Faculty of Science
Faculty of Science
UNIverse - Public Research Portal

Pharmacology/Neurobiology (Rüegg)

Publications

190 found
Show per page

Mittal, Nitish et al. (2024) ‘Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice’, npj Regenerative Medicine, 9(1). Available at: https://doi.org/10.1038/s41536-024-00369-9.

URLs
URLs

Ataman, Meric et al. (2024) ‘Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles’, Communications Biology, 7(1). Available at: https://doi.org/10.1038/s42003-024-06679-4.

URLs
URLs

Ham, Alexander S et al. (2024) ‘Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.05.15.594276.

URLs
URLs

Ham, Daniel J et al. (2024) ‘Muscle fiber Myc is dispensable for muscle growth and forced expression severely perturbs homeostasis’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2024.03.13.584777.

URLs
URLs

Reinhard, Judith R. et al. (2023) ‘Nerve pathology is prevented by linker proteins in mouse models for LAMA2-related muscular dystrophy’, PNAS Nexus, 2(4), p. pgad083. Available at: https://doi.org/10.1093/pnasnexus/pgad083.

URLs
URLs

Thürkauf, Marco et al. (2023) ‘Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9’, Nature communications, 14(1), p. 6116. Available at: https://doi.org/10.1038/s41467-023-41769-7.

URLs
URLs

Ham DJ et al. (2022) ‘Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.’, 13(1). Available at: https://doi.org/10.1038/s41467-022-30189-8.

URLs
URLs

Blandino-Rosano, Manuel et al. (2022) ‘Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling’, American Journal of Physiology, Endocrinology and Metabolism, 323(2), pp. E133–E144. Available at: https://doi.org/10.1152/ajpendo.00076.2022.

URLs
URLs

Ham, Daniel J. et al. (2022) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’, Nature Communications, 13(1), p. 2025. Available at: https://doi.org/10.1038/s41467-022-29714-6.

URLs
URLs

Kaiser, Marco S. et al. (2022) ‘Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis’, Communications biology, 5(1), p. 1141. Available at: https://doi.org/10.1038/s42003-022-04097-y.

URLs
URLs

Smeets, H.J.M. et al. (2021) ‘Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands’. Elsevier Ltd, pp. 673–680. Available at: https://doi.org/10.1016/j.nmd.2021.04.003.

URLs
URLs

Börsch, Anastasiya et al. (2021) ‘Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia’, Communications Biology, 4(1), p. 194. Available at: https://doi.org/10.1038/s42003-021-01723-z.

URLs
URLs

Ham, Daniel J. et al. (2021) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’. bioRxiv. Available at: https://doi.org/10.1101/2021.05.28.446097.

URLs
URLs

Previtali, Stefano C., Cohn, Ronald D. and Ruegg, Markus A. (2021) ‘Editorial: Current Insights Into LAMA2 Disease’, Frontiers in molecular neuroscience, 14, p. 780635. Available at: https://doi.org/10.3389/fnmol.2021.780635.

URLs
URLs

Castets, Perrine, Ham, Daniel J. and Rüegg, Markus A. (2020) ‘The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player?’, Frontiers in molecular neuroscience, 13, p. 162. Available at: https://doi.org/10.3389/fnmol.2020.00162.

URLs
URLs

Ding, Xiaolei et al. (2020) ‘Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation’, Journal of Allergy and Clinical Immunology, 145(1), pp. 283–300.e8. Available at: https://doi.org/10.1016/j.jaci.2019.07.033.

URLs
URLs

Ham, Alexander S. et al. (2020) ‘mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice’, Journal of Cachexia, Sarcopenia and Muscle, 11(1), pp. 259–273. Available at: https://doi.org/10.1002/jcsm.12505.

URLs
URLs

Ham, Daniel J. et al. (2020) ‘The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia’, Nature Communications, 11(1), p. 4510. Available at: https://doi.org/10.1038/s41467-020-18140-1.

URLs
URLs

Pereira, Jorge A. et al. (2020) ‘Mice carrying an analogous heterozygous Dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy’, Human Molecular Genetics, 29(8), pp. 1253–1273. Available at: https://doi.org/10.1093/hmg/ddaa034.

URLs
URLs

Morgan, J. et al. (2019) ‘240th ENMC workshop: The involvement of skeletal muscle stem cells in the pathology of muscular dystrophies 25–27 January 2019, Hoofddorp, The Netherlands’. Elsevier Ltd, pp. 704–715. Available at: https://doi.org/10.1016/j.nmd.2019.07.003.

URLs
URLs

Ham, Alexander S. et al. (2019) ‘mTORC1 signaling is not essential for the maintenance of muscle mass and function in adult sedentary mice’. bioRxiv. Available at: https://doi.org/10.1101/738294.

URLs
URLs

Castets, Perrine et al. (2019) ‘mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4’, Nature communications, 10(1), p. 3187. Available at: https://doi.org/10.1038/s41467-019-11227-4.

URLs
URLs

Delezie, Julien et al. (2019) ‘BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle’, Proceedings of the National Academy of Sciences (PNAS), 116(32), pp. 16111–16120. Available at: https://doi.org/10.1073/pnas.1900544116.

URLs
URLs

Donadon, Irving et al. (2019) ‘Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA’, Nucleic acids research, 47(14), pp. 7618–7632. Available at: https://doi.org/10.1093/nar/gkz469.

URLs
URLs

Rion, Nathalie et al. (2019) ‘mTOR controls embryonic and adult myogenesis via mTORC1’, Development, 146(7), pp. 1–15. Available at: https://doi.org/10.1242/dev.172460.

URLs
URLs

Rion, Nathalie et al. (2019) ‘mTORC2 affects the maintenance of the muscle stem cell pool’, Skeletal Muscle, 9(1), p. 30. Available at: https://doi.org/10.1186/s13395-019-0217-y.

URLs
URLs

Ham, D.J. and Rüegg, M.A. (2018) ‘Causes and consequences of age-related changes at the neuromuscular junction’, Current Opinion in Physiology, 4, pp. 32–39. Available at: https://doi.org/10.1016/j.cophys.2018.04.007.

URLs
URLs

Boido, Marina et al. (2018) ‘Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy’, Frontiers in cellular neuroscience, 12, p. 17. Available at: https://doi.org/10.3389/fncel.2018.00017.

URLs
URLs

Martin, Sally K. et al. (2018) ‘mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis’, Scientific Reports, 8(1), p. 14501. Available at: https://doi.org/10.1038/s41598-018-32858-5.

URLs
URLs

van Putten, Maaike et al. (2018) ‘Update on Standard Operating Procedures in Preclinical Research for DMD and SMA Report of TREAT-NMD Alliance Workshop, Schiphol Airport, 26 April 2015, The Netherlands’, Journal of Neuromuscular Diseases, 5(1), pp. 29–34. Available at: https://doi.org/10.3233/jnd-170288.

URLs
URLs

Yurchenco, Peter D. et al. (2018) ‘Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies’, Matrix biology : journal of the International Society for Matrix Biology, 71-72, pp. 174–187. Available at: https://doi.org/10.1016/j.matbio.2017.11.009.

URLs
URLs

Zainul, Zarin et al. (2018) ‘Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury’, The Journal of neuroscience, 38(17), pp. 4243–4258. Available at: https://doi.org/10.1523/jneurosci.3119-17.2018.

URLs
URLs

Blandino-Rosano, M. et al. (2017) ‘Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing’, Nature Communications, 8, p. 16014. Available at: https://doi.org/10.1038/ncomms16014.

URLs
URLs

Bozadjieva, Nadejda et al. (2017) ‘Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion’, The Journal of Clinical Investigation, 127(12), pp. 4379–4393. Available at: https://doi.org/10.1172/jci90004.

URLs
URLs

Brockhoff, Marielle et al. (2017) ‘Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I’, Journal of Clinical Investigation, 127(2), pp. 549–563. Available at: https://doi.org/10.1172/jci89616.

URLs
URLs

Fitter, Stephen et al. (2017) ‘mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation’, Molecular and Cellular Biology, 37(7), pp. e00668–16. Available at: https://doi.org/10.1128/mcb.00668-16.

URLs
URLs

Hodson, Nathan et al. (2017) ‘Differential localisation and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise’, American Journal of Physiology - Cell Physiology, 313(6), pp. C604–C611. Available at: https://doi.org/10.1152/ajpcell.00176.2017.

URLs
URLs

Karakatsani, Andromachi et al. (2017) ‘Neuronal LRP4 regulates synapse formation in the developing CNS’, Development, 144(24), pp. 4604–4615. Available at: https://doi.org/10.1242/dev.150110.

URLs
URLs

Kleinert, Maximilian et al. (2017) ‘Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice’, Journal of Physiology, 595(14), pp. 4845–4855. Available at: https://doi.org/10.1113/jp274203.

URLs
URLs

McKee, Karen K. et al. (2017) ‘Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype’, Journal of Clinical Investigation, 127(3), pp. 1075–1089. Available at: https://doi.org/10.1172/jci90854.

URLs
URLs

Reinhard, Judith R. et al. (2017) ‘Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice’, Science Translational Medicine, 9(396), p. eaal4649. Available at: https://doi.org/10.1126/scitranslmed.aal4649.

URLs
URLs

Rion, Nathalie and Rüegg, Markus A. (2017) ‘LncRNA-encoded peptides: More than translational noise?’, Cell Research, 27(5), pp. 604–605. Available at: https://doi.org/10.1038/cr.2017.35.

URLs
URLs

Willmann, Raffaella et al. (2017) ‘Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy’, Journal of Neuromuscular Diseases, 4(2), pp. 115–126. Available at: https://doi.org/10.3233/jnd-170217.

URLs
URLs

Castets, Perrine et al. (2016) ‘‘Get the Balance Right’: Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 3(2), pp. 127–155. Available at: https://doi.org/10.3233/jnd-160153.

URLs
URLs

Ding, X. et al. (2016) ‘mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation’, Nature Communications, 7, p. 13226. Available at: https://doi.org/10.1038/ncomms13226.

URLs
URLs

Grahammer, F. et al. (2016) ‘mTORC2 critically regulates renal potassium handling’, Journal of Clinical Investigation, 126(5), pp. 1773–1782. Available at: https://doi.org/10.1172/jci80304.

URLs
URLs

Guridi, Maitea et al. (2016) ‘Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism’, Skeletal Muscle, 6(13), p. 13. Available at: https://doi.org/10.1186/s13395-016-0084-8.

URLs
URLs

Kleinert, Maximilian et al. (2016) ‘mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3’, Molecular Metabolism, 5(8), pp. 646–55. Available at: https://doi.org/10.1016/j.molmet.2016.06.007.

URLs
URLs

Reinhard, Judith R. et al. (2016) ‘The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory’, Nature Communications, 7, p. 11613. Available at: https://doi.org/10.1038/ncomms11613.

URLs
URLs

Ruegsegger, Céline et al. (2016) ‘Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology’, Neuron, 89(1), pp. 129–46. Available at: https://doi.org/10.1016/j.neuron.2015.11.033.

URLs
URLs

Schell, Christoph et al. (2016) ‘The Rapamycin-Sensitive Complex of Mammalian Target of Rapamycin Is Essential to Maintain Male Fertility’, American Journal of Pathology, 186(2), pp. 324–336. Available at: https://doi.org/10.1016/j.ajpath.2015.10.012.

URLs
URLs

Shende, P. et al. (2016) ‘Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy’, Cardiovascular Research, 109(1), pp. 103–114. Available at: https://doi.org/10.1093/cvr/cvv252.

URLs
URLs

Zhang, L. et al. (2016) ‘Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner’, Cell Reports, 14(5), pp. 1206–1217. Available at: https://doi.org/10.1016/j.celrep.2015.12.095.

URLs
URLs

Grahammer, F. et al. (2015) ‘Erratum: mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress (Proceedings of the National Academy of Sciences of the United States of America (2014)111 (E2817-E2826) DOI: 10.1073/pnas.1402352111)’, Proceedings of the National Academy of Sciences of the United States of America, 112(49). Available at: https://doi.org/10.1073/pnas.1522405112.

URLs
URLs

Aimi, F. et al. (2015) ‘Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult’, Scientific Reports, 5, p. 17705. Available at: https://doi.org/10.1038/srep17705.

URLs
URLs

Angliker, Nico et al. (2015) ‘mTORC1 and mTORC2 have largely distinct functions in Purkinje cells’, European Journal of Neuroscience, 42(8), pp. 2595–612. Available at: https://doi.org/10.1111/ejn.13051.

URLs
URLs

Carr, T. D. et al. (2015) ‘Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors’, Carcinogenesis, 36(4), pp. 487–497. Available at: https://doi.org/10.1093/carcin/bgv012.

URLs
URLs

Domi, Teuta et al. (2015) ‘Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A’, Skeletal Muscle, 5(30), p. 30. Available at: https://doi.org/10.1186/s13395-015-0055-5.

URLs
URLs

Guridi, Maitea et al. (2015) ‘Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21’, Science Signaling, 8(402), p. ra113. Available at: https://doi.org/10.1126/scisignal.aab3715.

URLs
URLs

Lopez, R. J. et al. (2015) ‘Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex’, Biochemical Journal, 466(1), pp. 123–135. Available at: https://doi.org/10.1042/bj20140935.

URLs
URLs

Martin, Sally K. et al. (2015) ‘Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation’, Stem Cells, 33(4), pp. 1359–65. Available at: https://doi.org/10.1002/stem.1931.

URLs
URLs

Ma, S. et al. (2015) ‘Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival’, Experimental Eye Research, 135, pp. 1–13. Available at: https://doi.org/10.1016/j.exer.2015.04.006.

URLs
URLs

Tintignac, Lionel A., Brenner, Hans-Rudolf and Rüegg, Markus A. (2015) ‘Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting’, Physiological Reviews, 95(3), pp. 809–52. Available at: https://doi.org/10.1152/physrev.00033.2014.

URLs
URLs

Venkatesh, A. et al. (2015) ‘Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice’, Journal of Clinical Investigation, 125(4), pp. 1446–1458. Available at: https://doi.org/10.1172/jci79766.

URLs
URLs

Willmann, Raffaella et al. (2015) ‘Best Practices and Standard Protocols as a Tool to Enhance Translation for Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 2(2), pp. 113–117. Available at: https://doi.org/10.3233/jnd-140067.

URLs
URLs

Zhang, Yina et al. (2015) ‘Differential regulation of AChR clustering in the polar and equatorial region of murine muscle spindles’, European Journal of Neuroscience, 41(1), pp. 69–78. Available at: https://doi.org/10.1111/ejn.12768.

URLs
URLs

Chen, J. et al. (2014) ‘WNT7B promotes bone formation in part through mTORC1’, PLoS Genetics, 10(1), p. e1004145. Available at: https://doi.org/10.1371/journal.pgen.1004145.

URLs
URLs

Chou, Po-Chien et al. (2014) ‘Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development’, Journal of Immunology, 193(3), pp. 1162–70. Available at: https://doi.org/10.4049/jimmunol.1303162.

URLs
URLs

Grahammer, F. et al. (2014) ‘mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. E2817–26. Available at: https://doi.org/10.1073/pnas.1402352111.

URLs
URLs

Hettwer, Stefan et al. (2014) ‘Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction’, PLoS ONE, 9(2), p. e88739. Available at: https://doi.org/10.1371/journal.pone.0088739.

URLs
URLs

Kleinert, Maximilian et al. (2014) ‘Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo’, Molecular Metabolism, 3(6), pp. 630–41. Available at: https://doi.org/10.1016/j.molmet.2014.06.004.

URLs
URLs

Lebrun-Julien, F. et al. (2014) ‘Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination’, Journal of Neuroscience, 34(25), pp. 8432–8448. Available at: https://doi.org/10.1523/jneurosci.1105-14.2014.

URLs
URLs

Miloslavski, Rachel et al. (2014) ‘Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner’, Journal of Molecular Cell Biology, 6(3), pp. 255–66. Available at: https://doi.org/10.1093/jmcb/mju008.

URLs
URLs

Norrmén, C. et al. (2014) ‘mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells’, Cell Reports, 9(2), pp. 646–660. Available at: https://doi.org/10.1016/j.celrep.2014.09.001.

URLs
URLs

Steiner, Esther et al. (2014) ‘The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions’, Cell and Tissue Research, 358(2), pp. 465–479. Available at: https://doi.org/10.1007/s00441-014-1969-7.

URLs
URLs

Zhang, L. et al. (2014) ‘Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function’, Journal of Immunology, 193(4), pp. 1759–1765. Available at: https://doi.org/10.4049/jimmunol.1400769.

URLs
URLs

Angliker, Nico and Rüegg, Markus A. (2013) ‘In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons’, Bioarchitecture, 3(4), pp. 113–8. Available at: https://doi.org/10.4161/bioa.26497.

URLs
URLs

Bentzinger, C. Florian et al. (2013) ‘Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy’, Skeletal Muscle, 3(1), p. 6. Available at: https://doi.org/10.1186/2044-5040-3-6.

URLs
URLs

Castets, Perrine et al. (2013) ‘Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy’, Cell metabolism, 17(5), pp. 731–44. Available at: https://doi.org/10.1016/j.cmet.2013.03.015.

URLs
URLs

Castets, Perrine and Rüegg, Markus A. (2013) ‘MTORC1 determines autophagy through ULK1 regulation in skeletal muscle’, Autophagy, 9(9), pp. 1435–7. Available at: https://doi.org/10.4161/auto.25722.

URLs
URLs

Cloëtta, Dimitri et al. (2013) ‘Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis’, Journal of neuroscience, 33(18), pp. 7799–810. Available at: https://doi.org/10.1523/jneurosci.3294-12.2013.

URLs
URLs

Rutkowski, A. et al. (2013) ‘Report on the Myomatrix Conference April 22-24, 2012, University of Nevada, Reno, Nevada, USA’, Neuromuscular Disorders, 23(2), pp. 188–191. Available at: https://doi.org/10.1016/j.nmd.2012.06.353.

URLs
URLs

Song, Jian et al. (2013) ‘Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival’, Proceedings of the National Academy of Sciences of the United States of America, 110(31), pp. E2915–24. Available at: https://doi.org/10.1073/pnas.1218131110.

URLs
URLs

Thomanetz, Venus et al. (2013) ‘Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology’, The journal of cell biology, 201(2), pp. 293–308. Available at: https://doi.org/10.1083/jcb.201205030.

URLs
URLs

Blättler, Sharon M. et al. (2012) ‘Yin yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/IGF signaling’, Cell Metabolism, 15(4), pp. 505–17. Available at: https://doi.org/10.1016/j.cmet.2012.03.008.

URLs
URLs

Blättler, Sharon M. et al. (2012) ‘Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle’, Molecular and cellular biology, 32(16), pp. 3333–46. Available at: https://doi.org/10.1128/mcb.00337-12.

URLs
URLs

Hagiwara, Asami et al. (2012) ‘Hepatic mTORC2 activates glycolysis and lipogenesis through akt, glucokinase, and SREBP1c’, Cell Metabolism, 15(5), pp. 725–38. Available at: https://doi.org/10.1016/j.cmet.2012.03.015.

URLs
URLs

Meinen, Sarina, Lin, Shuo and Ruegg, Markus A (2012) ‘Angiotensin II type 1 receptor antagonists alleviate muscle pathology in the mouse model for laminin-alpha2-deficient congenital muscular dystrophy (MDC1A)’, Skeletal muscle, 2(1), p. 18. Available at: https://doi.org/10.1186/2044-5040-2-18.

URLs
URLs

Meinen, Sarina et al. (2012) ‘Fatigue and Muscle Atrophy in a Mouse Model of Myasthenia Gravis Is Paralleled by Loss of Sarcolemmal nNOS’, PLoS ONE, 7(8), p. e44148. Available at: https://doi.org/10.1371/journal.pone.0044148.

URLs
URLs

Punga, Anna Rostedt and Ruegg, Markus A. (2012) ‘Signaling and aging at the neuromuscular synapse : lessons learnt from neuromuscular diseases’, Current Opinion in Pharmacology, 12(3), pp. 340–6. Available at: https://doi.org/10.1016/j.coph.2012.02.002.

URLs
URLs

Steiner, Esther et al. (2012) ‘Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation’, Glia, 60(11), pp. 1646–59. Available at: https://doi.org/10.1002/glia.22383.

URLs
URLs

Willmann, R. et al. (2012) ‘Enhancing translation: Guidelines for standard pre-clinical experiments in mdx mice’, Neuromuscular Disorders, 22(1), pp. 43–9. Available at: https://doi.org/10.1016/j.nmd.2011.04.012.

URLs
URLs

Gödel, M. et al. (2011) ‘Role of mTOR in podocyte function and diabetic nephropathy in humans and mice’, Journal of Clinical Investigation, 121(6), pp. 2197–2209. Available at: https://doi.org/10.1172/jci44774.

URLs
URLs

Inoki, K. et al. (2011) ‘mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice’, Journal of Clinical Investigation, 121(6), pp. 2181–2196. Available at: https://doi.org/10.1172/jci44771.

URLs
URLs

Meinen, Sarina et al. (2011) ‘Apoptosis inhibitors and mini-agrin have additive benefits in congenital muscular dystrophy mice’, EMBO Molecular Medicine, 3(8), pp. 465–79. Available at: https://doi.org/10.1002/emmm.201100151.

URLs
URLs

Punga, A. R. et al. (2011) ‘Muscle-selective synaptic disassembly and reorganization in MuSK antibody positive MG mice’, Experimental Neurology, 230(2), pp. 207–17. Available at: https://doi.org/10.1016/j.expneurol.2011.04.018.

URLs
URLs

Punga, A. R. et al. (2011) ‘MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity’, The European journal of neuroscience, 33(5), pp. 890–8. Available at: https://doi.org/10.1111/j.1460-9568.2010.07569.x.

URLs
URLs

Rieker, Claus et al. (2011) ‘Neuropathology in mice expressing mouse alpha-synuclein’, PLoS ONE, 6(9), p. e24834. Available at: https://doi.org/10.1371/journal.pone.0024834.

URLs
URLs

Romanino, Klaas et al. (2011) ‘Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function’, Proceedings of the National Academy of Sciences of the United States of America, 108(51), pp. 20808–13. Available at: https://doi.org/10.1073/pnas.1111448109.

URLs
URLs

Shende, P. et al. (2011) ‘Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice’, Circulation, 123(10), pp. 1073–82. Available at: https://doi.org/10.1161/circulationaha.110.977066.

URLs
URLs