Structural Biology and Biophysics (Engel)
Publications
62 found
Show per page
Wietrzynski, Wojciech et al. (2024) ‘Molecular architecture of thylakoid membranes within intact spinach chloroplasts’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.11.24.625035.
Wietrzynski, Wojciech et al. (2024) ‘Molecular architecture of thylakoid membranes within intact spinach chloroplasts’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.11.24.625035.
Nam, Onyou et al. (2024) ‘A protein blueprint of the diatom CO2-fixing organelle’, Cell, 187(21), pp. 5935–5950.e18. Available at: https://doi.org/10.1016/j.cell.2024.09.025.
Nam, Onyou et al. (2024) ‘A protein blueprint of the diatom CO2-fixing organelle’, Cell, 187(21), pp. 5935–5950.e18. Available at: https://doi.org/10.1016/j.cell.2024.09.025.
Shimakawa, Ginga et al. (2024) ‘Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation’, Cell, 187(21), pp. 5919–5934. Available at: https://doi.org/10.1016/j.cell.2024.09.013.
Shimakawa, Ginga et al. (2024) ‘Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation’, Cell, 187(21), pp. 5919–5934. Available at: https://doi.org/10.1016/j.cell.2024.09.013.
Waltz, Florent et al. (2024) ‘In-cell architecture of the mitochondrial respiratory chain’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.09.03.610704.
Waltz, Florent et al. (2024) ‘In-cell architecture of the mitochondrial respiratory chain’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.09.03.610704.
Pan, Sichen et al. (2024) ‘The cyanobacterial protein VIPP1 forms ESCRT-III-like structures on lipid bilayers’, Nature Structural & Molecular Biology, p. Online ahead of print. Available at: https://doi.org/10.1038/s41594-024-01367-7.
Pan, Sichen et al. (2024) ‘The cyanobacterial protein VIPP1 forms ESCRT-III-like structures on lipid bilayers’, Nature Structural & Molecular Biology, p. Online ahead of print. Available at: https://doi.org/10.1038/s41594-024-01367-7.
Eckardt, Nancy A et al. (2024) ‘Lighting the way: Compelling open questions in photosynthesis research’, The Plant Cell, 36(10), pp. 3914–3943. Available at: https://doi.org/10.1093/plcell/koae203.
Eckardt, Nancy A et al. (2024) ‘Lighting the way: Compelling open questions in photosynthesis research’, The Plant Cell, 36(10), pp. 3914–3943. Available at: https://doi.org/10.1093/plcell/koae203.
Perez-Boerema, Annemarie, Engel, Benjamin D. and Wietrzynski, Wojciech (2024) ‘Evolution of Thylakoid Structural Diversity’, Annual Review of Cell and Developmental Biology. 01.07.2024, 40(1), pp. 169–193. Available at: https://doi.org/10.1146/annurev-cellbio-120823-022747.
Perez-Boerema, Annemarie, Engel, Benjamin D. and Wietrzynski, Wojciech (2024) ‘Evolution of Thylakoid Structural Diversity’, Annual Review of Cell and Developmental Biology. 01.07.2024, 40(1), pp. 169–193. Available at: https://doi.org/10.1146/annurev-cellbio-120823-022747.
McCafferty, Caitlyn L. et al. (2024) ‘Integrating cellular electron microscopy with multimodal data to explore biology across space and time’, Cell, 187(3), pp. 563–584. Available at: https://doi.org/10.1016/j.cell.2024.01.005.
McCafferty, Caitlyn L. et al. (2024) ‘Integrating cellular electron microscopy with multimodal data to explore biology across space and time’, Cell, 187(3), pp. 563–584. Available at: https://doi.org/10.1016/j.cell.2024.01.005.
Lamm, Lorenz et al. (2024) ‘MemBrain v2: an end-to-end tool for the analysis of membranes in cryo-electron tomography’, bioRxiv [Preprint]. 05.01.2024. Cold Spring Harbor Laboratory (January). Available at: https://doi.org/10.1101/2024.01.05.574336.
Lamm, Lorenz et al. (2024) ‘MemBrain v2: an end-to-end tool for the analysis of membranes in cryo-electron tomography’, bioRxiv [Preprint]. 05.01.2024. Cold Spring Harbor Laboratory (January). Available at: https://doi.org/10.1101/2024.01.05.574336.
Chung, Kin Pan et al. (2024) ‘Identification and characterization of the COPII vesicle-forming GTPase Sar1 in Chlamydomonas’, Plant Direct, 8(6). Available at: https://doi.org/10.1002/pld3.614.
Chung, Kin Pan et al. (2024) ‘Identification and characterization of the COPII vesicle-forming GTPase Sar1 in Chlamydomonas’, Plant Direct, 8(6). Available at: https://doi.org/10.1002/pld3.614.
Yamauchi, Kevin A et al. (2024) ‘Surforama: interactive exploration of volumetric data by leveraging 3D surfaces’, bioRxiv [Preprint]. 02.06.2024. (June 2024). Available at: https://doi.org/10.1101/2024.05.30.596601.
Yamauchi, Kevin A et al. (2024) ‘Surforama: interactive exploration of volumetric data by leveraging 3D surfaces’, bioRxiv [Preprint]. 02.06.2024. (June 2024). Available at: https://doi.org/10.1101/2024.05.30.596601.
Shimakawa, Ginga et al. (2023) ‘Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation’, bioRxiv [Preprint]. 26.10.2023. Cold Spring Harbor (October). Available at: https://doi.org/10.1101/2023.10.25.564039.
Shimakawa, Ginga et al. (2023) ‘Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation’, bioRxiv [Preprint]. 26.10.2023. Cold Spring Harbor (October). Available at: https://doi.org/10.1101/2023.10.25.564039.
Bregy, Irina et al. (2023) ‘Cryo-electron tomography sheds light on the elastic nature 2 of the Trypanosoma brucei tripartite attachment complex’. bioRxiv. Available at: https://doi.org/10.1101/2023.03.06.531305.
Bregy, Irina et al. (2023) ‘Cryo-electron tomography sheds light on the elastic nature 2 of the Trypanosoma brucei tripartite attachment complex’. bioRxiv. Available at: https://doi.org/10.1101/2023.03.06.531305.
Goodenough, Ursula and Engel, Benjamin D. (2023) ‘Cell Ultrastructure’, in Goodenough, Ursula (ed.) The Chlamydomonas Sourcebook. 3rd edn. St. Louis, MO, USA: Academic Press, Elsevier Inc (The Chlamydomonas Sourcebook), pp. 17–40. Available at: https://doi.org/10.1016/B978-0-12-822457-1.00015-7.
Goodenough, Ursula and Engel, Benjamin D. (2023) ‘Cell Ultrastructure’, in Goodenough, Ursula (ed.) The Chlamydomonas Sourcebook. 3rd edn. St. Louis, MO, USA: Academic Press, Elsevier Inc (The Chlamydomonas Sourcebook), pp. 17–40. Available at: https://doi.org/10.1016/B978-0-12-822457-1.00015-7.
Khavnekar, Sagar et al. (2023) ‘Towards the Visual Proteomics of C. reinhardtii using High-throughput Collaborative in situ Cryo-ET’, Microscopy and Microanalysis, 29(29 Suppl 1), pp. 961–963. Available at: https://doi.org/10.1093/micmic/ozad067.480.
Khavnekar, Sagar et al. (2023) ‘Towards the Visual Proteomics of C. reinhardtii using High-throughput Collaborative in situ Cryo-ET’, Microscopy and Microanalysis, 29(29 Suppl 1), pp. 961–963. Available at: https://doi.org/10.1093/micmic/ozad067.480.
Kulaj, Konxhe et al. (2023) ‘Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo’, Nature Communications, 14(1), p. 709. Available at: https://doi.org/10.1038/s41467-023-36148-1.
Kulaj, Konxhe et al. (2023) ‘Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo’, Nature Communications, 14(1), p. 709. Available at: https://doi.org/10.1038/s41467-023-36148-1.
Righetto, Ricardo D. and Engel, Benjamin D. (2023) ‘Visualizing a Carbon-Fixing Nanowire Inside Bacteria’, Chimia, 77(5), p. 348. Available at: https://doi.org/10.2533/chimia.2023.348.
Righetto, Ricardo D. and Engel, Benjamin D. (2023) ‘Visualizing a Carbon-Fixing Nanowire Inside Bacteria’, Chimia, 77(5), p. 348. Available at: https://doi.org/10.2533/chimia.2023.348.
Wietrzynski, Wojciech and Engel, Benjamin D. (2023) ‘Supramolecular Organization of Chloroplast Membranes’, in Grossman, Arthur R.; Wollman, Francis-André (ed.) The Chlamydomonas Sourcebook. 3rd edn. St. Louis, MO, USA: Academic Press, Elsevier Inc (The Chlamydomonas Sourcebook), pp. 763–785. Available at: https://doi.org/10.1016/B978-0-12-821430-5.00018-3.
Wietrzynski, Wojciech and Engel, Benjamin D. (2023) ‘Supramolecular Organization of Chloroplast Membranes’, in Grossman, Arthur R.; Wollman, Francis-André (ed.) The Chlamydomonas Sourcebook. 3rd edn. St. Louis, MO, USA: Academic Press, Elsevier Inc (The Chlamydomonas Sourcebook), pp. 763–785. Available at: https://doi.org/10.1016/B978-0-12-821430-5.00018-3.
Dietrich, Helge M. et al. (2022) ‘Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation’, Nature, 607(7920), pp. 823–830. Available at: https://doi.org/10.1038/s41586-022-04971-z.
Dietrich, Helge M. et al. (2022) ‘Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation’, Nature, 607(7920), pp. 823–830. Available at: https://doi.org/10.1038/s41586-022-04971-z.
Lamm, Lorenz et al. (2022) ‘MemBrain: a deep learning-aided pipeline for detection of membrane proteins in cryo-electron tomograms’, Computer Methods and Programs in Biomedicine, 224, p. 106990. Available at: https://doi.org/10.1016/j.cmpb.2022.106990.
Lamm, Lorenz et al. (2022) ‘MemBrain: a deep learning-aided pipeline for detection of membrane proteins in cryo-electron tomograms’, Computer Methods and Programs in Biomedicine, 224, p. 106990. Available at: https://doi.org/10.1016/j.cmpb.2022.106990.
Righetto, Ricardo D. and Engel, Benjamin D. (2022) ‘Expanding the arsenal of bacterial spearguns’, Nature Microbiology, 7(3), pp. 363–364. Available at: https://doi.org/10.1038/s41564-022-01078-z.
Righetto, Ricardo D. and Engel, Benjamin D. (2022) ‘Expanding the arsenal of bacterial spearguns’, Nature Microbiology, 7(3), pp. 363–364. Available at: https://doi.org/10.1038/s41564-022-01078-z.
Righetto, Ricardo D and Engel, Benjamin D. (2022) ‘Publisher Correction: Expanding the arsenal of bacterial spearguns’, Nature Microbiology. 10.03.2022, 7(March 2022), p. 1. Available at: https://doi.org/10.1038/s41564-022-01102-2.
Righetto, Ricardo D and Engel, Benjamin D. (2022) ‘Publisher Correction: Expanding the arsenal of bacterial spearguns’, Nature Microbiology. 10.03.2022, 7(March 2022), p. 1. Available at: https://doi.org/10.1038/s41564-022-01102-2.
van den Hoek, Hugo et al. (2022) ‘In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains’, Science, 377(6605), pp. 543–548. Available at: https://doi.org/10.1126/science.abm6704.
van den Hoek, Hugo et al. (2022) ‘In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains’, Science, 377(6605), pp. 543–548. Available at: https://doi.org/10.1126/science.abm6704.
Gupta, Tilak Kumar et al. (2021) ‘Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity’, Cell, 184(14), pp. 3643–3659.e23. Available at: https://doi.org/10.1016/j.cell.2021.05.011.
Gupta, Tilak Kumar et al. (2021) ‘Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity’, Cell, 184(14), pp. 3643–3659.e23. Available at: https://doi.org/10.1016/j.cell.2021.05.011.
Moebel, Emmanuel et al. (2021) ‘Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms’, Nature Methods, 18(11), pp. 1386–1394. Available at: https://doi.org/10.1038/s41592-021-01275-4.
Moebel, Emmanuel et al. (2021) ‘Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms’, Nature Methods, 18(11), pp. 1386–1394. Available at: https://doi.org/10.1038/s41592-021-01275-4.
Waltz, Florent et al. (2021) ‘How to build a ribosome from RNA fragments in Chlamydomonas mitochondria’, Nature Communications, 12(1), p. 7176. Available at: https://doi.org/10.1038/s41467-021-27200-z.
Waltz, Florent et al. (2021) ‘How to build a ribosome from RNA fragments in Chlamydomonas mitochondria’, Nature Communications, 12(1), p. 7176. Available at: https://doi.org/10.1038/s41467-021-27200-z.
Wietrzynski, Wojciech and Engel, Benjamin D. (2021) ‘Chlorophyll biogenesis sees the light’, Nature Plants. Scientific Reports, 7(4), pp. 380–381. Available at: https://doi.org/10.1038/s41477-021-00900-6.
Wietrzynski, Wojciech and Engel, Benjamin D. (2021) ‘Chlorophyll biogenesis sees the light’, Nature Plants. Scientific Reports, 7(4), pp. 380–381. Available at: https://doi.org/10.1038/s41477-021-00900-6.
Zabret, Jure et al. (2021) ‘Structural insights into photosystem II assembly’, Nature Plants. Scientific Reports, 7(4), pp. 524–538. Available at: https://doi.org/10.1038/s41477-021-00895-0.
Zabret, Jure et al. (2021) ‘Structural insights into photosystem II assembly’, Nature Plants. Scientific Reports, 7(4), pp. 524–538. Available at: https://doi.org/10.1038/s41477-021-00895-0.
Albert, Sahradha et al. (2020) ‘Direct visualization of degradation microcompartments at the ER membrane’, Proceedings of the National Academy of Sciences of the United States of America, 117(2), pp. 1069–1080. Available at: https://doi.org/10.1073/pnas.1905641117.
Albert, Sahradha et al. (2020) ‘Direct visualization of degradation microcompartments at the ER membrane’, Proceedings of the National Academy of Sciences of the United States of America, 117(2), pp. 1069–1080. Available at: https://doi.org/10.1073/pnas.1905641117.
He, Shan et al. (2020) ‘The structural basis of Rubisco phase separation in the pyrenoid’, Nature Plants. Scientific Reports, 6(12), pp. 1480–1490. Available at: https://doi.org/10.1038/s41477-020-00811-y.
He, Shan et al. (2020) ‘The structural basis of Rubisco phase separation in the pyrenoid’, Nature Plants. Scientific Reports, 6(12), pp. 1480–1490. Available at: https://doi.org/10.1038/s41477-020-00811-y.
Klena, Nikolai et al. (2020) ‘Architecture of the centriole cartwheel-containing region revealed by cryo-electron tomography’, The EMBO Journal, 39(22), p. e106246. Available at: https://doi.org/10.15252/embj.2020106246.
Klena, Nikolai et al. (2020) ‘Architecture of the centriole cartwheel-containing region revealed by cryo-electron tomography’, The EMBO Journal, 39(22), p. e106246. Available at: https://doi.org/10.15252/embj.2020106246.
Le Guennec, Maeva et al. (2020) ‘A helical inner scaffold provides a structural basis for centriole cohesion’, Science Advances, 6(7), p. eaaz4137. Available at: https://doi.org/10.1126/sciadv.aaz4137.
Le Guennec, Maeva et al. (2020) ‘A helical inner scaffold provides a structural basis for centriole cohesion’, Science Advances, 6(7), p. eaaz4137. Available at: https://doi.org/10.1126/sciadv.aaz4137.
Theis, Jasmine et al. (2020) ‘VIPP2 interacts with VIPP1 and HSP22E/F at chloroplast membranes and modulates a retrograde signal for HSP22E/F gene expression’, Plant, Cell and Environment, 43(5), pp. 1212–1229. Available at: https://doi.org/10.1111/pce.13732.
Theis, Jasmine et al. (2020) ‘VIPP2 interacts with VIPP1 and HSP22E/F at chloroplast membranes and modulates a retrograde signal for HSP22E/F gene expression’, Plant, Cell and Environment, 43(5), pp. 1212–1229. Available at: https://doi.org/10.1111/pce.13732.
Wietrzynski, Wojciech et al. (2020) ‘Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision’, eLife, 9, p. e53740. Available at: https://doi.org/10.7554/elife.53740.
Wietrzynski, Wojciech et al. (2020) ‘Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision’, eLife, 9, p. e53740. Available at: https://doi.org/10.7554/elife.53740.
Chicano, Andrea et al. (2019) ‘Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure’, The EMBO Journal, 38(7), p. e99769. Available at: https://doi.org/10.15252/embj.201899769.
Chicano, Andrea et al. (2019) ‘Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure’, The EMBO Journal, 38(7), p. e99769. Available at: https://doi.org/10.15252/embj.201899769.
Craig, Evan W. et al. (2019) ‘The elusive actin cytoskeleton of a green alga expressing both conventional and divergent actins’, Molecular Biology of the Cell, 30(22), pp. 2827–2837. Available at: https://doi.org/10.1091/mbc.e19-03-0141.
Craig, Evan W. et al. (2019) ‘The elusive actin cytoskeleton of a green alga expressing both conventional and divergent actins’, Molecular Biology of the Cell, 30(22), pp. 2827–2837. Available at: https://doi.org/10.1091/mbc.e19-03-0141.
Rast, Anna et al. (2019) ‘Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane’, Nature Plants. Scientific Reports, 5(4), pp. 436–446. Available at: https://doi.org/10.1038/s41477-019-0399-7.
Rast, Anna et al. (2019) ‘Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane’, Nature Plants. Scientific Reports, 5(4), pp. 436–446. Available at: https://doi.org/10.1038/s41477-019-0399-7.
Schaffer, Miroslava et al. (2019) ‘A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue’, Nature Methods, 16(8), pp. 757–762. Available at: https://doi.org/10.1038/s41592-019-0497-5.
Schaffer, Miroslava et al. (2019) ‘A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue’, Nature Methods, 16(8), pp. 757–762. Available at: https://doi.org/10.1038/s41592-019-0497-5.
Schuller, Jan M. et al. (2019) ‘Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer’, Science, 363(6424), pp. 257–260. Available at: https://doi.org/10.1126/science.aau3613.
Schuller, Jan M. et al. (2019) ‘Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer’, Science, 363(6424), pp. 257–260. Available at: https://doi.org/10.1126/science.aau3613.
Theis, Jasmine et al. (2019) ‘VIPP1 rods engulf membranes containing phosphatidylinositol phosphates’, Scientific Reports, 9(1), p. 8725. Available at: https://doi.org/10.1038/s41598-019-44259-3.
Theis, Jasmine et al. (2019) ‘VIPP1 rods engulf membranes containing phosphatidylinositol phosphates’, Scientific Reports, 9(1), p. 8725. Available at: https://doi.org/10.1038/s41598-019-44259-3.
Delarue, M. et al. (2018) ‘mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding’, Cell, 174(2), pp. 338–349.e20. Available at: https://doi.org/10.1016/j.cell.2018.05.042.
Delarue, M. et al. (2018) ‘mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding’, Cell, 174(2), pp. 338–349.e20. Available at: https://doi.org/10.1016/j.cell.2018.05.042.
Kovtun, Oleksiy et al. (2018) ‘Structure of the membrane-assembled retromer coat determined by cryo-electron tomography’, Nature, 561(7724), pp. 561–564. Available at: https://doi.org/10.1038/s41586-018-0526-z.
Kovtun, Oleksiy et al. (2018) ‘Structure of the membrane-assembled retromer coat determined by cryo-electron tomography’, Nature, 561(7724), pp. 561–564. Available at: https://doi.org/10.1038/s41586-018-0526-z.
Mosalaganti, Shyamal et al. (2018) ‘In situ architecture of the algal nuclear pore complex’, Nature Communications, 9(1), p. 2361. Available at: https://doi.org/10.1038/s41467-018-04739-y.
Mosalaganti, Shyamal et al. (2018) ‘In situ architecture of the algal nuclear pore complex’, Nature Communications, 9(1), p. 2361. Available at: https://doi.org/10.1038/s41467-018-04739-y.
Albanese, Pascal et al. (2017) ‘Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap’, Scientific Reports, 7(1), p. 10067. Available at: https://doi.org/10.1038/s41598-017-10700-8.
Albanese, Pascal et al. (2017) ‘Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap’, Scientific Reports, 7(1), p. 10067. Available at: https://doi.org/10.1038/s41598-017-10700-8.
Albert, Sahradha et al. (2017) ‘Proteasomes tether to two distinct sites at the nuclear pore complex’, Proceedings of the National Academy of Sciences of the United States of America, 114(52), pp. 13726–13731. Available at: https://doi.org/10.1073/pnas.1716305114.
Albert, Sahradha et al. (2017) ‘Proteasomes tether to two distinct sites at the nuclear pore complex’, Proceedings of the National Academy of Sciences of the United States of America, 114(52), pp. 13726–13731. Available at: https://doi.org/10.1073/pnas.1716305114.
Bykov, Yury S. et al. (2017) ‘The structure of the COPI coat determined within the cell’, eLife, 6, p. e32493. Available at: https://doi.org/10.7554/elife.32493.
Bykov, Yury S. et al. (2017) ‘The structure of the COPI coat determined within the cell’, eLife, 6, p. e32493. Available at: https://doi.org/10.7554/elife.32493.
Freeman Rosenzweig, Elizabeth S. et al. (2017) ‘The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization’, Cell, 171(1), pp. 148–162.e19. Available at: https://doi.org/10.1016/j.cell.2017.08.008.
Freeman Rosenzweig, Elizabeth S. et al. (2017) ‘The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization’, Cell, 171(1), pp. 148–162.e19. Available at: https://doi.org/10.1016/j.cell.2017.08.008.
Pfeffer, Stefan et al. (2017) ‘Dissecting the molecular organization of the translocon-associated protein complex’, Nature Communications, 8, p. 14516. Available at: https://doi.org/10.1038/ncomms14516.
Pfeffer, Stefan et al. (2017) ‘Dissecting the molecular organization of the translocon-associated protein complex’, Nature Communications, 8, p. 14516. Available at: https://doi.org/10.1038/ncomms14516.
Schaffer, Miroslava et al. (2017) ‘Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins’, Journal of structural biology, 197(2), pp. 73–82. Available at: https://doi.org/10.1016/j.jsb.2016.07.010.
Schaffer, Miroslava et al. (2017) ‘Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins’, Journal of structural biology, 197(2), pp. 73–82. Available at: https://doi.org/10.1016/j.jsb.2016.07.010.
Asano, Shoh, Engel, Benjamin D. and Baumeister, Wolfgang (2016) ‘In situ cryo-electron tomography: a post-reductionist approach to structural biology’, Journal of Molecular Biology, 428(2 Pt A), pp. 332–343. Available at: https://doi.org/10.1016/j.jmb.2015.09.030.
Asano, Shoh, Engel, Benjamin D. and Baumeister, Wolfgang (2016) ‘In situ cryo-electron tomography: a post-reductionist approach to structural biology’, Journal of Molecular Biology, 428(2 Pt A), pp. 332–343. Available at: https://doi.org/10.1016/j.jmb.2015.09.030.
Engel, Benjamin D. et al. (2015) ‘In situ structural analysis of Golgi intracisternal protein arrays’, Proceedings of the National Academy of Sciences of the United States of America, 112(36), pp. 11264–9. Available at: https://doi.org/10.1073/pnas.1515337112.
Engel, Benjamin D. et al. (2015) ‘In situ structural analysis of Golgi intracisternal protein arrays’, Proceedings of the National Academy of Sciences of the United States of America, 112(36), pp. 11264–9. Available at: https://doi.org/10.1073/pnas.1515337112.
Engel, Benjamin D. et al. (2015) ‘Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography’, eLife, 4, p. e04889. Available at: https://doi.org/10.7554/elife.04889.
Engel, Benjamin D. et al. (2015) ‘Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography’, eLife, 4, p. e04889. Available at: https://doi.org/10.7554/elife.04889.
Schaffer, Miroslava et al. (2015) ‘Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography’, Bio-protocol, 5(17), p. e1575. Available at: https://doi.org/10.21769/bioprotoc.1575.
Schaffer, Miroslava et al. (2015) ‘Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography’, Bio-protocol, 5(17), p. e1575. Available at: https://doi.org/10.21769/bioprotoc.1575.
Bhogaraju, Sagar et al. (2014) ‘Getting tubulin to the tip of the cilium: one IFT train, many different tubulin cargo-binding sites?’, BioEssays : news and reviews in molecular, cellular and developmental biology, 36(5), pp. 463–7. Available at: https://doi.org/10.1002/bies.201400007.
Bhogaraju, Sagar et al. (2014) ‘Getting tubulin to the tip of the cilium: one IFT train, many different tubulin cargo-binding sites?’, BioEssays : news and reviews in molecular, cellular and developmental biology, 36(5), pp. 463–7. Available at: https://doi.org/10.1002/bies.201400007.
Bhogaraju, Sagar, Engel, Benjamin D. and Lorentzen, Esben (2013) ‘Intraflagellar transport complex structure and cargo interactions’, Cilia, 2(1), p. 10. Available at: https://doi.org/10.1186/2046-2530-2-10.
Bhogaraju, Sagar, Engel, Benjamin D. and Lorentzen, Esben (2013) ‘Intraflagellar transport complex structure and cargo interactions’, Cilia, 2(1), p. 10. Available at: https://doi.org/10.1186/2046-2530-2-10.
Shih, Sheng Min et al. (2013) ‘Intraflagellar transport drives flagellar surface motility’, eLife, 2, p. e00744. Available at: https://doi.org/10.7554/elife.00744.
Shih, Sheng Min et al. (2013) ‘Intraflagellar transport drives flagellar surface motility’, eLife, 2, p. e00744. Available at: https://doi.org/10.7554/elife.00744.
Engel, Benjamin D. et al. (2012) ‘The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function’, Journal of Cell Biology, 199(1), pp. 151–67. Available at: https://doi.org/10.1083/jcb.201206068.
Engel, Benjamin D. et al. (2012) ‘The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function’, Journal of Cell Biology, 199(1), pp. 151–67. Available at: https://doi.org/10.1083/jcb.201206068.
Mizuno, Naoko et al. (2012) ‘Structural studies of ciliary components’, Journal of Molecular Biology, 422(2), pp. 163–80. Available at: https://doi.org/10.1016/j.jmb.2012.05.040.
Mizuno, Naoko et al. (2012) ‘Structural studies of ciliary components’, Journal of Molecular Biology, 422(2), pp. 163–80. Available at: https://doi.org/10.1016/j.jmb.2012.05.040.
Rigort, Alexander et al. (2012) ‘Integrative approaches for cellular cryo-electron tomography: correlative imaging and focused ion beam micromachining’, Methods in cell biology, 111, pp. 259–81. Available at: https://doi.org/10.1016/b978-0-12-416026-2.00014-5.
Rigort, Alexander et al. (2012) ‘Integrative approaches for cellular cryo-electron tomography: correlative imaging and focused ion beam micromachining’, Methods in cell biology, 111, pp. 259–81. Available at: https://doi.org/10.1016/b978-0-12-416026-2.00014-5.
Engel, Benjamin D. et al. (2011) ‘A cell-based screen for inhibitors of flagella-driven motility in Chlamydomonas reveals a novel modulator of ciliary length and retrograde actin flow’, Cell Motility and the Cytoskeleton, 68(3), pp. 188–203. Available at: https://doi.org/10.1002/cm.20504.
Engel, Benjamin D. et al. (2011) ‘A cell-based screen for inhibitors of flagella-driven motility in Chlamydomonas reveals a novel modulator of ciliary length and retrograde actin flow’, Cell Motility and the Cytoskeleton, 68(3), pp. 188–203. Available at: https://doi.org/10.1002/cm.20504.
Engel, Benjamin D. et al. (2009) ‘Total internal reflection fluorescence (TIRF) microscopy of Chlamydomonas flagella’, Methods in cell biology, 93, pp. 157–77. Available at: https://doi.org/10.1016/s0091-679x(08)93009-0.
Engel, Benjamin D. et al. (2009) ‘Total internal reflection fluorescence (TIRF) microscopy of Chlamydomonas flagella’, Methods in cell biology, 93, pp. 157–77. Available at: https://doi.org/10.1016/s0091-679x(08)93009-0.
Engel, Benjamin D., Ludington, William B. and Marshall, Wallace F. (2009) ‘Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model’, Journal of Cell Biology, 187(1), pp. 81–9. Available at: https://doi.org/10.1083/jcb.200812084.
Engel, Benjamin D., Ludington, William B. and Marshall, Wallace F. (2009) ‘Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model’, Journal of Cell Biology, 187(1), pp. 81–9. Available at: https://doi.org/10.1083/jcb.200812084.