-Vrieseling, Eline et al. (2018) ‘Author Correction: Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons’, Nature neuroscience, 21(9), p. 1291. Available at: https://doi.org/10.1038/s41593-018-0201-6.
Pecho-Vrieseling, Eline et al. (2018) ‘Author Correction: Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons’, Nature neuroscience, 21(9), p. 1291. Available at: https://doi.org/10.1038/s41593-018-0201-6.
Arber, Silvia (2017) ‘Organization and function of neuronal circuits controlling movement’, EMBO Molecular Medicine, 9(3), pp. 281–284. Available at: https://doi.org/10.15252/emmm.201607226.
Arber, Silvia (2017) ‘Organization and function of neuronal circuits controlling movement’, EMBO Molecular Medicine, 9(3), pp. 281–284. Available at: https://doi.org/10.15252/emmm.201607226.
Baek, Myungin et al. (2017) ‘Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits’, Cell Reports, 21(4), pp. 867–877. Available at: https://doi.org/10.1016/j.celrep.2017.10.004.
Baek, Myungin et al. (2017) ‘Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits’, Cell Reports, 21(4), pp. 867–877. Available at: https://doi.org/10.1016/j.celrep.2017.10.004.
Capelli, Paolo et al. (2017) ‘Locomotor speed control circuits in the caudal brainstem’, Nature, 551(7680), pp. 373–377. Available at: https://doi.org/10.1038/nature24064.
Capelli, Paolo et al. (2017) ‘Locomotor speed control circuits in the caudal brainstem’, Nature, 551(7680), pp. 373–377. Available at: https://doi.org/10.1038/nature24064.
Heindorf, M. (2017) Role of mouse motor cortex in the behavioral response to unpredictable visual feedback. Available at: https://doi.org/10.5451/unibas-006793015.
Heindorf, M. (2017) Role of mouse motor cortex in the behavioral response to unpredictable visual feedback. Available at: https://doi.org/10.5451/unibas-006793015.
Wu, Jinjin et al. (2017) ‘A V0 core neuronal circuit for inspiration’, Nature Communications, 8(1), p. 544. Available at: https://doi.org/10.1038/s41467-017-00589-2.
Wu, Jinjin et al. (2017) ‘A V0 core neuronal circuit for inspiration’, Nature Communications, 8(1), p. 544. Available at: https://doi.org/10.1038/s41467-017-00589-2.
Zmarz, P. (2017) Mismatch receptive fields in mouse primary visual cortex. Available at: https://doi.org/10.5451/unibas-007116995.
Zmarz, P. (2017) Mismatch receptive fields in mouse primary visual cortex. Available at: https://doi.org/10.5451/unibas-007116995.
Esposito, Maria S and Arber, Silvia (2016) ‘Motor Control: Illuminating an Enigmatic Midbrain Locomotor Center’, Current biology, 26(7), pp. R291–3. Available at: https://doi.org/10.1016/j.cub.2016.02.043.
Esposito, Maria S and Arber, Silvia (2016) ‘Motor Control: Illuminating an Enigmatic Midbrain Locomotor Center’, Current biology, 26(7), pp. R291–3. Available at: https://doi.org/10.1016/j.cub.2016.02.043.
Fleming, Michael S. et al. (2016) ‘A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles’, Journal of Neuroscience, 36(40), pp. 10337–10355. Available at: https://doi.org/10.1523/jneurosci.2160-16.2016.
Fleming, Michael S. et al. (2016) ‘A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles’, Journal of Neuroscience, 36(40), pp. 10337–10355. Available at: https://doi.org/10.1523/jneurosci.2160-16.2016.
Ruder, Ludwig, Takeoka, Aya and Arber, Silvia (2016) ‘Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability’, Neuron, 92(5), pp. 1063–1078. Available at: https://doi.org/10.1016/j.neuron.2016.10.032.
Ruder, Ludwig, Takeoka, Aya and Arber, Silvia (2016) ‘Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability’, Neuron, 92(5), pp. 1063–1078. Available at: https://doi.org/10.1016/j.neuron.2016.10.032.
Satoh, Daisuke, Pudenz, Christiane and Arber, Silvia (2016) ‘Context-Dependent Gait Choice Elicited by EphA4 Mutation in Lbx1 Spinal Interneurons’, Neuron, 89(5), pp. 1046–58. Available at: https://doi.org/10.1016/j.neuron.2016.01.033.
Satoh, Daisuke, Pudenz, Christiane and Arber, Silvia (2016) ‘Context-Dependent Gait Choice Elicited by EphA4 Mutation in Lbx1 Spinal Interneurons’, Neuron, 89(5), pp. 1046–58. Available at: https://doi.org/10.1016/j.neuron.2016.01.033.
Schwarz, O. (2016) Neuroanatomical and functional characterization of the motor circuitry controlling ‘Drosophila’ taste behavior. Available at: https://doi.org/10.5451/unibas-006791002.
Schwarz, O. (2016) Neuroanatomical and functional characterization of the motor circuitry controlling ‘Drosophila’ taste behavior. Available at: https://doi.org/10.5451/unibas-006791002.
Tovote, Philip et al. (2016) ‘Midbrain circuits for defensive behaviour’, Nature, 534(7606), pp. 206–12. Available at: https://doi.org/10.1038/nature17996.
Tovote, Philip et al. (2016) ‘Midbrain circuits for defensive behaviour’, Nature, 534(7606), pp. 206–12. Available at: https://doi.org/10.1038/nature17996.
Adamantidis, Antoine et al. (2015) ‘Optogenetics: 10 years after ChR2 in neurons--views from the community’, Nature neuroscience, 18(9), pp. 1202–1212. Available at: https://doi.org/10.1038/nn.4106.
Adamantidis, Antoine et al. (2015) ‘Optogenetics: 10 years after ChR2 in neurons--views from the community’, Nature neuroscience, 18(9), pp. 1202–1212. Available at: https://doi.org/10.1038/nn.4106.
Balint, K. (2015) Deciphering neuronal circuits of non-image forming vision. Available at: https://doi.org/10.5451/unibas-006792608.
Balint, K. (2015) Deciphering neuronal circuits of non-image forming vision. Available at: https://doi.org/10.5451/unibas-006792608.
Basaldella, E. (2015) Cross-modal sensory signaling shapes vestibulo-motor circuit specificity. Available at: https://doi.org/10.5451/unibas-006572970.
Basaldella, E. (2015) Cross-modal sensory signaling shapes vestibulo-motor circuit specificity. Available at: https://doi.org/10.5451/unibas-006572970.
Basaldella, Emanuela et al. (2015) ‘Multisensory Signaling Shapes Vestibulo-Motor Circuit Specificity’, Cell, 163(2), pp. 301–12. Available at: https://doi.org/10.1016/j.cell.2015.09.023.
Basaldella, Emanuela et al. (2015) ‘Multisensory Signaling Shapes Vestibulo-Motor Circuit Specificity’, Cell, 163(2), pp. 301–12. Available at: https://doi.org/10.1016/j.cell.2015.09.023.
Gabel, V. (2015) Non-visual effects of light on human circadian physiology and neurobehavioral performance. Available at: https://doi.org/10.5451/unibas-006617521.
Gabel, V. (2015) Non-visual effects of light on human circadian physiology and neurobehavioral performance. Available at: https://doi.org/10.5451/unibas-006617521.
Goetz, Cyrill, Pivetta, Chiara and Arber, Silvia (2015) ‘Distinct Limb and Trunk Premotor Circuits Establish Laterality in the Spinal Cord’, Neuron, 85(1), pp. 131–44. Available at: https://doi.org/10.1016/j.neuron.2014.11.024.
Goetz, Cyrill, Pivetta, Chiara and Arber, Silvia (2015) ‘Distinct Limb and Trunk Premotor Circuits Establish Laterality in the Spinal Cord’, Neuron, 85(1), pp. 131–44. Available at: https://doi.org/10.1016/j.neuron.2014.11.024.
Götz, C.R. (2015) Distinct limb and trunk premotor circuits establish laterality in the spinal cord. Available at: https://doi.org/10.5451/unibas-006377259.
Götz, C.R. (2015) Distinct limb and trunk premotor circuits establish laterality in the spinal cord. Available at: https://doi.org/10.5451/unibas-006377259.
Pivetta, C. (2015) Organization and connectivity of spinal ascending pathways reporting to brainstem. Available at: https://doi.org/10.5451/unibas-006390101.
Pivetta, C. (2015) Organization and connectivity of spinal ascending pathways reporting to brainstem. Available at: https://doi.org/10.5451/unibas-006390101.
Akay, Turgay et al. (2014) ‘Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback.’, Proceedings of the National Academy of Sciences of the United States of America, 111(47), pp. 16877–82. Available at: https://doi.org/10.1073/pnas.1419045111.
Akay, Turgay et al. (2014) ‘Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback.’, Proceedings of the National Academy of Sciences of the United States of America, 111(47), pp. 16877–82. Available at: https://doi.org/10.1073/pnas.1419045111.
Esposito, Maria Soledad, Capelli, Paolo and Arber, Silvia (2014) ‘Brainstem nucleus MdV mediates skilled forelimb motor tasks’, Nature, 508(7496), pp. 351–6. Available at: https://doi.org/10.1038/nature13023.
Esposito, Maria Soledad, Capelli, Paolo and Arber, Silvia (2014) ‘Brainstem nucleus MdV mediates skilled forelimb motor tasks’, Nature, 508(7496), pp. 351–6. Available at: https://doi.org/10.1038/nature13023.
Pecho-Vrieseling, Eline et al. (2014) ‘Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons’, Nature neuroscience, 17(8), pp. 1064–72. Available at: https://doi.org/10.1038/nn.3761.
Pecho-Vrieseling, Eline et al. (2014) ‘Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons’, Nature neuroscience, 17(8), pp. 1064–72. Available at: https://doi.org/10.1038/nn.3761.
Pivetta, Chiara et al. (2014) ‘Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin’, Cell, 156(3), pp. 537–48. Available at: https://doi.org/10.1016/j.cell.2013.12.014.
Pivetta, Chiara et al. (2014) ‘Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin’, Cell, 156(3), pp. 537–48. Available at: https://doi.org/10.1016/j.cell.2013.12.014.
Pudenz, C. (2014) Lbx1-expressing cells lacking the repellent EphA4 receptor are involved in axonal midline crossing in the spinal cord and evoke a minor gait defect. Available at: https://doi.org/10.5451/unibas-006300337.
Pudenz, C. (2014) Lbx1-expressing cells lacking the repellent EphA4 receptor are involved in axonal midline crossing in the spinal cord and evoke a minor gait defect. Available at: https://doi.org/10.5451/unibas-006300337.
Takeoka, Aya et al. (2014) ‘Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury’, Cell, 159(7), pp. 1626–39. Available at: https://doi.org/10.1016/j.cell.2014.11.019.
Takeoka, Aya et al. (2014) ‘Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury’, Cell, 159(7), pp. 1626–39. Available at: https://doi.org/10.1016/j.cell.2014.11.019.
Bulat, V. (2013) Casein kinase 2 controls synapse organization and stability. Available at: https://doi.org/10.5451/unibas-006136875.
Bulat, V. (2013) Casein kinase 2 controls synapse organization and stability. Available at: https://doi.org/10.5451/unibas-006136875.
Donato, F. (2013) Microcircuit remodeling processes underlying learning in the adult. Available at: https://doi.org/10.5451/unibas-006194692.
Donato, F. (2013) Microcircuit remodeling processes underlying learning in the adult. Available at: https://doi.org/10.5451/unibas-006194692.
Dougherty, Kimberly J et al. (2013) ‘Locomotor Rhythm Generation Linked to the Output of Spinal Shox2 Excitatory Interneurons’, Neuron, 80(4), pp. 920–33. Available at: https://doi.org/10.1016/j.neuron.2013.08.015.
Dougherty, Kimberly J et al. (2013) ‘Locomotor Rhythm Generation Linked to the Output of Spinal Shox2 Excitatory Interneurons’, Neuron, 80(4), pp. 920–33. Available at: https://doi.org/10.1016/j.neuron.2013.08.015.
Fukuhara, Kaori et al. (2013) ‘Specificity of monosynaptic sensory-motor connections imposed by repellent Sema3E-PlexinD1 signaling’, Cell reports, 5(3), pp. 748–58. Available at: https://doi.org/10.1016/j.celrep.2013.10.005.
Fukuhara, Kaori et al. (2013) ‘Specificity of monosynaptic sensory-motor connections imposed by repellent Sema3E-PlexinD1 signaling’, Cell reports, 5(3), pp. 748–58. Available at: https://doi.org/10.1016/j.celrep.2013.10.005.
Sakurai, Katsuyasu et al. (2013) ‘The organization of submodality-specific touch afferent inputs in the vibrissa column’, Cell reports, 5(1), pp. 87–98. Available at: https://doi.org/10.1016/j.celrep.2013.08.051.
Sakurai, Katsuyasu et al. (2013) ‘The organization of submodality-specific touch afferent inputs in the vibrissa column’, Cell reports, 5(1), pp. 87–98. Available at: https://doi.org/10.1016/j.celrep.2013.08.051.
Satoh, Daisuke and Arber, Silvia (2013) ‘Carving axon arbors to fit: master directs one kinase at a time’, Cell, pp. 1425–6. Available at: https://doi.org/10.1016/j.cell.2013.05.047.
Satoh, Daisuke and Arber, Silvia (2013) ‘Carving axon arbors to fit: master directs one kinase at a time’, Cell, pp. 1425–6. Available at: https://doi.org/10.1016/j.cell.2013.05.047.
Arber, Silvia (2012) ‘Motor circuits in action : specification, connectivity, and function’, Neuron, pp. 975–89. Available at: https://doi.org/10.1016/j.neuron.2012.05.011.
Arber, Silvia (2012) ‘Motor circuits in action : specification, connectivity, and function’, Neuron, pp. 975–89. Available at: https://doi.org/10.1016/j.neuron.2012.05.011.
Ashrafi, Soha et al. (2012) ‘Wnt7A identifies embryonic gamma-motor neurons and reveals early postnatal dependence of gamma-motor neurons on a muscle spindle-derived signal’, The Journal of Neuroscience, 32(25), pp. 8725–31. Available at: https://doi.org/10.1523/jneurosci.1160-12.2012.
Ashrafi, Soha et al. (2012) ‘Wnt7A identifies embryonic gamma-motor neurons and reveals early postnatal dependence of gamma-motor neurons on a muscle spindle-derived signal’, The Journal of Neuroscience, 32(25), pp. 8725–31. Available at: https://doi.org/10.1523/jneurosci.1160-12.2012.
Lee, Jun et al. (2012) ‘Scaling proprioceptor gene transcription by retrograde NT3 signaling’, PLoS ONE, 7(9), pp. 1–15. Available at: https://doi.org/10.1371/journal.pone.0045551.
Lee, Jun et al. (2012) ‘Scaling proprioceptor gene transcription by retrograde NT3 signaling’, PLoS ONE, 7(9), pp. 1–15. Available at: https://doi.org/10.1371/journal.pone.0045551.
Nikoletopoulou, V. (2012) Mouse embryonic stem cells as a discovery tool in neurobiology. Available at: https://doi.org/10.5451/unibas-005936987.
Nikoletopoulou, V. (2012) Mouse embryonic stem cells as a discovery tool in neurobiology. Available at: https://doi.org/10.5451/unibas-005936987.
Tripodi, Marco and Arber, Silvia (2012) ‘Regulation of motor circuit assembly by spatial and temporal mechanisms’, Current opinion in neurobiology, 22(4), pp. 615–23. Available at: https://doi.org/10.1016/j.conb.2012.02.011.
Tripodi, Marco and Arber, Silvia (2012) ‘Regulation of motor circuit assembly by spatial and temporal mechanisms’, Current opinion in neurobiology, 22(4), pp. 615–23. Available at: https://doi.org/10.1016/j.conb.2012.02.011.
Arber, S. and Davis, G. (2011) ‘Developmental neuroscience’, Current Opinion in Neurobiology, 21(1), pp. 1–4. Available at: https://doi.org/10.1016/j.conb.2010.12.001.
Arber, S. and Davis, G. (2011) ‘Developmental neuroscience’, Current Opinion in Neurobiology, 21(1), pp. 1–4. Available at: https://doi.org/10.1016/j.conb.2010.12.001.
Arber, Silvia and Davis, Graeme (2011) ‘Developmental neuroscience’, Current opinion in neurobiology, pp. 1–4. Available at: https://doi.org/10.1016/j.conb.2010.12.001.
Arber, Silvia and Davis, Graeme (2011) ‘Developmental neuroscience’, Current opinion in neurobiology, pp. 1–4. Available at: https://doi.org/10.1016/j.conb.2010.12.001.
Dalla Torre di Sanguinetto, S.A. (2011) Identification of motor neuron pool marker genes and analysis of their roles in motor circuit assembly. Available at: https://doi.org/10.5451/unibas-005586040.
Dalla Torre di Sanguinetto, S.A. (2011) Identification of motor neuron pool marker genes and analysis of their roles in motor circuit assembly. Available at: https://doi.org/10.5451/unibas-005586040.
Lee, J. (2011) Scaling proprioceptor gene transcription by retrograde NT3 signaling. Available at: https://doi.org/10.5451/unibas-005669960.
Lee, J. (2011) Scaling proprioceptor gene transcription by retrograde NT3 signaling. Available at: https://doi.org/10.5451/unibas-005669960.
Ma, Chi H. E. et al. (2011) ‘The BMP Coreceptor RGMb Promotes While the Endogenous BMP Antagonist Noggin Reduces Neurite Outgrowth and Peripheral Nerve Regeneration by Modulating BMP Signaling’, Journal of Neuroscience, 31(50), pp. 18391–400. Available at: https://doi.org/10.1523/jneurosci.4550-11.2011.
Ma, Chi H. E. et al. (2011) ‘The BMP Coreceptor RGMb Promotes While the Endogenous BMP Antagonist Noggin Reduces Neurite Outgrowth and Peripheral Nerve Regeneration by Modulating BMP Signaling’, Journal of Neuroscience, 31(50), pp. 18391–400. Available at: https://doi.org/10.1523/jneurosci.4550-11.2011.
Schönenberger Lawrence, P. (2011) Optogenetic approaches to the study of hippocampal long-term plasticity. Available at: https://doi.org/10.5451/unibas-005591178.
Schönenberger Lawrence, P. (2011) Optogenetic approaches to the study of hippocampal long-term plasticity. Available at: https://doi.org/10.5451/unibas-005591178.
Stepien, A.E. (2011) Organization and connectivity of premotor interneurons in the mouse spinal cord. Available at: https://doi.org/10.5451/unibas-005712076.
Stepien, A.E. (2011) Organization and connectivity of premotor interneurons in the mouse spinal cord. Available at: https://doi.org/10.5451/unibas-005712076.
Tripodi, Marco, Stepien, Anna E and Arber, Silvia (2011) ‘Motor antagonism exposed by spatial segregation and timing of neurogenesis’, Nature, 479(7371), pp. 61–6. Available at: https://doi.org/10.1038/nature10538.
Tripodi, Marco, Stepien, Anna E and Arber, Silvia (2011) ‘Motor antagonism exposed by spatial segregation and timing of neurogenesis’, Nature, 479(7371), pp. 61–6. Available at: https://doi.org/10.1038/nature10538.
Wu, P. (2011) Characterization of RHAU conditional Knockout mice and the role of RHAU in maintaining post-synaptic stability at neuromuscular junction. Available at: https://doi.org/10.5451/unibas-005667074.
Wu, P. (2011) Characterization of RHAU conditional Knockout mice and the role of RHAU in maintaining post-synaptic stability at neuromuscular junction. Available at: https://doi.org/10.5451/unibas-005667074.
Xia, Y. et al. (2011) ‘Dragon (repulsive guidance molecule B) inhibits IL-6 expression in macrophages’, Journal of immunology, 186(3), pp. 1369–76. Available at: https://doi.org/10.4049/jimmunol.1002047.
Xia, Y. et al. (2011) ‘Dragon (repulsive guidance molecule B) inhibits IL-6 expression in macrophages’, Journal of immunology, 186(3), pp. 1369–76. Available at: https://doi.org/10.4049/jimmunol.1002047.
Abdel Samad, Omar et al. (2010) ‘Characterization of two Runx1-dependent nociceptor differentiation programs necessary for inflammatory versus neuropathic pain’, Molecular pain, 6, p. 45. Available at: https://doi.org/10.1186/1744-8069-6-45.
Abdel Samad, Omar et al. (2010) ‘Characterization of two Runx1-dependent nociceptor differentiation programs necessary for inflammatory versus neuropathic pain’, Molecular pain, 6, p. 45. Available at: https://doi.org/10.1186/1744-8069-6-45.
Friese, A. (2010) Gene profiling of identified neurons to dissect molecular mechanisms involved in spinal reflex assembly. Available at: https://doi.org/10.5451/unibas-005410755.
Friese, A. (2010) Gene profiling of identified neurons to dissect molecular mechanisms involved in spinal reflex assembly. Available at: https://doi.org/10.5451/unibas-005410755.
Holbro, N. (2010) Structure-function analysis on the level of individual synapses. Available at: https://doi.org/10.5451/unibas-005270940.
Holbro, N. (2010) Structure-function analysis on the level of individual synapses. Available at: https://doi.org/10.5451/unibas-005270940.
Siegert, S. (2010) The molecular logic of retinal cell types. Available at: https://doi.org/10.5451/unibas-005398319.
Siegert, S. (2010) The molecular logic of retinal cell types. Available at: https://doi.org/10.5451/unibas-005398319.
Stepien, Anna E, Tripodi, Marco and Arber, Silvia (2010) ‘Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells’, Neuron, 68(3), pp. 456–72. Available at: https://doi.org/10.1016/j.neuron.2010.10.019.
Stepien, Anna E, Tripodi, Marco and Arber, Silvia (2010) ‘Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells’, Neuron, 68(3), pp. 456–72. Available at: https://doi.org/10.1016/j.neuron.2010.10.019.
Viney, T.J. (2010) The diverse roles of inhibition in identified neural circuits. Available at: https://doi.org/10.5451/unibas-005285488.
Viney, T.J. (2010) The diverse roles of inhibition in identified neural circuits. Available at: https://doi.org/10.5451/unibas-005285488.
Wiechert, M.T. (2010) Mechanisms of pattern processing in olfactory bulb-like circuits. Available at: https://doi.org/10.5451/unibas-005584527.
Wiechert, M.T. (2010) Mechanisms of pattern processing in olfactory bulb-like circuits. Available at: https://doi.org/10.5451/unibas-005584527.
Zimmer, Céline et al. (2010) ‘Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells’, Development, 137(2), pp. 293–302. Available at: https://doi.org/10.1242/dev.041178.
Zimmer, Céline et al. (2010) ‘Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells’, Development, 137(2), pp. 293–302. Available at: https://doi.org/10.1242/dev.041178.
Friese, A. et al. (2009) ‘Gamma and alpha motor neurons distinguished by expression of transcription factor Err3’, Proceedings of the National Academy of Sciences of the United States of America, 106(32), pp. 13588–13593. Available at: https://doi.org/10.1073/pnas.0906809106.
Friese, A. et al. (2009) ‘Gamma and alpha motor neurons distinguished by expression of transcription factor Err3’, Proceedings of the National Academy of Sciences of the United States of America, 106(32), pp. 13588–13593. Available at: https://doi.org/10.1073/pnas.0906809106.
Lu, Benson C et al. (2009) ‘Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis’, Nature Genetics, 41(12), pp. 1295–302. Available at: https://doi.org/10.1038/ng.476.
Lu, Benson C et al. (2009) ‘Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis’, Nature Genetics, 41(12), pp. 1295–302. Available at: https://doi.org/10.1038/ng.476.
Pecho-Vrieseling, Eline et al. (2009) ‘Specificity of sensory-motor connections encoded by Sema3e-Plxnd1 recognition’, Nature, 459(7248), pp. 842–6. Available at: https://doi.org/10.1038/nature08000.
Pecho-Vrieseling, Eline et al. (2009) ‘Specificity of sensory-motor connections encoded by Sema3e-Plxnd1 recognition’, Nature, 459(7248), pp. 842–6. Available at: https://doi.org/10.1038/nature08000.
Zhu, Peixin et al. (2009) ‘Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System’, Frontiers in Neural Circuits, 3, p. 21. Available at: https://doi.org/10.3389/neuro.04.021.2009.
Zhu, Peixin et al. (2009) ‘Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System’, Frontiers in Neural Circuits, 3, p. 21. Available at: https://doi.org/10.3389/neuro.04.021.2009.
Stepien, A.E. and Arber, S. (2008) ‘Probing the Locomotor Conundrum: Descending the “V” Interneuron Ladder’, Neuron, 60(1), pp. 1–4. Available at: https://doi.org/10.1016/j.neuron.2008.09.030.
Stepien, A.E. and Arber, S. (2008) ‘Probing the Locomotor Conundrum: Descending the “V” Interneuron Ladder’, Neuron, 60(1), pp. 1–4. Available at: https://doi.org/10.1016/j.neuron.2008.09.030.
Arber, Silvia (2008) ‘FoxP1 : conducting the Hox symphony in spinal motor neurons’, Nature neuroscience, 11(10), pp. 1122–4. Available at: https://doi.org/10.1038/nn1008-1122.
Arber, Silvia (2008) ‘FoxP1 : conducting the Hox symphony in spinal motor neurons’, Nature neuroscience, 11(10), pp. 1122–4. Available at: https://doi.org/10.1038/nn1008-1122.
Dalla Torre di Sanguinetto, Simon A, Dasen, Jeremy S and Arber, Silvia (2008) ‘Transcriptional mechanisms controlling motor neuron diversity and connectivity’, Current Opinion in Neurobiology, 18(1), pp. 36–43. Available at: https://doi.org/10.1016/j.conb.2008.04.002.
Dalla Torre di Sanguinetto, Simon A, Dasen, Jeremy S and Arber, Silvia (2008) ‘Transcriptional mechanisms controlling motor neuron diversity and connectivity’, Current Opinion in Neurobiology, 18(1), pp. 36–43. Available at: https://doi.org/10.1016/j.conb.2008.04.002.
Stepien, Anna E. and Arber, Silvia (2008) ‘Probing the locomotor conundrum : descending the “V” interneuron ladder’, Neuron, 60(1), pp. 1–4. Available at: https://doi.org/10.1016/j.neuron.2008.09.030.
Stepien, Anna E. and Arber, Silvia (2008) ‘Probing the locomotor conundrum : descending the “V” interneuron ladder’, Neuron, 60(1), pp. 1–4. Available at: https://doi.org/10.1016/j.neuron.2008.09.030.
Belle, M.D. et al. (2007) ‘Characterization of a thy1.2 GFP transgenic mouse reveals a tissue-specific organization of the spinal dorsal horn’, Genesis, 45(11), pp. 679–688. Available at: https://doi.org/10.1002/dvg.20331.
Belle, M.D. et al. (2007) ‘Characterization of a thy1.2 GFP transgenic mouse reveals a tissue-specific organization of the spinal dorsal horn’, Genesis, 45(11), pp. 679–688. Available at: https://doi.org/10.1002/dvg.20331.
Belle, Mino D. et al. (2007) ‘Characterization of a thy1.2 GFP transgenic mouse reveals a tissue-specific organization of the spinal dorsal horn’, Genesis, 45(11), pp. 679–688. Available at: https://doi.org/10.1002/dvg.20331.
Belle, Mino D. et al. (2007) ‘Characterization of a thy1.2 GFP transgenic mouse reveals a tissue-specific organization of the spinal dorsal horn’, Genesis, 45(11), pp. 679–688. Available at: https://doi.org/10.1002/dvg.20331.
Hippenmeyer, Simon et al. (2007) ‘ETS transcription factor Erm controls subsynaptic gene expression in skeletal muscles’, Neuron, 55(5), pp. 726–40. Available at: https://doi.org/10.1016/j.neuron.2007.07.028.
Hippenmeyer, Simon et al. (2007) ‘ETS transcription factor Erm controls subsynaptic gene expression in skeletal muscles’, Neuron, 55(5), pp. 726–40. Available at: https://doi.org/10.1016/j.neuron.2007.07.028.
Ksiazek, Iwona et al. (2007) ‘Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death’, Journal of Neuroscience, 27(27), pp. 7183–95. Available at: https://doi.org/10.1523/jneurosci.1609-07.2007.
Ksiazek, Iwona et al. (2007) ‘Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death’, Journal of Neuroscience, 27(27), pp. 7183–95. Available at: https://doi.org/10.1523/jneurosci.1609-07.2007.
Ladle, David R, Pecho-Vrieseling, Eline and Arber, Silvia (2007) ‘Assembly of motor circuits in the spinal cord : driven to function by genetic and experience-dependent mechanisms’, Neuron, 56(2), pp. 270–83. Available at: https://doi.org/10.1016/j.neuron.2007.09.026.
Ladle, David R, Pecho-Vrieseling, Eline and Arber, Silvia (2007) ‘Assembly of motor circuits in the spinal cord : driven to function by genetic and experience-dependent mechanisms’, Neuron, 56(2), pp. 270–83. Available at: https://doi.org/10.1016/j.neuron.2007.09.026.
Vrieseling, E. (2007) Assembly of sensory-motor connectivity in the spinal cord of mice. Available at: https://doi.org/10.5451/unibas-004355201.
Vrieseling, E. (2007) Assembly of sensory-motor connectivity in the spinal cord of mice. Available at: https://doi.org/10.5451/unibas-004355201.
Kramer, Ina et al. (2006) ‘A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification’, Neuron, 49(3), pp. 379–93. Available at: https://doi.org/10.1016/j.neuron.2006.01.008.
Kramer, Ina et al. (2006) ‘A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification’, Neuron, 49(3), pp. 379–93. Available at: https://doi.org/10.1016/j.neuron.2006.01.008.
Raineteau, Olivier et al. (2006) ‘Conditional labeling of newborn granule cells to visualize their integration into established circuits in hippocampal slice cultures’, Molecular and cellular neuroscience, 32(4), pp. 344–55. Available at: https://doi.org/10.1016/j.mcn.2006.05.006.
Raineteau, Olivier et al. (2006) ‘Conditional labeling of newborn granule cells to visualize their integration into established circuits in hippocampal slice cultures’, Molecular and cellular neuroscience, 32(4), pp. 344–55. Available at: https://doi.org/10.1016/j.mcn.2006.05.006.
Vrieseling, Eline and Arber, Silvia (2006) ‘Target-induced transcriptional control of dendritic patterning and connectivity in motor neurons by the ETS gene Pea3’, Cell, 127(7), pp. 1439–52. Available at: https://doi.org/10.1016/j.cell.2006.10.042.
Vrieseling, Eline and Arber, Silvia (2006) ‘Target-induced transcriptional control of dendritic patterning and connectivity in motor neurons by the ETS gene Pea3’, Cell, 127(7), pp. 1439–52. Available at: https://doi.org/10.1016/j.cell.2006.10.042.