UNIverse - Public Research Portal

Pharmacology/Neurobiology (Rüegg)

Publications

253 found
Show per page

McGowan, Timothy J. et al. (2025) ‘AAV capsids target muscle resident cells with different efficiencies - a comparative study between AAV8, AAVMYO and AAVMYO2’, Molecular Therapy: Methods & Clinical Development, 33(2). Available at: https://doi.org/10.1016/j.omtm.2025.101451.

URLs
URLs

Ham, Alexander S. et al. (2025) ‘Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance’, Nature Communications, 16(1). Available at: https://doi.org/10.1038/s41467-025-57487-1.

URLs
URLs

Mittal, Nitish et al. (2024) ‘Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice’, npj Regenerative Medicine, 9(1). Available at: https://doi.org/10.1038/s41536-024-00369-9.

URLs
URLs

Ataman, Meric et al. (2024) ‘Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles’, Communications Biology, 7(1). Available at: https://doi.org/10.1038/s42003-024-06679-4.

URLs
URLs

Ham, Alexander S et al. (2024) ‘Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.05.15.594276.

URLs
URLs

Ham, Daniel J et al. (2024) ‘Muscle fiber Myc is dispensable for muscle growth and forced expression severely perturbs homeostasis’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2024.03.13.584777.

URLs
URLs

Louche, C. (2024) Investigation and targeting of early degenerative response in retinal cells in Ischemia-Reperfusion glaucoma mouse model: paving the way for therapeutic neuroprotection strategy.

URLs
URLs

Breukel, Alexandra et al. (2023) ‘The European Neuromuscular Centre has celebrated its 30th anniversary!’, Neuromuscular Disorders, 33(3), pp. 285–287. Available at: https://doi.org/10.1016/j.nmd.2023.01.005.

URLs
URLs

Ham, A. (2023) Studying the healthy, denervated and aged neuromuscular system using single nuclei RNA-seq.

URLs
URLs

Reinhard, Judith R. et al. (2023) ‘Nerve pathology is prevented by linker proteins in mouse models for LAMA2-related muscular dystrophy’, PNAS Nexus, 2(4), p. pgad083. Available at: https://doi.org/10.1093/pnasnexus/pgad083.

URLs
URLs

Thürkauf, M. (2023) Deciphering the function of candidate genes in skeletal muscle aging using AAV-CRISPR/Cas9.

URLs
URLs

Thürkauf, Marco et al. (2023) ‘Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9’, Nature communications, 14(1), p. 6116. Available at: https://doi.org/10.1038/s41467-023-41769-7.

URLs
URLs

Smits A et al. (2022) ‘Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper’, British Journal of Clinical Pharmacology, 88(12), pp. 4965–4984. Available at: https://doi.org/10.1111/bcp.14958.

URLs
URLs

Ham DJ et al. (2022) ‘Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.’, 13(1). Available at: https://doi.org/10.1038/s41467-022-30189-8.

URLs
URLs

Blandino-Rosano, Manuel et al. (2022) ‘Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling’, American Journal of Physiology, Endocrinology and Metabolism, 323(2), pp. E133–E144. Available at: https://doi.org/10.1152/ajpendo.00076.2022.

URLs
URLs

Ham, Daniel J. et al. (2022) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’, Nature Communications, 13(1), p. 2025. Available at: https://doi.org/10.1038/s41467-022-29714-6.

URLs
URLs

Kaiser, Marco S. et al. (2022) ‘Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis’, Communications biology, 5(1), p. 1141. Available at: https://doi.org/10.1038/s42003-022-04097-y.

URLs
URLs

Leuchtmann, A.B. (2022) Molecular transducers of exercise training adaptations in young and aged skeletal muscle.

URLs
URLs

Smeets, H.J.M. et al. (2021) ‘Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands’, in Neuromuscular Disorders. Elsevier Ltd (Neuromuscular Disorders), pp. 673–680. Available at: https://doi.org/10.1016/j.nmd.2021.04.003.

URLs
URLs

Börsch, Anastasiya et al. (2021) ‘Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia’, Communications Biology, 4(1), p. 194. Available at: https://doi.org/10.1038/s42003-021-01723-z.

URLs
URLs

Ham, Daniel J. et al. (2021) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’. bioRxiv. Available at: https://doi.org/10.1101/2021.05.28.446097.

URLs
URLs

Previtali, Stefano C., Cohn, Ronald D. and Ruegg, Markus A. (2021) ‘Editorial: Current Insights Into LAMA2 Disease’, Frontiers in molecular neuroscience, 14, p. 780635. Available at: https://doi.org/10.3389/fnmol.2021.780635.

URLs
URLs

Winkler, S.C. (2021) PKCγ-mediated phosphorylation of CRMP2 regulates dendritic outgrowth in cerebellar Purkinje cells.

URLs
URLs

van Putten, Maaike et al. (2020) ‘Mouse models for muscular dystrophies: an overview’, Disease Models & Mechanisms, 13(2). Available at: https://doi.org/10.1242/dmm.043562.

URLs
URLs

Willmann, Raffaella et al. (2020) ‘Improving translatability of preclinical studies for neuromuscular disorders: lessons from the TREAT-NMD Advisory Committee for Therapeutics (TACT)’, Disease Models & Mechanisms, 13(2). Available at: https://doi.org/10.1242/dmm.042903.

URLs
URLs

Castets, Perrine, Ham, Daniel J. and Rüegg, Markus A. (2020) ‘The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player?’, Frontiers in molecular neuroscience, 13, p. 162. Available at: https://doi.org/10.3389/fnmol.2020.00162.

URLs
URLs

Ding, Xiaolei et al. (2020) ‘Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation’, Journal of Allergy and Clinical Immunology, 145(1), pp. 283–300.e8. Available at: https://doi.org/10.1016/j.jaci.2019.07.033.

URLs
URLs

Falcetta, D. (2020) Understanding the pathomechanisms leading to muscle alterations in Myotonic Dystrophy type 1: Consequences of CaMKII deregulation on the maintenance of neuromuscular junctions.

URLs
URLs

Federer-Gsponer, J. (2020) DNA content based flow sorting combined with genomic high-resolution profiling in the context of the development of castration resistance in prostate cancer.

URLs
URLs

Ham, Alexander S. et al. (2020) ‘mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice’, Journal of Cachexia, Sarcopenia and Muscle, 11(1), pp. 259–273. Available at: https://doi.org/10.1002/jcsm.12505.

URLs
URLs

Ham, Daniel J. et al. (2020) ‘The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia’, Nature Communications, 11(1), p. 4510. Available at: https://doi.org/10.1038/s41467-020-18140-1.

URLs
URLs

Pereira, Jorge A. et al. (2020) ‘Mice carrying an analogous heterozygous Dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy’, Human Molecular Genetics, 29(8), pp. 1253–1273. Available at: https://doi.org/10.1093/hmg/ddaa034.

URLs
URLs

Morgan, J. et al. (2019) ‘240th ENMC workshop: The involvement of skeletal muscle stem cells in the pathology of muscular dystrophies 25–27 January 2019, Hoofddorp, The Netherlands’. Elsevier Ltd, pp. 704–715. Available at: https://doi.org/10.1016/j.nmd.2019.07.003.

URLs
URLs

Ham, Alexander S. et al. (2019) ‘mTORC1 signaling is not essential for the maintenance of muscle mass and function in adult sedentary mice’. bioRxiv. Available at: https://doi.org/10.1101/738294.

URLs
URLs

Ambrosini, Anna et al. (2019) ‘“Be an ambassador for change that you would like to see”: a call to action to all stakeholders for co-creation in healthcare and medical research to improve quality of life of people with a neuromuscular disease’, Orphanet Journal of Rare Diseases, 14(1). Available at: https://doi.org/10.1186/s13023-019-1103-8.

URLs
URLs

Breukel, Alexandra et al. (2019) ‘“The impact of European Neuromuscular Centre (ENMC) workshops on the neuromuscular field; 25 years on …”’, Neuromuscular Disorders, 29(4), pp. 330–340. Available at: https://doi.org/10.1016/j.nmd.2019.01.008.

URLs
URLs

Lochmüller, Hanns et al. (2019) ‘The Position of Neuromuscular Patients in Shared Decision Making. Report from the 235th ENMC Workshop: Milan, Italy, January 19-20, 2018’, Journal of Neuromuscular Diseases, 6(1), pp. 161–172. Available at: https://doi.org/10.3233/jnd-180368.

URLs
URLs

Castets, Perrine et al. (2019) ‘mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4’, Nature communications, 10(1), p. 3187. Available at: https://doi.org/10.1038/s41467-019-11227-4.

URLs
URLs

Chojnowska, K. (2019) Deciphering additional mechanisms of mTORC1 signaling in skeletal muscle. Available at: https://doi.org/10.5451/unibas-007087474.

URLs
URLs

Delezie, Julien et al. (2019) ‘BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle’, Proceedings of the National Academy of Sciences (PNAS), 116(32), pp. 16111–16120. Available at: https://doi.org/10.1073/pnas.1900544116.

URLs
URLs

Donadon, Irving et al. (2019) ‘Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA’, Nucleic acids research, 47(14), pp. 7618–7632. Available at: https://doi.org/10.1093/nar/gkz469.

URLs
URLs

Flores-Dominguez, D. (2019) The role of the Calcium-binding of Copine-6 in synapse function and plasticity. Available at: https://doi.org/10.5451/unibas-007087434.

URLs
URLs

Kaiser, M. (2019) The role of mTORC1 in muscle proteostasis. Available at: https://doi.org/10.5451/unibas-007116186.

URLs
URLs

Rion, Nathalie et al. (2019) ‘mTOR controls embryonic and adult myogenesis via mTORC1’, Development, 146(7), pp. 1–15. Available at: https://doi.org/10.1242/dev.172460.

URLs
URLs

Rion, Nathalie et al. (2019) ‘mTORC2 affects the maintenance of the muscle stem cell pool’, Skeletal Muscle, 9(1), p. 30. Available at: https://doi.org/10.1186/s13395-019-0217-y.

URLs
URLs

Gordish-Dressman, Heather et al. (2018) ‘“Of Mice and Measures”: A Project to Improve How We Advance Duchenne Muscular Dystrophy Therapies to the Clinic’, Journal of Neuromuscular Diseases, 5(4), pp. 407–417. Available at: https://doi.org/10.3233/jnd-180324.

URLs
URLs

Ham, D.J. and Rüegg, M.A. (2018) ‘Causes and consequences of age-related changes at the neuromuscular junction’, Current Opinion in Physiology, 4, pp. 32–39. Available at: https://doi.org/10.1016/j.cophys.2018.04.007.

URLs
URLs

van Putten, Maaike et al. (2018) ‘Update on Standard Operating Procedures in Preclinical Research for DMD and SMA Report of TREAT-NMD Alliance Workshop, Schiphol Airport, 26 April 2015, The Netherlands’, Journal of Neuromuscular Diseases, 5(1), pp. 29–34. Available at: https://doi.org/10.3233/jnd-170288.

URLs
URLs

Willmann, Raffaella et al. (2018) ‘227 th ENMC International Workshop:’, Neuromuscular Disorders, 28(2), pp. 185–192. Available at: https://doi.org/10.1016/j.nmd.2017.11.002.

URLs
URLs

Boido, Marina et al. (2018) ‘Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy’, Frontiers in cellular neuroscience, 12, p. 17. Available at: https://doi.org/10.3389/fncel.2018.00017.

URLs
URLs

Heim, P. (2018) Regulation of glucose uptake in neonatal rat cardiomyocytes by Neuregulin1β. Available at: https://doi.org/10.5451/unibas-007052913.

URLs
URLs

Martin, Sally K. et al. (2018) ‘mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis’, Scientific Reports, 8(1), p. 14501. Available at: https://doi.org/10.1038/s41598-018-32858-5.

URLs
URLs

Yurchenco, Peter D. et al. (2018) ‘Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies’, Matrix biology : journal of the International Society for Matrix Biology, 71-72, pp. 174–187. Available at: https://doi.org/10.1016/j.matbio.2017.11.009.

URLs
URLs

Zainul, Zarin et al. (2018) ‘Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury’, The Journal of neuroscience, 38(17), pp. 4243–4258. Available at: https://doi.org/10.1523/jneurosci.3119-17.2018.

URLs
URLs

Willmann R et al. (2017) ‘Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy.’, Journal of Neuromuscular Diseases, 4(2), pp. 115–126. Available at: https://doi.org/10.3233/JND-170217.

Blandino-Rosano, M. et al. (2017) ‘Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing’, Nature Communications, 8, p. 16014. Available at: https://doi.org/10.1038/ncomms16014.

URLs
URLs

Bozadjieva, Nadejda et al. (2017) ‘Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion’, The Journal of Clinical Investigation, 127(12), pp. 4379–4393. Available at: https://doi.org/10.1172/jci90004.

URLs
URLs

Brockhoff, Marielle et al. (2017) ‘Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I’, Journal of Clinical Investigation, 127(2), pp. 549–563. Available at: https://doi.org/10.1172/jci89616.

URLs
URLs

Fitter, Stephen et al. (2017) ‘mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation’, Molecular and Cellular Biology, 37(7), pp. e00668–16. Available at: https://doi.org/10.1128/mcb.00668-16.

URLs
URLs

Hodson, Nathan et al. (2017) ‘Differential localisation and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise’, American Journal of Physiology - Cell Physiology, 313(6), pp. C604–C611. Available at: https://doi.org/10.1152/ajpcell.00176.2017.

URLs
URLs

Karakatsani, Andromachi et al. (2017) ‘Neuronal LRP4 regulates synapse formation in the developing CNS’, Development, 144(24), pp. 4604–4615. Available at: https://doi.org/10.1242/dev.150110.

URLs
URLs

Kleinert, Maximilian et al. (2017) ‘Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice’, Journal of Physiology, 595(14), pp. 4845–4855. Available at: https://doi.org/10.1113/jp274203.

URLs
URLs

Lebboukh, S. (2017) Cardiac effects of ovarian hormones and gender in a mouse model of obesity. Available at: https://doi.org/10.5451/unibas-006807165.

URLs
URLs

McKee, Karen K. et al. (2017) ‘Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype’, Journal of Clinical Investigation, 127(3), pp. 1075–1089. Available at: https://doi.org/10.1172/jci90854.

URLs
URLs

Reinhard, Judith R. et al. (2017) ‘Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice’, Science Translational Medicine, 9(396), p. eaal4649. Available at: https://doi.org/10.1126/scitranslmed.aal4649.

URLs
URLs

Rion, N. (2017) Understanding the role of mTORC1 and mTORC2 in embryonic and adult myogenesis. Available at: https://doi.org/10.5451/unibas-006786915.

URLs
URLs

Rion, Nathalie and Rüegg, Markus A. (2017) ‘LncRNA-encoded peptides: More than translational noise?’, Cell Research, 27(5), pp. 604–605. Available at: https://doi.org/10.1038/cr.2017.35.

URLs
URLs

Willmann, Raffaella et al. (2017) ‘Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy’, Journal of Neuromuscular Diseases, 4(2), pp. 115–126. Available at: https://doi.org/10.3233/jnd-170217.

URLs
URLs

Brockhoff, M. (2016) Identification of deregulated AMPK and mTORC1 signalling in myotonic dystrophy type I and their potential as therapeutic targets. Available at: https://doi.org/10.5451/unibas-006715597.

URLs
URLs

Castets, Perrine et al. (2016) ‘‘Get the Balance Right’: Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 3(2), pp. 127–155. Available at: https://doi.org/10.3233/jnd-160153.

URLs
URLs

Ding, X. et al. (2016) ‘mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation’, Nature Communications, 7, p. 13226. Available at: https://doi.org/10.1038/ncomms13226.

URLs
URLs

Grahammer, F. et al. (2016) ‘mTORC2 critically regulates renal potassium handling’, Journal of Clinical Investigation, 126(5), pp. 1773–1782. Available at: https://doi.org/10.1172/jci80304.

URLs
URLs

Guridi, Maitea et al. (2016) ‘Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism’, Skeletal Muscle, 6(13), p. 13. Available at: https://doi.org/10.1186/s13395-016-0084-8.

URLs
URLs

Kleinert, Maximilian et al. (2016) ‘mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3’, Molecular Metabolism, 5(8), pp. 646–55. Available at: https://doi.org/10.1016/j.molmet.2016.06.007.

URLs
URLs

Reinhard, Judith R. et al. (2016) ‘The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory’, Nature Communications, 7, p. 11613. Available at: https://doi.org/10.1038/ncomms11613.

URLs
URLs

Ruegsegger, Céline et al. (2016) ‘Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology’, Neuron, 89(1), pp. 129–46. Available at: https://doi.org/10.1016/j.neuron.2015.11.033.

URLs
URLs

Schell, Christoph et al. (2016) ‘The Rapamycin-Sensitive Complex of Mammalian Target of Rapamycin Is Essential to Maintain Male Fertility’, American Journal of Pathology, 186(2), pp. 324–336. Available at: https://doi.org/10.1016/j.ajpath.2015.10.012.

URLs
URLs

Shende, P. et al. (2016) ‘Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy’, Cardiovascular Research, 109(1), pp. 103–114. Available at: https://doi.org/10.1093/cvr/cvv252.

URLs
URLs

Skachokova, Z.K. (2016) Seeding properties of amyloid-beta and tau in the cerebrospinal fluid. Available at: https://doi.org/10.5451/unibas-006808735.

URLs
URLs

Zhang, L. et al. (2016) ‘Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner’, Cell Reports, 14(5), pp. 1206–1217. Available at: https://doi.org/10.1016/j.celrep.2015.12.095.

URLs
URLs

Grahammer, F. et al. (2015) ‘Erratum: mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress (Proceedings of the National Academy of Sciences of the United States of America (2014)111 (E2817-E2826) DOI: 10.1073/pnas.1402352111)’, Proceedings of the National Academy of Sciences of the United States of America, 112(49). Available at: https://doi.org/10.1073/pnas.1522405112.

URLs
URLs

Aimi, F. et al. (2015) ‘Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult’, Scientific Reports, 5, p. 17705. Available at: https://doi.org/10.1038/srep17705.

URLs
URLs

Angliker, N. (2015) Distinct and common functions of mTORC1 and mTORC2 in Purkinje cells. Available at: https://doi.org/10.5451/unibas-006432996.

URLs
URLs

Angliker, Nico et al. (2015) ‘mTORC1 and mTORC2 have largely distinct functions in Purkinje cells’, European Journal of Neuroscience, 42(8), pp. 2595–612. Available at: https://doi.org/10.1111/ejn.13051.

URLs
URLs

Carr, T. D. et al. (2015) ‘Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors’, Carcinogenesis, 36(4), pp. 487–497. Available at: https://doi.org/10.1093/carcin/bgv012.

URLs
URLs

Domi, Teuta et al. (2015) ‘Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A’, Skeletal Muscle, 5(30), p. 30. Available at: https://doi.org/10.1186/s13395-015-0055-5.

URLs
URLs

Guridi, Maitea et al. (2015) ‘Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21’, Science Signaling, 8(402), p. ra113. Available at: https://doi.org/10.1126/scisignal.aab3715.

URLs
URLs

Lopez, R. J. et al. (2015) ‘Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex’, Biochemical Journal, 466(1), pp. 123–135. Available at: https://doi.org/10.1042/bj20140935.

URLs
URLs

Martin, Sally K. et al. (2015) ‘Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation’, Stem Cells, 33(4), pp. 1359–65. Available at: https://doi.org/10.1002/stem.1931.

URLs
URLs

Ma, S. et al. (2015) ‘Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival’, Experimental Eye Research, 135, pp. 1–13. Available at: https://doi.org/10.1016/j.exer.2015.04.006.

URLs
URLs

Ormazabal, M.G. (2015) Skeletal muscle mTORC1 regulates whole-body metabolism. Available at: https://doi.org/10.5451/unibas-006615162.

URLs
URLs

Tintignac, Lionel A., Brenner, Hans-Rudolf and Rüegg, Markus A. (2015) ‘Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting’, Physiological Reviews, 95(3), pp. 809–52. Available at: https://doi.org/10.1152/physrev.00033.2014.

URLs
URLs

Venkatesh, A. et al. (2015) ‘Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice’, Journal of Clinical Investigation, 125(4), pp. 1446–1458. Available at: https://doi.org/10.1172/jci79766.

URLs
URLs

Willmann, Raffaella et al. (2015) ‘Best Practices and Standard Protocols as a Tool to Enhance Translation for Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 2(2), pp. 113–117. Available at: https://doi.org/10.3233/jnd-140067.

URLs
URLs

Zhang, Yina et al. (2015) ‘Differential regulation of AChR clustering in the polar and equatorial region of murine muscle spindles’, European Journal of Neuroscience, 41(1), pp. 69–78. Available at: https://doi.org/10.1111/ejn.12768.

URLs
URLs

Chen, J. et al. (2014) ‘WNT7B promotes bone formation in part through mTORC1’, PLoS Genetics, 10(1), p. e1004145. Available at: https://doi.org/10.1371/journal.pgen.1004145.

URLs
URLs

Chou, Po-Chien et al. (2014) ‘Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development’, Journal of Immunology, 193(3), pp. 1162–70. Available at: https://doi.org/10.4049/jimmunol.1303162.

URLs
URLs

Grahammer, F. et al. (2014) ‘mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. E2817–26. Available at: https://doi.org/10.1073/pnas.1402352111.

URLs
URLs

Hettwer, Stefan et al. (2014) ‘Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction’, PLoS ONE, 9(2), p. e88739. Available at: https://doi.org/10.1371/journal.pone.0088739.

URLs
URLs

Kleinert, Maximilian et al. (2014) ‘Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo’, Molecular Metabolism, 3(6), pp. 630–41. Available at: https://doi.org/10.1016/j.molmet.2014.06.004.

URLs
URLs