Pharmacology/Neurobiology (Rüegg)
Publications
190 found
Show per page
Mittal, Nitish et al. (2024) ‘Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice’, npj Regenerative Medicine, 9(1). Available at: https://doi.org/10.1038/s41536-024-00369-9.
Mittal, Nitish et al. (2024) ‘Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice’, npj Regenerative Medicine, 9(1). Available at: https://doi.org/10.1038/s41536-024-00369-9.
Ataman, Meric et al. (2024) ‘Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles’, Communications Biology, 7(1). Available at: https://doi.org/10.1038/s42003-024-06679-4.
Ataman, Meric et al. (2024) ‘Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles’, Communications Biology, 7(1). Available at: https://doi.org/10.1038/s42003-024-06679-4.
Ham, Alexander S et al. (2024) ‘Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.05.15.594276.
Ham, Alexander S et al. (2024) ‘Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.05.15.594276.
Ham, Daniel J et al. (2024) ‘Muscle fiber Myc is dispensable for muscle growth and forced expression severely perturbs homeostasis’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2024.03.13.584777.
Ham, Daniel J et al. (2024) ‘Muscle fiber Myc is dispensable for muscle growth and forced expression severely perturbs homeostasis’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2024.03.13.584777.
Reinhard, Judith R. et al. (2023) ‘Nerve pathology is prevented by linker proteins in mouse models for LAMA2-related muscular dystrophy’, PNAS Nexus, 2(4), p. pgad083. Available at: https://doi.org/10.1093/pnasnexus/pgad083.
Reinhard, Judith R. et al. (2023) ‘Nerve pathology is prevented by linker proteins in mouse models for LAMA2-related muscular dystrophy’, PNAS Nexus, 2(4), p. pgad083. Available at: https://doi.org/10.1093/pnasnexus/pgad083.
Thürkauf, Marco et al. (2023) ‘Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9’, Nature communications, 14(1), p. 6116. Available at: https://doi.org/10.1038/s41467-023-41769-7.
Thürkauf, Marco et al. (2023) ‘Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9’, Nature communications, 14(1), p. 6116. Available at: https://doi.org/10.1038/s41467-023-41769-7.
Ham DJ et al. (2022) ‘Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.’, 13(1). Available at: https://doi.org/10.1038/s41467-022-30189-8.
Ham DJ et al. (2022) ‘Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.’, 13(1). Available at: https://doi.org/10.1038/s41467-022-30189-8.
Blandino-Rosano, Manuel et al. (2022) ‘Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling’, American Journal of Physiology, Endocrinology and Metabolism, 323(2), pp. E133–E144. Available at: https://doi.org/10.1152/ajpendo.00076.2022.
Blandino-Rosano, Manuel et al. (2022) ‘Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling’, American Journal of Physiology, Endocrinology and Metabolism, 323(2), pp. E133–E144. Available at: https://doi.org/10.1152/ajpendo.00076.2022.
Ham, Daniel J. et al. (2022) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’, Nature Communications, 13(1), p. 2025. Available at: https://doi.org/10.1038/s41467-022-29714-6.
Ham, Daniel J. et al. (2022) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’, Nature Communications, 13(1), p. 2025. Available at: https://doi.org/10.1038/s41467-022-29714-6.
Kaiser, Marco S. et al. (2022) ‘Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis’, Communications biology, 5(1), p. 1141. Available at: https://doi.org/10.1038/s42003-022-04097-y.
Kaiser, Marco S. et al. (2022) ‘Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis’, Communications biology, 5(1), p. 1141. Available at: https://doi.org/10.1038/s42003-022-04097-y.
Smeets, H.J.M. et al. (2021) ‘Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands’. Elsevier Ltd, pp. 673–680. Available at: https://doi.org/10.1016/j.nmd.2021.04.003.
Smeets, H.J.M. et al. (2021) ‘Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands’. Elsevier Ltd, pp. 673–680. Available at: https://doi.org/10.1016/j.nmd.2021.04.003.
Börsch, Anastasiya et al. (2021) ‘Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia’, Communications Biology, 4(1), p. 194. Available at: https://doi.org/10.1038/s42003-021-01723-z.
Börsch, Anastasiya et al. (2021) ‘Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia’, Communications Biology, 4(1), p. 194. Available at: https://doi.org/10.1038/s42003-021-01723-z.
Ham, Daniel J. et al. (2021) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’. bioRxiv. Available at: https://doi.org/10.1101/2021.05.28.446097.
Ham, Daniel J. et al. (2021) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’. bioRxiv. Available at: https://doi.org/10.1101/2021.05.28.446097.
Previtali, Stefano C., Cohn, Ronald D. and Ruegg, Markus A. (2021) ‘Editorial: Current Insights Into LAMA2 Disease’, Frontiers in molecular neuroscience, 14, p. 780635. Available at: https://doi.org/10.3389/fnmol.2021.780635.
Previtali, Stefano C., Cohn, Ronald D. and Ruegg, Markus A. (2021) ‘Editorial: Current Insights Into LAMA2 Disease’, Frontiers in molecular neuroscience, 14, p. 780635. Available at: https://doi.org/10.3389/fnmol.2021.780635.
Castets, Perrine, Ham, Daniel J. and Rüegg, Markus A. (2020) ‘The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player?’, Frontiers in molecular neuroscience, 13, p. 162. Available at: https://doi.org/10.3389/fnmol.2020.00162.
Castets, Perrine, Ham, Daniel J. and Rüegg, Markus A. (2020) ‘The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player?’, Frontiers in molecular neuroscience, 13, p. 162. Available at: https://doi.org/10.3389/fnmol.2020.00162.
Ding, Xiaolei et al. (2020) ‘Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation’, Journal of Allergy and Clinical Immunology, 145(1), pp. 283–300.e8. Available at: https://doi.org/10.1016/j.jaci.2019.07.033.
Ding, Xiaolei et al. (2020) ‘Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation’, Journal of Allergy and Clinical Immunology, 145(1), pp. 283–300.e8. Available at: https://doi.org/10.1016/j.jaci.2019.07.033.
Ham, Alexander S. et al. (2020) ‘mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice’, Journal of Cachexia, Sarcopenia and Muscle, 11(1), pp. 259–273. Available at: https://doi.org/10.1002/jcsm.12505.
Ham, Alexander S. et al. (2020) ‘mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice’, Journal of Cachexia, Sarcopenia and Muscle, 11(1), pp. 259–273. Available at: https://doi.org/10.1002/jcsm.12505.
Ham, Daniel J. et al. (2020) ‘The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia’, Nature Communications, 11(1), p. 4510. Available at: https://doi.org/10.1038/s41467-020-18140-1.
Ham, Daniel J. et al. (2020) ‘The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia’, Nature Communications, 11(1), p. 4510. Available at: https://doi.org/10.1038/s41467-020-18140-1.
Pereira, Jorge A. et al. (2020) ‘Mice carrying an analogous heterozygous Dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy’, Human Molecular Genetics, 29(8), pp. 1253–1273. Available at: https://doi.org/10.1093/hmg/ddaa034.
Pereira, Jorge A. et al. (2020) ‘Mice carrying an analogous heterozygous Dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy’, Human Molecular Genetics, 29(8), pp. 1253–1273. Available at: https://doi.org/10.1093/hmg/ddaa034.
Morgan, J. et al. (2019) ‘240th ENMC workshop: The involvement of skeletal muscle stem cells in the pathology of muscular dystrophies 25–27 January 2019, Hoofddorp, The Netherlands’. Elsevier Ltd, pp. 704–715. Available at: https://doi.org/10.1016/j.nmd.2019.07.003.
Morgan, J. et al. (2019) ‘240th ENMC workshop: The involvement of skeletal muscle stem cells in the pathology of muscular dystrophies 25–27 January 2019, Hoofddorp, The Netherlands’. Elsevier Ltd, pp. 704–715. Available at: https://doi.org/10.1016/j.nmd.2019.07.003.
Ham, Alexander S. et al. (2019) ‘mTORC1 signaling is not essential for the maintenance of muscle mass and function in adult sedentary mice’. bioRxiv. Available at: https://doi.org/10.1101/738294.
Ham, Alexander S. et al. (2019) ‘mTORC1 signaling is not essential for the maintenance of muscle mass and function in adult sedentary mice’. bioRxiv. Available at: https://doi.org/10.1101/738294.
Castets, Perrine et al. (2019) ‘mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4’, Nature communications, 10(1), p. 3187. Available at: https://doi.org/10.1038/s41467-019-11227-4.
Castets, Perrine et al. (2019) ‘mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4’, Nature communications, 10(1), p. 3187. Available at: https://doi.org/10.1038/s41467-019-11227-4.
Delezie, Julien et al. (2019) ‘BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle’, Proceedings of the National Academy of Sciences (PNAS), 116(32), pp. 16111–16120. Available at: https://doi.org/10.1073/pnas.1900544116.
Delezie, Julien et al. (2019) ‘BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle’, Proceedings of the National Academy of Sciences (PNAS), 116(32), pp. 16111–16120. Available at: https://doi.org/10.1073/pnas.1900544116.
Donadon, Irving et al. (2019) ‘Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA’, Nucleic acids research, 47(14), pp. 7618–7632. Available at: https://doi.org/10.1093/nar/gkz469.
Donadon, Irving et al. (2019) ‘Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA’, Nucleic acids research, 47(14), pp. 7618–7632. Available at: https://doi.org/10.1093/nar/gkz469.
Rion, Nathalie et al. (2019) ‘mTOR controls embryonic and adult myogenesis via mTORC1’, Development, 146(7), pp. 1–15. Available at: https://doi.org/10.1242/dev.172460.
Rion, Nathalie et al. (2019) ‘mTOR controls embryonic and adult myogenesis via mTORC1’, Development, 146(7), pp. 1–15. Available at: https://doi.org/10.1242/dev.172460.
Rion, Nathalie et al. (2019) ‘mTORC2 affects the maintenance of the muscle stem cell pool’, Skeletal Muscle, 9(1), p. 30. Available at: https://doi.org/10.1186/s13395-019-0217-y.
Rion, Nathalie et al. (2019) ‘mTORC2 affects the maintenance of the muscle stem cell pool’, Skeletal Muscle, 9(1), p. 30. Available at: https://doi.org/10.1186/s13395-019-0217-y.
Ham, D.J. and Rüegg, M.A. (2018) ‘Causes and consequences of age-related changes at the neuromuscular junction’, Current Opinion in Physiology, 4, pp. 32–39. Available at: https://doi.org/10.1016/j.cophys.2018.04.007.
Ham, D.J. and Rüegg, M.A. (2018) ‘Causes and consequences of age-related changes at the neuromuscular junction’, Current Opinion in Physiology, 4, pp. 32–39. Available at: https://doi.org/10.1016/j.cophys.2018.04.007.
Boido, Marina et al. (2018) ‘Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy’, Frontiers in cellular neuroscience, 12, p. 17. Available at: https://doi.org/10.3389/fncel.2018.00017.
Boido, Marina et al. (2018) ‘Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy’, Frontiers in cellular neuroscience, 12, p. 17. Available at: https://doi.org/10.3389/fncel.2018.00017.
Martin, Sally K. et al. (2018) ‘mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis’, Scientific Reports, 8(1), p. 14501. Available at: https://doi.org/10.1038/s41598-018-32858-5.
Martin, Sally K. et al. (2018) ‘mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis’, Scientific Reports, 8(1), p. 14501. Available at: https://doi.org/10.1038/s41598-018-32858-5.
van Putten, Maaike et al. (2018) ‘Update on Standard Operating Procedures in Preclinical Research for DMD and SMA Report of TREAT-NMD Alliance Workshop, Schiphol Airport, 26 April 2015, The Netherlands’, Journal of Neuromuscular Diseases, 5(1), pp. 29–34. Available at: https://doi.org/10.3233/jnd-170288.
van Putten, Maaike et al. (2018) ‘Update on Standard Operating Procedures in Preclinical Research for DMD and SMA Report of TREAT-NMD Alliance Workshop, Schiphol Airport, 26 April 2015, The Netherlands’, Journal of Neuromuscular Diseases, 5(1), pp. 29–34. Available at: https://doi.org/10.3233/jnd-170288.
Yurchenco, Peter D. et al. (2018) ‘Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies’, Matrix biology : journal of the International Society for Matrix Biology, 71-72, pp. 174–187. Available at: https://doi.org/10.1016/j.matbio.2017.11.009.
Yurchenco, Peter D. et al. (2018) ‘Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies’, Matrix biology : journal of the International Society for Matrix Biology, 71-72, pp. 174–187. Available at: https://doi.org/10.1016/j.matbio.2017.11.009.
Zainul, Zarin et al. (2018) ‘Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury’, The Journal of neuroscience, 38(17), pp. 4243–4258. Available at: https://doi.org/10.1523/jneurosci.3119-17.2018.
Zainul, Zarin et al. (2018) ‘Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury’, The Journal of neuroscience, 38(17), pp. 4243–4258. Available at: https://doi.org/10.1523/jneurosci.3119-17.2018.
Blandino-Rosano, M. et al. (2017) ‘Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing’, Nature Communications, 8, p. 16014. Available at: https://doi.org/10.1038/ncomms16014.
Blandino-Rosano, M. et al. (2017) ‘Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing’, Nature Communications, 8, p. 16014. Available at: https://doi.org/10.1038/ncomms16014.
Bozadjieva, Nadejda et al. (2017) ‘Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion’, The Journal of Clinical Investigation, 127(12), pp. 4379–4393. Available at: https://doi.org/10.1172/jci90004.
Bozadjieva, Nadejda et al. (2017) ‘Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion’, The Journal of Clinical Investigation, 127(12), pp. 4379–4393. Available at: https://doi.org/10.1172/jci90004.
Brockhoff, Marielle et al. (2017) ‘Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I’, Journal of Clinical Investigation, 127(2), pp. 549–563. Available at: https://doi.org/10.1172/jci89616.
Brockhoff, Marielle et al. (2017) ‘Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I’, Journal of Clinical Investigation, 127(2), pp. 549–563. Available at: https://doi.org/10.1172/jci89616.
Fitter, Stephen et al. (2017) ‘mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation’, Molecular and Cellular Biology, 37(7), pp. e00668–16. Available at: https://doi.org/10.1128/mcb.00668-16.
Fitter, Stephen et al. (2017) ‘mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation’, Molecular and Cellular Biology, 37(7), pp. e00668–16. Available at: https://doi.org/10.1128/mcb.00668-16.
Hodson, Nathan et al. (2017) ‘Differential localisation and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise’, American Journal of Physiology - Cell Physiology, 313(6), pp. C604–C611. Available at: https://doi.org/10.1152/ajpcell.00176.2017.
Hodson, Nathan et al. (2017) ‘Differential localisation and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise’, American Journal of Physiology - Cell Physiology, 313(6), pp. C604–C611. Available at: https://doi.org/10.1152/ajpcell.00176.2017.
Karakatsani, Andromachi et al. (2017) ‘Neuronal LRP4 regulates synapse formation in the developing CNS’, Development, 144(24), pp. 4604–4615. Available at: https://doi.org/10.1242/dev.150110.
Karakatsani, Andromachi et al. (2017) ‘Neuronal LRP4 regulates synapse formation in the developing CNS’, Development, 144(24), pp. 4604–4615. Available at: https://doi.org/10.1242/dev.150110.
Kleinert, Maximilian et al. (2017) ‘Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice’, Journal of Physiology, 595(14), pp. 4845–4855. Available at: https://doi.org/10.1113/jp274203.
Kleinert, Maximilian et al. (2017) ‘Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice’, Journal of Physiology, 595(14), pp. 4845–4855. Available at: https://doi.org/10.1113/jp274203.
McKee, Karen K. et al. (2017) ‘Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype’, Journal of Clinical Investigation, 127(3), pp. 1075–1089. Available at: https://doi.org/10.1172/jci90854.
McKee, Karen K. et al. (2017) ‘Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype’, Journal of Clinical Investigation, 127(3), pp. 1075–1089. Available at: https://doi.org/10.1172/jci90854.
Reinhard, Judith R. et al. (2017) ‘Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice’, Science Translational Medicine, 9(396), p. eaal4649. Available at: https://doi.org/10.1126/scitranslmed.aal4649.
Reinhard, Judith R. et al. (2017) ‘Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice’, Science Translational Medicine, 9(396), p. eaal4649. Available at: https://doi.org/10.1126/scitranslmed.aal4649.
Rion, Nathalie and Rüegg, Markus A. (2017) ‘LncRNA-encoded peptides: More than translational noise?’, Cell Research, 27(5), pp. 604–605. Available at: https://doi.org/10.1038/cr.2017.35.
Rion, Nathalie and Rüegg, Markus A. (2017) ‘LncRNA-encoded peptides: More than translational noise?’, Cell Research, 27(5), pp. 604–605. Available at: https://doi.org/10.1038/cr.2017.35.
Willmann, Raffaella et al. (2017) ‘Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy’, Journal of Neuromuscular Diseases, 4(2), pp. 115–126. Available at: https://doi.org/10.3233/jnd-170217.
Willmann, Raffaella et al. (2017) ‘Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy’, Journal of Neuromuscular Diseases, 4(2), pp. 115–126. Available at: https://doi.org/10.3233/jnd-170217.
Castets, Perrine et al. (2016) ‘‘Get the Balance Right’: Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 3(2), pp. 127–155. Available at: https://doi.org/10.3233/jnd-160153.
Castets, Perrine et al. (2016) ‘‘Get the Balance Right’: Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 3(2), pp. 127–155. Available at: https://doi.org/10.3233/jnd-160153.
Ding, X. et al. (2016) ‘mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation’, Nature Communications, 7, p. 13226. Available at: https://doi.org/10.1038/ncomms13226.
Ding, X. et al. (2016) ‘mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation’, Nature Communications, 7, p. 13226. Available at: https://doi.org/10.1038/ncomms13226.
Grahammer, F. et al. (2016) ‘mTORC2 critically regulates renal potassium handling’, Journal of Clinical Investigation, 126(5), pp. 1773–1782. Available at: https://doi.org/10.1172/jci80304.
Grahammer, F. et al. (2016) ‘mTORC2 critically regulates renal potassium handling’, Journal of Clinical Investigation, 126(5), pp. 1773–1782. Available at: https://doi.org/10.1172/jci80304.
Guridi, Maitea et al. (2016) ‘Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism’, Skeletal Muscle, 6(13), p. 13. Available at: https://doi.org/10.1186/s13395-016-0084-8.
Guridi, Maitea et al. (2016) ‘Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism’, Skeletal Muscle, 6(13), p. 13. Available at: https://doi.org/10.1186/s13395-016-0084-8.
Kleinert, Maximilian et al. (2016) ‘mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3’, Molecular Metabolism, 5(8), pp. 646–55. Available at: https://doi.org/10.1016/j.molmet.2016.06.007.
Kleinert, Maximilian et al. (2016) ‘mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3’, Molecular Metabolism, 5(8), pp. 646–55. Available at: https://doi.org/10.1016/j.molmet.2016.06.007.
Reinhard, Judith R. et al. (2016) ‘The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory’, Nature Communications, 7, p. 11613. Available at: https://doi.org/10.1038/ncomms11613.
Reinhard, Judith R. et al. (2016) ‘The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory’, Nature Communications, 7, p. 11613. Available at: https://doi.org/10.1038/ncomms11613.
Ruegsegger, Céline et al. (2016) ‘Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology’, Neuron, 89(1), pp. 129–46. Available at: https://doi.org/10.1016/j.neuron.2015.11.033.
Ruegsegger, Céline et al. (2016) ‘Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology’, Neuron, 89(1), pp. 129–46. Available at: https://doi.org/10.1016/j.neuron.2015.11.033.
Schell, Christoph et al. (2016) ‘The Rapamycin-Sensitive Complex of Mammalian Target of Rapamycin Is Essential to Maintain Male Fertility’, American Journal of Pathology, 186(2), pp. 324–336. Available at: https://doi.org/10.1016/j.ajpath.2015.10.012.
Schell, Christoph et al. (2016) ‘The Rapamycin-Sensitive Complex of Mammalian Target of Rapamycin Is Essential to Maintain Male Fertility’, American Journal of Pathology, 186(2), pp. 324–336. Available at: https://doi.org/10.1016/j.ajpath.2015.10.012.
Shende, P. et al. (2016) ‘Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy’, Cardiovascular Research, 109(1), pp. 103–114. Available at: https://doi.org/10.1093/cvr/cvv252.
Shende, P. et al. (2016) ‘Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy’, Cardiovascular Research, 109(1), pp. 103–114. Available at: https://doi.org/10.1093/cvr/cvv252.
Zhang, L. et al. (2016) ‘Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner’, Cell Reports, 14(5), pp. 1206–1217. Available at: https://doi.org/10.1016/j.celrep.2015.12.095.
Zhang, L. et al. (2016) ‘Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner’, Cell Reports, 14(5), pp. 1206–1217. Available at: https://doi.org/10.1016/j.celrep.2015.12.095.
Grahammer, F. et al. (2015) ‘Erratum: mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress (Proceedings of the National Academy of Sciences of the United States of America (2014)111 (E2817-E2826) DOI: 10.1073/pnas.1402352111)’, Proceedings of the National Academy of Sciences of the United States of America, 112(49). Available at: https://doi.org/10.1073/pnas.1522405112.
Grahammer, F. et al. (2015) ‘Erratum: mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress (Proceedings of the National Academy of Sciences of the United States of America (2014)111 (E2817-E2826) DOI: 10.1073/pnas.1402352111)’, Proceedings of the National Academy of Sciences of the United States of America, 112(49). Available at: https://doi.org/10.1073/pnas.1522405112.
Aimi, F. et al. (2015) ‘Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult’, Scientific Reports, 5, p. 17705. Available at: https://doi.org/10.1038/srep17705.
Aimi, F. et al. (2015) ‘Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult’, Scientific Reports, 5, p. 17705. Available at: https://doi.org/10.1038/srep17705.
Angliker, Nico et al. (2015) ‘mTORC1 and mTORC2 have largely distinct functions in Purkinje cells’, European Journal of Neuroscience, 42(8), pp. 2595–612. Available at: https://doi.org/10.1111/ejn.13051.
Angliker, Nico et al. (2015) ‘mTORC1 and mTORC2 have largely distinct functions in Purkinje cells’, European Journal of Neuroscience, 42(8), pp. 2595–612. Available at: https://doi.org/10.1111/ejn.13051.
Carr, T. D. et al. (2015) ‘Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors’, Carcinogenesis, 36(4), pp. 487–497. Available at: https://doi.org/10.1093/carcin/bgv012.
Carr, T. D. et al. (2015) ‘Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors’, Carcinogenesis, 36(4), pp. 487–497. Available at: https://doi.org/10.1093/carcin/bgv012.
Domi, Teuta et al. (2015) ‘Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A’, Skeletal Muscle, 5(30), p. 30. Available at: https://doi.org/10.1186/s13395-015-0055-5.
Domi, Teuta et al. (2015) ‘Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A’, Skeletal Muscle, 5(30), p. 30. Available at: https://doi.org/10.1186/s13395-015-0055-5.
Guridi, Maitea et al. (2015) ‘Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21’, Science Signaling, 8(402), p. ra113. Available at: https://doi.org/10.1126/scisignal.aab3715.
Guridi, Maitea et al. (2015) ‘Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21’, Science Signaling, 8(402), p. ra113. Available at: https://doi.org/10.1126/scisignal.aab3715.
Lopez, R. J. et al. (2015) ‘Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex’, Biochemical Journal, 466(1), pp. 123–135. Available at: https://doi.org/10.1042/bj20140935.
Lopez, R. J. et al. (2015) ‘Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex’, Biochemical Journal, 466(1), pp. 123–135. Available at: https://doi.org/10.1042/bj20140935.
Martin, Sally K. et al. (2015) ‘Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation’, Stem Cells, 33(4), pp. 1359–65. Available at: https://doi.org/10.1002/stem.1931.
Martin, Sally K. et al. (2015) ‘Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation’, Stem Cells, 33(4), pp. 1359–65. Available at: https://doi.org/10.1002/stem.1931.
Ma, S. et al. (2015) ‘Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival’, Experimental Eye Research, 135, pp. 1–13. Available at: https://doi.org/10.1016/j.exer.2015.04.006.
Ma, S. et al. (2015) ‘Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival’, Experimental Eye Research, 135, pp. 1–13. Available at: https://doi.org/10.1016/j.exer.2015.04.006.
Tintignac, Lionel A., Brenner, Hans-Rudolf and Rüegg, Markus A. (2015) ‘Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting’, Physiological Reviews, 95(3), pp. 809–52. Available at: https://doi.org/10.1152/physrev.00033.2014.
Tintignac, Lionel A., Brenner, Hans-Rudolf and Rüegg, Markus A. (2015) ‘Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting’, Physiological Reviews, 95(3), pp. 809–52. Available at: https://doi.org/10.1152/physrev.00033.2014.
Venkatesh, A. et al. (2015) ‘Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice’, Journal of Clinical Investigation, 125(4), pp. 1446–1458. Available at: https://doi.org/10.1172/jci79766.
Venkatesh, A. et al. (2015) ‘Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice’, Journal of Clinical Investigation, 125(4), pp. 1446–1458. Available at: https://doi.org/10.1172/jci79766.
Willmann, Raffaella et al. (2015) ‘Best Practices and Standard Protocols as a Tool to Enhance Translation for Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 2(2), pp. 113–117. Available at: https://doi.org/10.3233/jnd-140067.
Willmann, Raffaella et al. (2015) ‘Best Practices and Standard Protocols as a Tool to Enhance Translation for Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 2(2), pp. 113–117. Available at: https://doi.org/10.3233/jnd-140067.
Zhang, Yina et al. (2015) ‘Differential regulation of AChR clustering in the polar and equatorial region of murine muscle spindles’, European Journal of Neuroscience, 41(1), pp. 69–78. Available at: https://doi.org/10.1111/ejn.12768.
Zhang, Yina et al. (2015) ‘Differential regulation of AChR clustering in the polar and equatorial region of murine muscle spindles’, European Journal of Neuroscience, 41(1), pp. 69–78. Available at: https://doi.org/10.1111/ejn.12768.
Chen, J. et al. (2014) ‘WNT7B promotes bone formation in part through mTORC1’, PLoS Genetics, 10(1), p. e1004145. Available at: https://doi.org/10.1371/journal.pgen.1004145.
Chen, J. et al. (2014) ‘WNT7B promotes bone formation in part through mTORC1’, PLoS Genetics, 10(1), p. e1004145. Available at: https://doi.org/10.1371/journal.pgen.1004145.
Chou, Po-Chien et al. (2014) ‘Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development’, Journal of Immunology, 193(3), pp. 1162–70. Available at: https://doi.org/10.4049/jimmunol.1303162.
Chou, Po-Chien et al. (2014) ‘Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development’, Journal of Immunology, 193(3), pp. 1162–70. Available at: https://doi.org/10.4049/jimmunol.1303162.
Grahammer, F. et al. (2014) ‘mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. E2817–26. Available at: https://doi.org/10.1073/pnas.1402352111.
Grahammer, F. et al. (2014) ‘mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. E2817–26. Available at: https://doi.org/10.1073/pnas.1402352111.
Hettwer, Stefan et al. (2014) ‘Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction’, PLoS ONE, 9(2), p. e88739. Available at: https://doi.org/10.1371/journal.pone.0088739.
Hettwer, Stefan et al. (2014) ‘Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction’, PLoS ONE, 9(2), p. e88739. Available at: https://doi.org/10.1371/journal.pone.0088739.
Kleinert, Maximilian et al. (2014) ‘Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo’, Molecular Metabolism, 3(6), pp. 630–41. Available at: https://doi.org/10.1016/j.molmet.2014.06.004.
Kleinert, Maximilian et al. (2014) ‘Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo’, Molecular Metabolism, 3(6), pp. 630–41. Available at: https://doi.org/10.1016/j.molmet.2014.06.004.
Lebrun-Julien, F. et al. (2014) ‘Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination’, Journal of Neuroscience, 34(25), pp. 8432–8448. Available at: https://doi.org/10.1523/jneurosci.1105-14.2014.
Lebrun-Julien, F. et al. (2014) ‘Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination’, Journal of Neuroscience, 34(25), pp. 8432–8448. Available at: https://doi.org/10.1523/jneurosci.1105-14.2014.
Miloslavski, Rachel et al. (2014) ‘Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner’, Journal of Molecular Cell Biology, 6(3), pp. 255–66. Available at: https://doi.org/10.1093/jmcb/mju008.
Miloslavski, Rachel et al. (2014) ‘Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner’, Journal of Molecular Cell Biology, 6(3), pp. 255–66. Available at: https://doi.org/10.1093/jmcb/mju008.
Norrmén, C. et al. (2014) ‘mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells’, Cell Reports, 9(2), pp. 646–660. Available at: https://doi.org/10.1016/j.celrep.2014.09.001.
Norrmén, C. et al. (2014) ‘mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells’, Cell Reports, 9(2), pp. 646–660. Available at: https://doi.org/10.1016/j.celrep.2014.09.001.
Steiner, Esther et al. (2014) ‘The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions’, Cell and Tissue Research, 358(2), pp. 465–479. Available at: https://doi.org/10.1007/s00441-014-1969-7.
Steiner, Esther et al. (2014) ‘The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions’, Cell and Tissue Research, 358(2), pp. 465–479. Available at: https://doi.org/10.1007/s00441-014-1969-7.
Zhang, L. et al. (2014) ‘Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function’, Journal of Immunology, 193(4), pp. 1759–1765. Available at: https://doi.org/10.4049/jimmunol.1400769.
Zhang, L. et al. (2014) ‘Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function’, Journal of Immunology, 193(4), pp. 1759–1765. Available at: https://doi.org/10.4049/jimmunol.1400769.
Angliker, Nico and Rüegg, Markus A. (2013) ‘In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons’, Bioarchitecture, 3(4), pp. 113–8. Available at: https://doi.org/10.4161/bioa.26497.
Angliker, Nico and Rüegg, Markus A. (2013) ‘In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons’, Bioarchitecture, 3(4), pp. 113–8. Available at: https://doi.org/10.4161/bioa.26497.
Bentzinger, C. Florian et al. (2013) ‘Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy’, Skeletal Muscle, 3(1), p. 6. Available at: https://doi.org/10.1186/2044-5040-3-6.
Bentzinger, C. Florian et al. (2013) ‘Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy’, Skeletal Muscle, 3(1), p. 6. Available at: https://doi.org/10.1186/2044-5040-3-6.
Castets, Perrine et al. (2013) ‘Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy’, Cell metabolism, 17(5), pp. 731–44. Available at: https://doi.org/10.1016/j.cmet.2013.03.015.
Castets, Perrine et al. (2013) ‘Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy’, Cell metabolism, 17(5), pp. 731–44. Available at: https://doi.org/10.1016/j.cmet.2013.03.015.
Castets, Perrine and Rüegg, Markus A. (2013) ‘MTORC1 determines autophagy through ULK1 regulation in skeletal muscle’, Autophagy, 9(9), pp. 1435–7. Available at: https://doi.org/10.4161/auto.25722.
Castets, Perrine and Rüegg, Markus A. (2013) ‘MTORC1 determines autophagy through ULK1 regulation in skeletal muscle’, Autophagy, 9(9), pp. 1435–7. Available at: https://doi.org/10.4161/auto.25722.
Cloëtta, Dimitri et al. (2013) ‘Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis’, Journal of neuroscience, 33(18), pp. 7799–810. Available at: https://doi.org/10.1523/jneurosci.3294-12.2013.
Cloëtta, Dimitri et al. (2013) ‘Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis’, Journal of neuroscience, 33(18), pp. 7799–810. Available at: https://doi.org/10.1523/jneurosci.3294-12.2013.
Rutkowski, A. et al. (2013) ‘Report on the Myomatrix Conference April 22-24, 2012, University of Nevada, Reno, Nevada, USA’, Neuromuscular Disorders, 23(2), pp. 188–191. Available at: https://doi.org/10.1016/j.nmd.2012.06.353.
Rutkowski, A. et al. (2013) ‘Report on the Myomatrix Conference April 22-24, 2012, University of Nevada, Reno, Nevada, USA’, Neuromuscular Disorders, 23(2), pp. 188–191. Available at: https://doi.org/10.1016/j.nmd.2012.06.353.
Song, Jian et al. (2013) ‘Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival’, Proceedings of the National Academy of Sciences of the United States of America, 110(31), pp. E2915–24. Available at: https://doi.org/10.1073/pnas.1218131110.
Song, Jian et al. (2013) ‘Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival’, Proceedings of the National Academy of Sciences of the United States of America, 110(31), pp. E2915–24. Available at: https://doi.org/10.1073/pnas.1218131110.
Thomanetz, Venus et al. (2013) ‘Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology’, The journal of cell biology, 201(2), pp. 293–308. Available at: https://doi.org/10.1083/jcb.201205030.
Thomanetz, Venus et al. (2013) ‘Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology’, The journal of cell biology, 201(2), pp. 293–308. Available at: https://doi.org/10.1083/jcb.201205030.
Blättler, Sharon M. et al. (2012) ‘Yin yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/IGF signaling’, Cell Metabolism, 15(4), pp. 505–17. Available at: https://doi.org/10.1016/j.cmet.2012.03.008.
Blättler, Sharon M. et al. (2012) ‘Yin yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/IGF signaling’, Cell Metabolism, 15(4), pp. 505–17. Available at: https://doi.org/10.1016/j.cmet.2012.03.008.
Blättler, Sharon M. et al. (2012) ‘Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle’, Molecular and cellular biology, 32(16), pp. 3333–46. Available at: https://doi.org/10.1128/mcb.00337-12.
Blättler, Sharon M. et al. (2012) ‘Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle’, Molecular and cellular biology, 32(16), pp. 3333–46. Available at: https://doi.org/10.1128/mcb.00337-12.
Hagiwara, Asami et al. (2012) ‘Hepatic mTORC2 activates glycolysis and lipogenesis through akt, glucokinase, and SREBP1c’, Cell Metabolism, 15(5), pp. 725–38. Available at: https://doi.org/10.1016/j.cmet.2012.03.015.
Hagiwara, Asami et al. (2012) ‘Hepatic mTORC2 activates glycolysis and lipogenesis through akt, glucokinase, and SREBP1c’, Cell Metabolism, 15(5), pp. 725–38. Available at: https://doi.org/10.1016/j.cmet.2012.03.015.
Meinen, Sarina, Lin, Shuo and Ruegg, Markus A (2012) ‘Angiotensin II type 1 receptor antagonists alleviate muscle pathology in the mouse model for laminin-alpha2-deficient congenital muscular dystrophy (MDC1A)’, Skeletal muscle, 2(1), p. 18. Available at: https://doi.org/10.1186/2044-5040-2-18.
Meinen, Sarina, Lin, Shuo and Ruegg, Markus A (2012) ‘Angiotensin II type 1 receptor antagonists alleviate muscle pathology in the mouse model for laminin-alpha2-deficient congenital muscular dystrophy (MDC1A)’, Skeletal muscle, 2(1), p. 18. Available at: https://doi.org/10.1186/2044-5040-2-18.
Meinen, Sarina et al. (2012) ‘Fatigue and Muscle Atrophy in a Mouse Model of Myasthenia Gravis Is Paralleled by Loss of Sarcolemmal nNOS’, PLoS ONE, 7(8), p. e44148. Available at: https://doi.org/10.1371/journal.pone.0044148.
Meinen, Sarina et al. (2012) ‘Fatigue and Muscle Atrophy in a Mouse Model of Myasthenia Gravis Is Paralleled by Loss of Sarcolemmal nNOS’, PLoS ONE, 7(8), p. e44148. Available at: https://doi.org/10.1371/journal.pone.0044148.
Punga, Anna Rostedt and Ruegg, Markus A. (2012) ‘Signaling and aging at the neuromuscular synapse : lessons learnt from neuromuscular diseases’, Current Opinion in Pharmacology, 12(3), pp. 340–6. Available at: https://doi.org/10.1016/j.coph.2012.02.002.
Punga, Anna Rostedt and Ruegg, Markus A. (2012) ‘Signaling and aging at the neuromuscular synapse : lessons learnt from neuromuscular diseases’, Current Opinion in Pharmacology, 12(3), pp. 340–6. Available at: https://doi.org/10.1016/j.coph.2012.02.002.
Steiner, Esther et al. (2012) ‘Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation’, Glia, 60(11), pp. 1646–59. Available at: https://doi.org/10.1002/glia.22383.
Steiner, Esther et al. (2012) ‘Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation’, Glia, 60(11), pp. 1646–59. Available at: https://doi.org/10.1002/glia.22383.
Willmann, R. et al. (2012) ‘Enhancing translation: Guidelines for standard pre-clinical experiments in mdx mice’, Neuromuscular Disorders, 22(1), pp. 43–9. Available at: https://doi.org/10.1016/j.nmd.2011.04.012.
Willmann, R. et al. (2012) ‘Enhancing translation: Guidelines for standard pre-clinical experiments in mdx mice’, Neuromuscular Disorders, 22(1), pp. 43–9. Available at: https://doi.org/10.1016/j.nmd.2011.04.012.
Gödel, M. et al. (2011) ‘Role of mTOR in podocyte function and diabetic nephropathy in humans and mice’, Journal of Clinical Investigation, 121(6), pp. 2197–2209. Available at: https://doi.org/10.1172/jci44774.
Gödel, M. et al. (2011) ‘Role of mTOR in podocyte function and diabetic nephropathy in humans and mice’, Journal of Clinical Investigation, 121(6), pp. 2197–2209. Available at: https://doi.org/10.1172/jci44774.
Inoki, K. et al. (2011) ‘mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice’, Journal of Clinical Investigation, 121(6), pp. 2181–2196. Available at: https://doi.org/10.1172/jci44771.
Inoki, K. et al. (2011) ‘mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice’, Journal of Clinical Investigation, 121(6), pp. 2181–2196. Available at: https://doi.org/10.1172/jci44771.
Meinen, Sarina et al. (2011) ‘Apoptosis inhibitors and mini-agrin have additive benefits in congenital muscular dystrophy mice’, EMBO Molecular Medicine, 3(8), pp. 465–79. Available at: https://doi.org/10.1002/emmm.201100151.
Meinen, Sarina et al. (2011) ‘Apoptosis inhibitors and mini-agrin have additive benefits in congenital muscular dystrophy mice’, EMBO Molecular Medicine, 3(8), pp. 465–79. Available at: https://doi.org/10.1002/emmm.201100151.
Punga, A. R. et al. (2011) ‘Muscle-selective synaptic disassembly and reorganization in MuSK antibody positive MG mice’, Experimental Neurology, 230(2), pp. 207–17. Available at: https://doi.org/10.1016/j.expneurol.2011.04.018.
Punga, A. R. et al. (2011) ‘Muscle-selective synaptic disassembly and reorganization in MuSK antibody positive MG mice’, Experimental Neurology, 230(2), pp. 207–17. Available at: https://doi.org/10.1016/j.expneurol.2011.04.018.
Punga, A. R. et al. (2011) ‘MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity’, The European journal of neuroscience, 33(5), pp. 890–8. Available at: https://doi.org/10.1111/j.1460-9568.2010.07569.x.
Punga, A. R. et al. (2011) ‘MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity’, The European journal of neuroscience, 33(5), pp. 890–8. Available at: https://doi.org/10.1111/j.1460-9568.2010.07569.x.
Rieker, Claus et al. (2011) ‘Neuropathology in mice expressing mouse alpha-synuclein’, PLoS ONE, 6(9), p. e24834. Available at: https://doi.org/10.1371/journal.pone.0024834.
Rieker, Claus et al. (2011) ‘Neuropathology in mice expressing mouse alpha-synuclein’, PLoS ONE, 6(9), p. e24834. Available at: https://doi.org/10.1371/journal.pone.0024834.
Romanino, Klaas et al. (2011) ‘Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function’, Proceedings of the National Academy of Sciences of the United States of America, 108(51), pp. 20808–13. Available at: https://doi.org/10.1073/pnas.1111448109.
Romanino, Klaas et al. (2011) ‘Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function’, Proceedings of the National Academy of Sciences of the United States of America, 108(51), pp. 20808–13. Available at: https://doi.org/10.1073/pnas.1111448109.
Shende, P. et al. (2011) ‘Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice’, Circulation, 123(10), pp. 1073–82. Available at: https://doi.org/10.1161/circulationaha.110.977066.
Shende, P. et al. (2011) ‘Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice’, Circulation, 123(10), pp. 1073–82. Available at: https://doi.org/10.1161/circulationaha.110.977066.