Pharmacology/Neurobiology (Rüegg)
Publications
253 found
Show per page
McGowan, Timothy J. et al. (2025) ‘AAV capsids target muscle resident cells with different efficiencies - a comparative study between AAV8, AAVMYO and AAVMYO2’, Molecular Therapy: Methods & Clinical Development, 33(2). Available at: https://doi.org/10.1016/j.omtm.2025.101451.
McGowan, Timothy J. et al. (2025) ‘AAV capsids target muscle resident cells with different efficiencies - a comparative study between AAV8, AAVMYO and AAVMYO2’, Molecular Therapy: Methods & Clinical Development, 33(2). Available at: https://doi.org/10.1016/j.omtm.2025.101451.
Ham, Alexander S. et al. (2025) ‘Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance’, Nature Communications, 16(1). Available at: https://doi.org/10.1038/s41467-025-57487-1.
Ham, Alexander S. et al. (2025) ‘Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance’, Nature Communications, 16(1). Available at: https://doi.org/10.1038/s41467-025-57487-1.
Mittal, Nitish et al. (2024) ‘Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice’, npj Regenerative Medicine, 9(1). Available at: https://doi.org/10.1038/s41536-024-00369-9.
Mittal, Nitish et al. (2024) ‘Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice’, npj Regenerative Medicine, 9(1). Available at: https://doi.org/10.1038/s41536-024-00369-9.
Ataman, Meric et al. (2024) ‘Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles’, Communications Biology, 7(1). Available at: https://doi.org/10.1038/s42003-024-06679-4.
Ataman, Meric et al. (2024) ‘Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles’, Communications Biology, 7(1). Available at: https://doi.org/10.1038/s42003-024-06679-4.
Ham, Alexander S et al. (2024) ‘Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.05.15.594276.
Ham, Alexander S et al. (2024) ‘Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.05.15.594276.
Ham, Daniel J et al. (2024) ‘Muscle fiber Myc is dispensable for muscle growth and forced expression severely perturbs homeostasis’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2024.03.13.584777.
Ham, Daniel J et al. (2024) ‘Muscle fiber Myc is dispensable for muscle growth and forced expression severely perturbs homeostasis’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2024.03.13.584777.
Louche, C. (2024) Investigation and targeting of early degenerative response in retinal cells in Ischemia-Reperfusion glaucoma mouse model: paving the way for therapeutic neuroprotection strategy.
Louche, C. (2024) Investigation and targeting of early degenerative response in retinal cells in Ischemia-Reperfusion glaucoma mouse model: paving the way for therapeutic neuroprotection strategy.
Breukel, Alexandra et al. (2023) ‘The European Neuromuscular Centre has celebrated its 30th anniversary!’, Neuromuscular Disorders, 33(3), pp. 285–287. Available at: https://doi.org/10.1016/j.nmd.2023.01.005.
Breukel, Alexandra et al. (2023) ‘The European Neuromuscular Centre has celebrated its 30th anniversary!’, Neuromuscular Disorders, 33(3), pp. 285–287. Available at: https://doi.org/10.1016/j.nmd.2023.01.005.
Ham, A. (2023) Studying the healthy, denervated and aged neuromuscular system using single nuclei RNA-seq.
Ham, A. (2023) Studying the healthy, denervated and aged neuromuscular system using single nuclei RNA-seq.
Reinhard, Judith R. et al. (2023) ‘Nerve pathology is prevented by linker proteins in mouse models for LAMA2-related muscular dystrophy’, PNAS Nexus, 2(4), p. pgad083. Available at: https://doi.org/10.1093/pnasnexus/pgad083.
Reinhard, Judith R. et al. (2023) ‘Nerve pathology is prevented by linker proteins in mouse models for LAMA2-related muscular dystrophy’, PNAS Nexus, 2(4), p. pgad083. Available at: https://doi.org/10.1093/pnasnexus/pgad083.
Thürkauf, M. (2023) Deciphering the function of candidate genes in skeletal muscle aging using AAV-CRISPR/Cas9.
Thürkauf, M. (2023) Deciphering the function of candidate genes in skeletal muscle aging using AAV-CRISPR/Cas9.
Thürkauf, Marco et al. (2023) ‘Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9’, Nature communications, 14(1), p. 6116. Available at: https://doi.org/10.1038/s41467-023-41769-7.
Thürkauf, Marco et al. (2023) ‘Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9’, Nature communications, 14(1), p. 6116. Available at: https://doi.org/10.1038/s41467-023-41769-7.
Smits A et al. (2022) ‘Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper’, British Journal of Clinical Pharmacology, 88(12), pp. 4965–4984. Available at: https://doi.org/10.1111/bcp.14958.
Smits A et al. (2022) ‘Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper’, British Journal of Clinical Pharmacology, 88(12), pp. 4965–4984. Available at: https://doi.org/10.1111/bcp.14958.
Ham DJ et al. (2022) ‘Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.’, 13(1). Available at: https://doi.org/10.1038/s41467-022-30189-8.
Ham DJ et al. (2022) ‘Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.’, 13(1). Available at: https://doi.org/10.1038/s41467-022-30189-8.
Blandino-Rosano, Manuel et al. (2022) ‘Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling’, American Journal of Physiology, Endocrinology and Metabolism, 323(2), pp. E133–E144. Available at: https://doi.org/10.1152/ajpendo.00076.2022.
Blandino-Rosano, Manuel et al. (2022) ‘Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling’, American Journal of Physiology, Endocrinology and Metabolism, 323(2), pp. E133–E144. Available at: https://doi.org/10.1152/ajpendo.00076.2022.
Ham, Daniel J. et al. (2022) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’, Nature Communications, 13(1), p. 2025. Available at: https://doi.org/10.1038/s41467-022-29714-6.
Ham, Daniel J. et al. (2022) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’, Nature Communications, 13(1), p. 2025. Available at: https://doi.org/10.1038/s41467-022-29714-6.
Kaiser, Marco S. et al. (2022) ‘Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis’, Communications biology, 5(1), p. 1141. Available at: https://doi.org/10.1038/s42003-022-04097-y.
Kaiser, Marco S. et al. (2022) ‘Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis’, Communications biology, 5(1), p. 1141. Available at: https://doi.org/10.1038/s42003-022-04097-y.
Leuchtmann, A.B. (2022) Molecular transducers of exercise training adaptations in young and aged skeletal muscle.
Leuchtmann, A.B. (2022) Molecular transducers of exercise training adaptations in young and aged skeletal muscle.
Smeets, H.J.M. et al. (2021) ‘Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands’, in Neuromuscular Disorders. Elsevier Ltd (Neuromuscular Disorders), pp. 673–680. Available at: https://doi.org/10.1016/j.nmd.2021.04.003.
Smeets, H.J.M. et al. (2021) ‘Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands’, in Neuromuscular Disorders. Elsevier Ltd (Neuromuscular Disorders), pp. 673–680. Available at: https://doi.org/10.1016/j.nmd.2021.04.003.
Börsch, Anastasiya et al. (2021) ‘Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia’, Communications Biology, 4(1), p. 194. Available at: https://doi.org/10.1038/s42003-021-01723-z.
Börsch, Anastasiya et al. (2021) ‘Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia’, Communications Biology, 4(1), p. 194. Available at: https://doi.org/10.1038/s42003-021-01723-z.
Ham, Daniel J. et al. (2021) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’. bioRxiv. Available at: https://doi.org/10.1101/2021.05.28.446097.
Ham, Daniel J. et al. (2021) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’. bioRxiv. Available at: https://doi.org/10.1101/2021.05.28.446097.
Previtali, Stefano C., Cohn, Ronald D. and Ruegg, Markus A. (2021) ‘Editorial: Current Insights Into LAMA2 Disease’, Frontiers in molecular neuroscience, 14, p. 780635. Available at: https://doi.org/10.3389/fnmol.2021.780635.
Previtali, Stefano C., Cohn, Ronald D. and Ruegg, Markus A. (2021) ‘Editorial: Current Insights Into LAMA2 Disease’, Frontiers in molecular neuroscience, 14, p. 780635. Available at: https://doi.org/10.3389/fnmol.2021.780635.
Winkler, S.C. (2021) PKCγ-mediated phosphorylation of CRMP2 regulates dendritic outgrowth in cerebellar Purkinje cells.
Winkler, S.C. (2021) PKCγ-mediated phosphorylation of CRMP2 regulates dendritic outgrowth in cerebellar Purkinje cells.
van Putten, Maaike et al. (2020) ‘Mouse models for muscular dystrophies: an overview’, Disease Models & Mechanisms, 13(2). Available at: https://doi.org/10.1242/dmm.043562.
van Putten, Maaike et al. (2020) ‘Mouse models for muscular dystrophies: an overview’, Disease Models & Mechanisms, 13(2). Available at: https://doi.org/10.1242/dmm.043562.
Willmann, Raffaella et al. (2020) ‘Improving translatability of preclinical studies for neuromuscular disorders: lessons from the TREAT-NMD Advisory Committee for Therapeutics (TACT)’, Disease Models & Mechanisms, 13(2). Available at: https://doi.org/10.1242/dmm.042903.
Willmann, Raffaella et al. (2020) ‘Improving translatability of preclinical studies for neuromuscular disorders: lessons from the TREAT-NMD Advisory Committee for Therapeutics (TACT)’, Disease Models & Mechanisms, 13(2). Available at: https://doi.org/10.1242/dmm.042903.
Castets, Perrine, Ham, Daniel J. and Rüegg, Markus A. (2020) ‘The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player?’, Frontiers in molecular neuroscience, 13, p. 162. Available at: https://doi.org/10.3389/fnmol.2020.00162.
Castets, Perrine, Ham, Daniel J. and Rüegg, Markus A. (2020) ‘The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player?’, Frontiers in molecular neuroscience, 13, p. 162. Available at: https://doi.org/10.3389/fnmol.2020.00162.
Ding, Xiaolei et al. (2020) ‘Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation’, Journal of Allergy and Clinical Immunology, 145(1), pp. 283–300.e8. Available at: https://doi.org/10.1016/j.jaci.2019.07.033.
Ding, Xiaolei et al. (2020) ‘Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation’, Journal of Allergy and Clinical Immunology, 145(1), pp. 283–300.e8. Available at: https://doi.org/10.1016/j.jaci.2019.07.033.
Falcetta, D. (2020) Understanding the pathomechanisms leading to muscle alterations in Myotonic Dystrophy type 1: Consequences of CaMKII deregulation on the maintenance of neuromuscular junctions.
Falcetta, D. (2020) Understanding the pathomechanisms leading to muscle alterations in Myotonic Dystrophy type 1: Consequences of CaMKII deregulation on the maintenance of neuromuscular junctions.
Federer-Gsponer, J. (2020) DNA content based flow sorting combined with genomic high-resolution profiling in the context of the development of castration resistance in prostate cancer.
Federer-Gsponer, J. (2020) DNA content based flow sorting combined with genomic high-resolution profiling in the context of the development of castration resistance in prostate cancer.
Ham, Alexander S. et al. (2020) ‘mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice’, Journal of Cachexia, Sarcopenia and Muscle, 11(1), pp. 259–273. Available at: https://doi.org/10.1002/jcsm.12505.
Ham, Alexander S. et al. (2020) ‘mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice’, Journal of Cachexia, Sarcopenia and Muscle, 11(1), pp. 259–273. Available at: https://doi.org/10.1002/jcsm.12505.
Ham, Daniel J. et al. (2020) ‘The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia’, Nature Communications, 11(1), p. 4510. Available at: https://doi.org/10.1038/s41467-020-18140-1.
Ham, Daniel J. et al. (2020) ‘The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia’, Nature Communications, 11(1), p. 4510. Available at: https://doi.org/10.1038/s41467-020-18140-1.
Pereira, Jorge A. et al. (2020) ‘Mice carrying an analogous heterozygous Dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy’, Human Molecular Genetics, 29(8), pp. 1253–1273. Available at: https://doi.org/10.1093/hmg/ddaa034.
Pereira, Jorge A. et al. (2020) ‘Mice carrying an analogous heterozygous Dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy’, Human Molecular Genetics, 29(8), pp. 1253–1273. Available at: https://doi.org/10.1093/hmg/ddaa034.
Morgan, J. et al. (2019) ‘240th ENMC workshop: The involvement of skeletal muscle stem cells in the pathology of muscular dystrophies 25–27 January 2019, Hoofddorp, The Netherlands’. Elsevier Ltd, pp. 704–715. Available at: https://doi.org/10.1016/j.nmd.2019.07.003.
Morgan, J. et al. (2019) ‘240th ENMC workshop: The involvement of skeletal muscle stem cells in the pathology of muscular dystrophies 25–27 January 2019, Hoofddorp, The Netherlands’. Elsevier Ltd, pp. 704–715. Available at: https://doi.org/10.1016/j.nmd.2019.07.003.
Ham, Alexander S. et al. (2019) ‘mTORC1 signaling is not essential for the maintenance of muscle mass and function in adult sedentary mice’. bioRxiv. Available at: https://doi.org/10.1101/738294.
Ham, Alexander S. et al. (2019) ‘mTORC1 signaling is not essential for the maintenance of muscle mass and function in adult sedentary mice’. bioRxiv. Available at: https://doi.org/10.1101/738294.
Ambrosini, Anna et al. (2019) ‘“Be an ambassador for change that you would like to see”: a call to action to all stakeholders for co-creation in healthcare and medical research to improve quality of life of people with a neuromuscular disease’, Orphanet Journal of Rare Diseases, 14(1). Available at: https://doi.org/10.1186/s13023-019-1103-8.
Ambrosini, Anna et al. (2019) ‘“Be an ambassador for change that you would like to see”: a call to action to all stakeholders for co-creation in healthcare and medical research to improve quality of life of people with a neuromuscular disease’, Orphanet Journal of Rare Diseases, 14(1). Available at: https://doi.org/10.1186/s13023-019-1103-8.
Breukel, Alexandra et al. (2019) ‘“The impact of European Neuromuscular Centre (ENMC) workshops on the neuromuscular field; 25 years on …”’, Neuromuscular Disorders, 29(4), pp. 330–340. Available at: https://doi.org/10.1016/j.nmd.2019.01.008.
Breukel, Alexandra et al. (2019) ‘“The impact of European Neuromuscular Centre (ENMC) workshops on the neuromuscular field; 25 years on …”’, Neuromuscular Disorders, 29(4), pp. 330–340. Available at: https://doi.org/10.1016/j.nmd.2019.01.008.
Lochmüller, Hanns et al. (2019) ‘The Position of Neuromuscular Patients in Shared Decision Making. Report from the 235th ENMC Workshop: Milan, Italy, January 19-20, 2018’, Journal of Neuromuscular Diseases, 6(1), pp. 161–172. Available at: https://doi.org/10.3233/jnd-180368.
Lochmüller, Hanns et al. (2019) ‘The Position of Neuromuscular Patients in Shared Decision Making. Report from the 235th ENMC Workshop: Milan, Italy, January 19-20, 2018’, Journal of Neuromuscular Diseases, 6(1), pp. 161–172. Available at: https://doi.org/10.3233/jnd-180368.
Castets, Perrine et al. (2019) ‘mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4’, Nature communications, 10(1), p. 3187. Available at: https://doi.org/10.1038/s41467-019-11227-4.
Castets, Perrine et al. (2019) ‘mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4’, Nature communications, 10(1), p. 3187. Available at: https://doi.org/10.1038/s41467-019-11227-4.
Chojnowska, K. (2019) Deciphering additional mechanisms of mTORC1 signaling in skeletal muscle. Available at: https://doi.org/10.5451/unibas-007087474.
Chojnowska, K. (2019) Deciphering additional mechanisms of mTORC1 signaling in skeletal muscle. Available at: https://doi.org/10.5451/unibas-007087474.
Delezie, Julien et al. (2019) ‘BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle’, Proceedings of the National Academy of Sciences (PNAS), 116(32), pp. 16111–16120. Available at: https://doi.org/10.1073/pnas.1900544116.
Delezie, Julien et al. (2019) ‘BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle’, Proceedings of the National Academy of Sciences (PNAS), 116(32), pp. 16111–16120. Available at: https://doi.org/10.1073/pnas.1900544116.
Donadon, Irving et al. (2019) ‘Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA’, Nucleic acids research, 47(14), pp. 7618–7632. Available at: https://doi.org/10.1093/nar/gkz469.
Donadon, Irving et al. (2019) ‘Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA’, Nucleic acids research, 47(14), pp. 7618–7632. Available at: https://doi.org/10.1093/nar/gkz469.
Flores-Dominguez, D. (2019) The role of the Calcium-binding of Copine-6 in synapse function and plasticity. Available at: https://doi.org/10.5451/unibas-007087434.
Flores-Dominguez, D. (2019) The role of the Calcium-binding of Copine-6 in synapse function and plasticity. Available at: https://doi.org/10.5451/unibas-007087434.
Kaiser, M. (2019) The role of mTORC1 in muscle proteostasis. Available at: https://doi.org/10.5451/unibas-007116186.
Kaiser, M. (2019) The role of mTORC1 in muscle proteostasis. Available at: https://doi.org/10.5451/unibas-007116186.
Rion, Nathalie et al. (2019) ‘mTOR controls embryonic and adult myogenesis via mTORC1’, Development, 146(7), pp. 1–15. Available at: https://doi.org/10.1242/dev.172460.
Rion, Nathalie et al. (2019) ‘mTOR controls embryonic and adult myogenesis via mTORC1’, Development, 146(7), pp. 1–15. Available at: https://doi.org/10.1242/dev.172460.
Rion, Nathalie et al. (2019) ‘mTORC2 affects the maintenance of the muscle stem cell pool’, Skeletal Muscle, 9(1), p. 30. Available at: https://doi.org/10.1186/s13395-019-0217-y.
Rion, Nathalie et al. (2019) ‘mTORC2 affects the maintenance of the muscle stem cell pool’, Skeletal Muscle, 9(1), p. 30. Available at: https://doi.org/10.1186/s13395-019-0217-y.
Gordish-Dressman, Heather et al. (2018) ‘“Of Mice and Measures”: A Project to Improve How We Advance Duchenne Muscular Dystrophy Therapies to the Clinic’, Journal of Neuromuscular Diseases, 5(4), pp. 407–417. Available at: https://doi.org/10.3233/jnd-180324.
Gordish-Dressman, Heather et al. (2018) ‘“Of Mice and Measures”: A Project to Improve How We Advance Duchenne Muscular Dystrophy Therapies to the Clinic’, Journal of Neuromuscular Diseases, 5(4), pp. 407–417. Available at: https://doi.org/10.3233/jnd-180324.
Ham, D.J. and Rüegg, M.A. (2018) ‘Causes and consequences of age-related changes at the neuromuscular junction’, Current Opinion in Physiology, 4, pp. 32–39. Available at: https://doi.org/10.1016/j.cophys.2018.04.007.
Ham, D.J. and Rüegg, M.A. (2018) ‘Causes and consequences of age-related changes at the neuromuscular junction’, Current Opinion in Physiology, 4, pp. 32–39. Available at: https://doi.org/10.1016/j.cophys.2018.04.007.
van Putten, Maaike et al. (2018) ‘Update on Standard Operating Procedures in Preclinical Research for DMD and SMA Report of TREAT-NMD Alliance Workshop, Schiphol Airport, 26 April 2015, The Netherlands’, Journal of Neuromuscular Diseases, 5(1), pp. 29–34. Available at: https://doi.org/10.3233/jnd-170288.
van Putten, Maaike et al. (2018) ‘Update on Standard Operating Procedures in Preclinical Research for DMD and SMA Report of TREAT-NMD Alliance Workshop, Schiphol Airport, 26 April 2015, The Netherlands’, Journal of Neuromuscular Diseases, 5(1), pp. 29–34. Available at: https://doi.org/10.3233/jnd-170288.
Willmann, Raffaella et al. (2018) ‘227 th ENMC International Workshop:’, Neuromuscular Disorders, 28(2), pp. 185–192. Available at: https://doi.org/10.1016/j.nmd.2017.11.002.
Willmann, Raffaella et al. (2018) ‘227 th ENMC International Workshop:’, Neuromuscular Disorders, 28(2), pp. 185–192. Available at: https://doi.org/10.1016/j.nmd.2017.11.002.
Boido, Marina et al. (2018) ‘Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy’, Frontiers in cellular neuroscience, 12, p. 17. Available at: https://doi.org/10.3389/fncel.2018.00017.
Boido, Marina et al. (2018) ‘Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy’, Frontiers in cellular neuroscience, 12, p. 17. Available at: https://doi.org/10.3389/fncel.2018.00017.
Heim, P. (2018) Regulation of glucose uptake in neonatal rat cardiomyocytes by Neuregulin1β. Available at: https://doi.org/10.5451/unibas-007052913.
Heim, P. (2018) Regulation of glucose uptake in neonatal rat cardiomyocytes by Neuregulin1β. Available at: https://doi.org/10.5451/unibas-007052913.
Martin, Sally K. et al. (2018) ‘mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis’, Scientific Reports, 8(1), p. 14501. Available at: https://doi.org/10.1038/s41598-018-32858-5.
Martin, Sally K. et al. (2018) ‘mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis’, Scientific Reports, 8(1), p. 14501. Available at: https://doi.org/10.1038/s41598-018-32858-5.
Yurchenco, Peter D. et al. (2018) ‘Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies’, Matrix biology : journal of the International Society for Matrix Biology, 71-72, pp. 174–187. Available at: https://doi.org/10.1016/j.matbio.2017.11.009.
Yurchenco, Peter D. et al. (2018) ‘Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies’, Matrix biology : journal of the International Society for Matrix Biology, 71-72, pp. 174–187. Available at: https://doi.org/10.1016/j.matbio.2017.11.009.
Zainul, Zarin et al. (2018) ‘Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury’, The Journal of neuroscience, 38(17), pp. 4243–4258. Available at: https://doi.org/10.1523/jneurosci.3119-17.2018.
Zainul, Zarin et al. (2018) ‘Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury’, The Journal of neuroscience, 38(17), pp. 4243–4258. Available at: https://doi.org/10.1523/jneurosci.3119-17.2018.
Willmann R et al. (2017) ‘Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy.’, Journal of Neuromuscular Diseases, 4(2), pp. 115–126. Available at: https://doi.org/10.3233/JND-170217.
Willmann R et al. (2017) ‘Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy.’, Journal of Neuromuscular Diseases, 4(2), pp. 115–126. Available at: https://doi.org/10.3233/JND-170217.
Blandino-Rosano, M. et al. (2017) ‘Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing’, Nature Communications, 8, p. 16014. Available at: https://doi.org/10.1038/ncomms16014.
Blandino-Rosano, M. et al. (2017) ‘Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing’, Nature Communications, 8, p. 16014. Available at: https://doi.org/10.1038/ncomms16014.
Bozadjieva, Nadejda et al. (2017) ‘Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion’, The Journal of Clinical Investigation, 127(12), pp. 4379–4393. Available at: https://doi.org/10.1172/jci90004.
Bozadjieva, Nadejda et al. (2017) ‘Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion’, The Journal of Clinical Investigation, 127(12), pp. 4379–4393. Available at: https://doi.org/10.1172/jci90004.
Brockhoff, Marielle et al. (2017) ‘Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I’, Journal of Clinical Investigation, 127(2), pp. 549–563. Available at: https://doi.org/10.1172/jci89616.
Brockhoff, Marielle et al. (2017) ‘Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I’, Journal of Clinical Investigation, 127(2), pp. 549–563. Available at: https://doi.org/10.1172/jci89616.
Fitter, Stephen et al. (2017) ‘mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation’, Molecular and Cellular Biology, 37(7), pp. e00668–16. Available at: https://doi.org/10.1128/mcb.00668-16.
Fitter, Stephen et al. (2017) ‘mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation’, Molecular and Cellular Biology, 37(7), pp. e00668–16. Available at: https://doi.org/10.1128/mcb.00668-16.
Hodson, Nathan et al. (2017) ‘Differential localisation and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise’, American Journal of Physiology - Cell Physiology, 313(6), pp. C604–C611. Available at: https://doi.org/10.1152/ajpcell.00176.2017.
Hodson, Nathan et al. (2017) ‘Differential localisation and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise’, American Journal of Physiology - Cell Physiology, 313(6), pp. C604–C611. Available at: https://doi.org/10.1152/ajpcell.00176.2017.
Karakatsani, Andromachi et al. (2017) ‘Neuronal LRP4 regulates synapse formation in the developing CNS’, Development, 144(24), pp. 4604–4615. Available at: https://doi.org/10.1242/dev.150110.
Karakatsani, Andromachi et al. (2017) ‘Neuronal LRP4 regulates synapse formation in the developing CNS’, Development, 144(24), pp. 4604–4615. Available at: https://doi.org/10.1242/dev.150110.
Kleinert, Maximilian et al. (2017) ‘Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice’, Journal of Physiology, 595(14), pp. 4845–4855. Available at: https://doi.org/10.1113/jp274203.
Kleinert, Maximilian et al. (2017) ‘Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice’, Journal of Physiology, 595(14), pp. 4845–4855. Available at: https://doi.org/10.1113/jp274203.
Lebboukh, S. (2017) Cardiac effects of ovarian hormones and gender in a mouse model of obesity. Available at: https://doi.org/10.5451/unibas-006807165.
Lebboukh, S. (2017) Cardiac effects of ovarian hormones and gender in a mouse model of obesity. Available at: https://doi.org/10.5451/unibas-006807165.
McKee, Karen K. et al. (2017) ‘Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype’, Journal of Clinical Investigation, 127(3), pp. 1075–1089. Available at: https://doi.org/10.1172/jci90854.
McKee, Karen K. et al. (2017) ‘Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype’, Journal of Clinical Investigation, 127(3), pp. 1075–1089. Available at: https://doi.org/10.1172/jci90854.
Reinhard, Judith R. et al. (2017) ‘Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice’, Science Translational Medicine, 9(396), p. eaal4649. Available at: https://doi.org/10.1126/scitranslmed.aal4649.
Reinhard, Judith R. et al. (2017) ‘Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice’, Science Translational Medicine, 9(396), p. eaal4649. Available at: https://doi.org/10.1126/scitranslmed.aal4649.
Rion, N. (2017) Understanding the role of mTORC1 and mTORC2 in embryonic and adult myogenesis. Available at: https://doi.org/10.5451/unibas-006786915.
Rion, N. (2017) Understanding the role of mTORC1 and mTORC2 in embryonic and adult myogenesis. Available at: https://doi.org/10.5451/unibas-006786915.
Rion, Nathalie and Rüegg, Markus A. (2017) ‘LncRNA-encoded peptides: More than translational noise?’, Cell Research, 27(5), pp. 604–605. Available at: https://doi.org/10.1038/cr.2017.35.
Rion, Nathalie and Rüegg, Markus A. (2017) ‘LncRNA-encoded peptides: More than translational noise?’, Cell Research, 27(5), pp. 604–605. Available at: https://doi.org/10.1038/cr.2017.35.
Willmann, Raffaella et al. (2017) ‘Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy’, Journal of Neuromuscular Diseases, 4(2), pp. 115–126. Available at: https://doi.org/10.3233/jnd-170217.
Willmann, Raffaella et al. (2017) ‘Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy’, Journal of Neuromuscular Diseases, 4(2), pp. 115–126. Available at: https://doi.org/10.3233/jnd-170217.
Brockhoff, M. (2016) Identification of deregulated AMPK and mTORC1 signalling in myotonic dystrophy type I and their potential as therapeutic targets. Available at: https://doi.org/10.5451/unibas-006715597.
Brockhoff, M. (2016) Identification of deregulated AMPK and mTORC1 signalling in myotonic dystrophy type I and their potential as therapeutic targets. Available at: https://doi.org/10.5451/unibas-006715597.
Castets, Perrine et al. (2016) ‘‘Get the Balance Right’: Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 3(2), pp. 127–155. Available at: https://doi.org/10.3233/jnd-160153.
Castets, Perrine et al. (2016) ‘‘Get the Balance Right’: Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 3(2), pp. 127–155. Available at: https://doi.org/10.3233/jnd-160153.
Ding, X. et al. (2016) ‘mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation’, Nature Communications, 7, p. 13226. Available at: https://doi.org/10.1038/ncomms13226.
Ding, X. et al. (2016) ‘mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation’, Nature Communications, 7, p. 13226. Available at: https://doi.org/10.1038/ncomms13226.
Grahammer, F. et al. (2016) ‘mTORC2 critically regulates renal potassium handling’, Journal of Clinical Investigation, 126(5), pp. 1773–1782. Available at: https://doi.org/10.1172/jci80304.
Grahammer, F. et al. (2016) ‘mTORC2 critically regulates renal potassium handling’, Journal of Clinical Investigation, 126(5), pp. 1773–1782. Available at: https://doi.org/10.1172/jci80304.
Guridi, Maitea et al. (2016) ‘Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism’, Skeletal Muscle, 6(13), p. 13. Available at: https://doi.org/10.1186/s13395-016-0084-8.
Guridi, Maitea et al. (2016) ‘Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism’, Skeletal Muscle, 6(13), p. 13. Available at: https://doi.org/10.1186/s13395-016-0084-8.
Kleinert, Maximilian et al. (2016) ‘mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3’, Molecular Metabolism, 5(8), pp. 646–55. Available at: https://doi.org/10.1016/j.molmet.2016.06.007.
Kleinert, Maximilian et al. (2016) ‘mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3’, Molecular Metabolism, 5(8), pp. 646–55. Available at: https://doi.org/10.1016/j.molmet.2016.06.007.
Reinhard, Judith R. et al. (2016) ‘The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory’, Nature Communications, 7, p. 11613. Available at: https://doi.org/10.1038/ncomms11613.
Reinhard, Judith R. et al. (2016) ‘The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory’, Nature Communications, 7, p. 11613. Available at: https://doi.org/10.1038/ncomms11613.
Ruegsegger, Céline et al. (2016) ‘Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology’, Neuron, 89(1), pp. 129–46. Available at: https://doi.org/10.1016/j.neuron.2015.11.033.
Ruegsegger, Céline et al. (2016) ‘Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology’, Neuron, 89(1), pp. 129–46. Available at: https://doi.org/10.1016/j.neuron.2015.11.033.
Schell, Christoph et al. (2016) ‘The Rapamycin-Sensitive Complex of Mammalian Target of Rapamycin Is Essential to Maintain Male Fertility’, American Journal of Pathology, 186(2), pp. 324–336. Available at: https://doi.org/10.1016/j.ajpath.2015.10.012.
Schell, Christoph et al. (2016) ‘The Rapamycin-Sensitive Complex of Mammalian Target of Rapamycin Is Essential to Maintain Male Fertility’, American Journal of Pathology, 186(2), pp. 324–336. Available at: https://doi.org/10.1016/j.ajpath.2015.10.012.
Shende, P. et al. (2016) ‘Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy’, Cardiovascular Research, 109(1), pp. 103–114. Available at: https://doi.org/10.1093/cvr/cvv252.
Shende, P. et al. (2016) ‘Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy’, Cardiovascular Research, 109(1), pp. 103–114. Available at: https://doi.org/10.1093/cvr/cvv252.
Skachokova, Z.K. (2016) Seeding properties of amyloid-beta and tau in the cerebrospinal fluid. Available at: https://doi.org/10.5451/unibas-006808735.
Skachokova, Z.K. (2016) Seeding properties of amyloid-beta and tau in the cerebrospinal fluid. Available at: https://doi.org/10.5451/unibas-006808735.
Zhang, L. et al. (2016) ‘Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner’, Cell Reports, 14(5), pp. 1206–1217. Available at: https://doi.org/10.1016/j.celrep.2015.12.095.
Zhang, L. et al. (2016) ‘Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner’, Cell Reports, 14(5), pp. 1206–1217. Available at: https://doi.org/10.1016/j.celrep.2015.12.095.
Grahammer, F. et al. (2015) ‘Erratum: mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress (Proceedings of the National Academy of Sciences of the United States of America (2014)111 (E2817-E2826) DOI: 10.1073/pnas.1402352111)’, Proceedings of the National Academy of Sciences of the United States of America, 112(49). Available at: https://doi.org/10.1073/pnas.1522405112.
Grahammer, F. et al. (2015) ‘Erratum: mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress (Proceedings of the National Academy of Sciences of the United States of America (2014)111 (E2817-E2826) DOI: 10.1073/pnas.1402352111)’, Proceedings of the National Academy of Sciences of the United States of America, 112(49). Available at: https://doi.org/10.1073/pnas.1522405112.
Aimi, F. et al. (2015) ‘Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult’, Scientific Reports, 5, p. 17705. Available at: https://doi.org/10.1038/srep17705.
Aimi, F. et al. (2015) ‘Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult’, Scientific Reports, 5, p. 17705. Available at: https://doi.org/10.1038/srep17705.
Angliker, N. (2015) Distinct and common functions of mTORC1 and mTORC2 in Purkinje cells. Available at: https://doi.org/10.5451/unibas-006432996.
Angliker, N. (2015) Distinct and common functions of mTORC1 and mTORC2 in Purkinje cells. Available at: https://doi.org/10.5451/unibas-006432996.
Angliker, Nico et al. (2015) ‘mTORC1 and mTORC2 have largely distinct functions in Purkinje cells’, European Journal of Neuroscience, 42(8), pp. 2595–612. Available at: https://doi.org/10.1111/ejn.13051.
Angliker, Nico et al. (2015) ‘mTORC1 and mTORC2 have largely distinct functions in Purkinje cells’, European Journal of Neuroscience, 42(8), pp. 2595–612. Available at: https://doi.org/10.1111/ejn.13051.
Carr, T. D. et al. (2015) ‘Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors’, Carcinogenesis, 36(4), pp. 487–497. Available at: https://doi.org/10.1093/carcin/bgv012.
Carr, T. D. et al. (2015) ‘Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors’, Carcinogenesis, 36(4), pp. 487–497. Available at: https://doi.org/10.1093/carcin/bgv012.
Domi, Teuta et al. (2015) ‘Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A’, Skeletal Muscle, 5(30), p. 30. Available at: https://doi.org/10.1186/s13395-015-0055-5.
Domi, Teuta et al. (2015) ‘Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A’, Skeletal Muscle, 5(30), p. 30. Available at: https://doi.org/10.1186/s13395-015-0055-5.
Guridi, Maitea et al. (2015) ‘Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21’, Science Signaling, 8(402), p. ra113. Available at: https://doi.org/10.1126/scisignal.aab3715.
Guridi, Maitea et al. (2015) ‘Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21’, Science Signaling, 8(402), p. ra113. Available at: https://doi.org/10.1126/scisignal.aab3715.
Lopez, R. J. et al. (2015) ‘Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex’, Biochemical Journal, 466(1), pp. 123–135. Available at: https://doi.org/10.1042/bj20140935.
Lopez, R. J. et al. (2015) ‘Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex’, Biochemical Journal, 466(1), pp. 123–135. Available at: https://doi.org/10.1042/bj20140935.
Martin, Sally K. et al. (2015) ‘Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation’, Stem Cells, 33(4), pp. 1359–65. Available at: https://doi.org/10.1002/stem.1931.
Martin, Sally K. et al. (2015) ‘Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation’, Stem Cells, 33(4), pp. 1359–65. Available at: https://doi.org/10.1002/stem.1931.
Ma, S. et al. (2015) ‘Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival’, Experimental Eye Research, 135, pp. 1–13. Available at: https://doi.org/10.1016/j.exer.2015.04.006.
Ma, S. et al. (2015) ‘Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival’, Experimental Eye Research, 135, pp. 1–13. Available at: https://doi.org/10.1016/j.exer.2015.04.006.
Ormazabal, M.G. (2015) Skeletal muscle mTORC1 regulates whole-body metabolism. Available at: https://doi.org/10.5451/unibas-006615162.
Ormazabal, M.G. (2015) Skeletal muscle mTORC1 regulates whole-body metabolism. Available at: https://doi.org/10.5451/unibas-006615162.
Tintignac, Lionel A., Brenner, Hans-Rudolf and Rüegg, Markus A. (2015) ‘Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting’, Physiological Reviews, 95(3), pp. 809–52. Available at: https://doi.org/10.1152/physrev.00033.2014.
Tintignac, Lionel A., Brenner, Hans-Rudolf and Rüegg, Markus A. (2015) ‘Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting’, Physiological Reviews, 95(3), pp. 809–52. Available at: https://doi.org/10.1152/physrev.00033.2014.
Venkatesh, A. et al. (2015) ‘Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice’, Journal of Clinical Investigation, 125(4), pp. 1446–1458. Available at: https://doi.org/10.1172/jci79766.
Venkatesh, A. et al. (2015) ‘Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice’, Journal of Clinical Investigation, 125(4), pp. 1446–1458. Available at: https://doi.org/10.1172/jci79766.
Willmann, Raffaella et al. (2015) ‘Best Practices and Standard Protocols as a Tool to Enhance Translation for Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 2(2), pp. 113–117. Available at: https://doi.org/10.3233/jnd-140067.
Willmann, Raffaella et al. (2015) ‘Best Practices and Standard Protocols as a Tool to Enhance Translation for Neuromuscular Disorders’, Journal of Neuromuscular Diseases, 2(2), pp. 113–117. Available at: https://doi.org/10.3233/jnd-140067.
Zhang, Yina et al. (2015) ‘Differential regulation of AChR clustering in the polar and equatorial region of murine muscle spindles’, European Journal of Neuroscience, 41(1), pp. 69–78. Available at: https://doi.org/10.1111/ejn.12768.
Zhang, Yina et al. (2015) ‘Differential regulation of AChR clustering in the polar and equatorial region of murine muscle spindles’, European Journal of Neuroscience, 41(1), pp. 69–78. Available at: https://doi.org/10.1111/ejn.12768.
Chen, J. et al. (2014) ‘WNT7B promotes bone formation in part through mTORC1’, PLoS Genetics, 10(1), p. e1004145. Available at: https://doi.org/10.1371/journal.pgen.1004145.
Chen, J. et al. (2014) ‘WNT7B promotes bone formation in part through mTORC1’, PLoS Genetics, 10(1), p. e1004145. Available at: https://doi.org/10.1371/journal.pgen.1004145.
Chou, Po-Chien et al. (2014) ‘Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development’, Journal of Immunology, 193(3), pp. 1162–70. Available at: https://doi.org/10.4049/jimmunol.1303162.
Chou, Po-Chien et al. (2014) ‘Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development’, Journal of Immunology, 193(3), pp. 1162–70. Available at: https://doi.org/10.4049/jimmunol.1303162.
Grahammer, F. et al. (2014) ‘mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. E2817–26. Available at: https://doi.org/10.1073/pnas.1402352111.
Grahammer, F. et al. (2014) ‘mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. E2817–26. Available at: https://doi.org/10.1073/pnas.1402352111.
Hettwer, Stefan et al. (2014) ‘Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction’, PLoS ONE, 9(2), p. e88739. Available at: https://doi.org/10.1371/journal.pone.0088739.
Hettwer, Stefan et al. (2014) ‘Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction’, PLoS ONE, 9(2), p. e88739. Available at: https://doi.org/10.1371/journal.pone.0088739.
Kleinert, Maximilian et al. (2014) ‘Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo’, Molecular Metabolism, 3(6), pp. 630–41. Available at: https://doi.org/10.1016/j.molmet.2014.06.004.
Kleinert, Maximilian et al. (2014) ‘Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo’, Molecular Metabolism, 3(6), pp. 630–41. Available at: https://doi.org/10.1016/j.molmet.2014.06.004.