Nano-diffraction of Biological Specimen (Abrahams)
Publications
186 found
Show per page
Blum, Thorsten B. et al. (2021) ‘Statistically correcting dynamical electron scattering improves the refinement of protein nanocrystals, including charge refinement of coordinated metals’, Acta Crystallographica Section D: Structural Biology, 77(Pt 1), pp. 75–85. Available at: https://doi.org/10.1107/s2059798320014540.
Blum, Thorsten B. et al. (2021) ‘Statistically correcting dynamical electron scattering improves the refinement of protein nanocrystals, including charge refinement of coordinated metals’, Acta Crystallographica Section D: Structural Biology, 77(Pt 1), pp. 75–85. Available at: https://doi.org/10.1107/s2059798320014540.
Blum, Thorsten B. et al. (2020) ‘Statistically correcting dynamical electron scattering improves refinement of protein nanocrystals, including charge refinement of coordinated metals’. bioRxiv. Available at: https://doi.org/10.1101/2020.07.08.191049.
Blum, Thorsten B. et al. (2020) ‘Statistically correcting dynamical electron scattering improves refinement of protein nanocrystals, including charge refinement of coordinated metals’. bioRxiv. Available at: https://doi.org/10.1101/2020.07.08.191049.
Matz, Joachim M. et al. (2020) ‘A lipocalin mediates unidirectional haem biomineralization in malaria parasites’, bioRxiv [Preprint]. bioRxiv (bioRxiv). Available at: https://doi.org/10.1101/2020.02.18.954289.
Matz, Joachim M. et al. (2020) ‘A lipocalin mediates unidirectional haem biomineralization in malaria parasites’, bioRxiv [Preprint]. bioRxiv (bioRxiv). Available at: https://doi.org/10.1101/2020.02.18.954289.
Matz, Joachim M. et al. (2020) ‘A lipocalin mediates unidirectional heme biomineralization in malaria parasites’, Proceedings of the National Academy of Sciences of the United States of America, 117(28), pp. 16546–16556. Available at: https://doi.org/10.1073/pnas.2001153117.
Matz, Joachim M. et al. (2020) ‘A lipocalin mediates unidirectional heme biomineralization in malaria parasites’, Proceedings of the National Academy of Sciences of the United States of America, 117(28), pp. 16546–16556. Available at: https://doi.org/10.1073/pnas.2001153117.
Merg, Andrea D. et al. (2020) ‘Shape-Shifting Peptide Nanomaterials: Surface Asymmetry Enables pH-Dependent Formation and Interconversion of Collagen Tubes and Sheets’, Journal of the American Chemical Society, 142(47), pp. 19956–19968. Available at: https://doi.org/10.1021/jacs.0c08174.
Merg, Andrea D. et al. (2020) ‘Shape-Shifting Peptide Nanomaterials: Surface Asymmetry Enables pH-Dependent Formation and Interconversion of Collagen Tubes and Sheets’, Journal of the American Chemical Society, 142(47), pp. 19956–19968. Available at: https://doi.org/10.1021/jacs.0c08174.
Thakkar, Pooja et al. (2020) ‘Fabrication of low aspect ratio three-element Boersch phase shifters for voltage-controlled three electron beam interference’, Journal of Applied Physics, 128(13), p. 134502. Available at: https://doi.org/10.1063/5.0020383.
Thakkar, Pooja et al. (2020) ‘Fabrication of low aspect ratio three-element Boersch phase shifters for voltage-controlled three electron beam interference’, Journal of Applied Physics, 128(13), p. 134502. Available at: https://doi.org/10.1063/5.0020383.
van Schayck, J. Paul et al. (2020) ‘Sub-pixel electron detection using a convolutional neural network’, Ultramicroscopy, 218, p. 113091. Available at: https://doi.org/10.1016/j.ultramic.2020.113091.
van Schayck, J. Paul et al. (2020) ‘Sub-pixel electron detection using a convolutional neural network’, Ultramicroscopy, 218, p. 113091. Available at: https://doi.org/10.1016/j.ultramic.2020.113091.
Xiao, Xiansha et al. (2020) ‘Functional and Structural Insights into a Novel Promiscuous Ketoreductase of the Lugdunomycin Biosynthetic Pathway’, ACS Chemical Biology, 15(9), pp. 2529–2538. Available at: https://doi.org/10.1021/acschembio.0c00564.
Xiao, Xiansha et al. (2020) ‘Functional and Structural Insights into a Novel Promiscuous Ketoreductase of the Lugdunomycin Biosynthetic Pathway’, ACS Chemical Biology, 15(9), pp. 2529–2538. Available at: https://doi.org/10.1021/acschembio.0c00564.
Zhang, Zhenzhen et al. (2020) ‘Extracellular Nanovesicle Enhanced Gene Transfection Using Polyethyleneimine in HEK293T Cells and Zebrafish Embryos’, Frontiers in Bioengineering and Biotechnology, 8, p. 448. Available at: https://doi.org/10.3389/fbioe.2020.00448.
Zhang, Zhenzhen et al. (2020) ‘Extracellular Nanovesicle Enhanced Gene Transfection Using Polyethyleneimine in HEK293T Cells and Zebrafish Embryos’, Frontiers in Bioengineering and Biotechnology, 8, p. 448. Available at: https://doi.org/10.3389/fbioe.2020.00448.
Blum, T. B. and Abrahams, J. P. (2019) ‘6T17: Cryo-EM structure of the wild-type flagellar filament of the Firmicute Kurthia’, Worldwide Protein Data Bank, p. 6T17. Available at: https://doi.org/10.2210/pdb6t17/pdb.
Blum, T. B. and Abrahams, J. P. (2019) ‘6T17: Cryo-EM structure of the wild-type flagellar filament of the Firmicute Kurthia’, Worldwide Protein Data Bank, p. 6T17. Available at: https://doi.org/10.2210/pdb6t17/pdb.
Blum, Thorsten B. et al. (2019) ‘The wild-type flagellar filament of the Firmicute Kurthia at 2.8 Å resolution in vivo’, Scientific reports, 9(1), p. 14948. Available at: https://doi.org/10.1038/s41598-019-51440-1.
Blum, Thorsten B. et al. (2019) ‘The wild-type flagellar filament of the Firmicute Kurthia at 2.8 Å resolution in vivo’, Scientific reports, 9(1), p. 14948. Available at: https://doi.org/10.1038/s41598-019-51440-1.
Clabbers, Max T. B. et al. (2019) ‘Reducing dynamical electron scattering reveals hydrogen atoms’, Acta crystallographica. Section A, Foundations and advances, 75(Pt 1), pp. 82–93. Available at: https://doi.org/10.1107/s2053273318013918.
Clabbers, Max T. B. et al. (2019) ‘Reducing dynamical electron scattering reveals hydrogen atoms’, Acta crystallographica. Section A, Foundations and advances, 75(Pt 1), pp. 82–93. Available at: https://doi.org/10.1107/s2053273318013918.
Gemmi, Mauro et al. (2019) ‘3D Electron Diffraction: The Nanocrystallography Revolution’, ACS central science, 5(8), pp. 1315–1329. Available at: https://doi.org/10.1021/acscentsci.9b00394.
Gemmi, Mauro et al. (2019) ‘3D Electron Diffraction: The Nanocrystallography Revolution’, ACS central science, 5(8), pp. 1315–1329. Available at: https://doi.org/10.1021/acscentsci.9b00394.
Latychevskaia, Tatiana and Abrahams, Jan Pieter (2019) ‘Inelastic scattering and solvent scattering reduce dynamical diffraction in biological crystals’, Acta Crystallographica Section B-Structural Science Crystal Engineering and Materials, 75, pp. 523–531. Available at: https://doi.org/10.1107/s2052520619009661.
Latychevskaia, Tatiana and Abrahams, Jan Pieter (2019) ‘Inelastic scattering and solvent scattering reduce dynamical diffraction in biological crystals’, Acta Crystallographica Section B-Structural Science Crystal Engineering and Materials, 75, pp. 523–531. Available at: https://doi.org/10.1107/s2052520619009661.
Merg, Andrea D. et al. (2019) ‘2D Crystal Engineering of Nanosheets Assembled from Helical Peptide Building Blocks’, Angewandte Chemie (International ed. in English), 58(38), pp. 13507–13512. Available at: https://doi.org/10.1002/anie.201906214.
Merg, Andrea D. et al. (2019) ‘2D Crystal Engineering of Nanosheets Assembled from Helical Peptide Building Blocks’, Angewandte Chemie (International ed. in English), 58(38), pp. 13507–13512. Available at: https://doi.org/10.1002/anie.201906214.
Merg, Andrea D. et al. (2019) ‘Seeded Heteroepitaxial Growth of Crystallizable Collagen Triple Helices: Engineering Multifunctional Two-Dimensional Core-Shell Nanostructures’, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 141(51), pp. 20107–20117. Available at: https://doi.org/10.1021/jacs.9b09335.
Merg, Andrea D. et al. (2019) ‘Seeded Heteroepitaxial Growth of Crystallizable Collagen Triple Helices: Engineering Multifunctional Two-Dimensional Core-Shell Nanostructures’, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 141(51), pp. 20107–20117. Available at: https://doi.org/10.1021/jacs.9b09335.
Moradi, Mina et al. (2019) ‘Supramolecular architectures of molecularly thin yet robust free-standing layers’, Science Advances, 5(2), p. eaav4489. Available at: https://doi.org/10.1126/sciadv.aav4489.
Moradi, Mina et al. (2019) ‘Supramolecular architectures of molecularly thin yet robust free-standing layers’, Science Advances, 5(2), p. eaav4489. Available at: https://doi.org/10.1126/sciadv.aav4489.
Wallin, Cecilia et al. (2019) ‘The Neuronal Tau Protein Blocks In Vitro Fibrillation of the Amyloid-beta (A beta) Peptide’, Biophysical Journal. CellPress, 116(3, Supplement 1). Available at: https://doi.org/10.1016/j.bpj.2018.11.1657.
Wallin, Cecilia et al. (2019) ‘The Neuronal Tau Protein Blocks In Vitro Fibrillation of the Amyloid-beta (A beta) Peptide’, Biophysical Journal. CellPress, 116(3, Supplement 1). Available at: https://doi.org/10.1016/j.bpj.2018.11.1657.
Abrahams, Jan Pieter et al. (2018) ‘Electron tomography of radiation sensitive 3D nano-crystals in imaging and diffraction mode’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 74. Available at: https://doi.org/10.1107/s205327331809397x.
Abrahams, Jan Pieter et al. (2018) ‘Electron tomography of radiation sensitive 3D nano-crystals in imaging and diffraction mode’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 74. Available at: https://doi.org/10.1107/s205327331809397x.
Clabbers, Max et al. (2018) ‘Experimental and computational reduction of dynamical electron scattering allows visualizing individual hydrogen atoms’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 74. Available at: https://doi.org/10.1107/s2053273318088770.
Clabbers, Max et al. (2018) ‘Experimental and computational reduction of dynamical electron scattering allows visualizing individual hydrogen atoms’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 74. Available at: https://doi.org/10.1107/s2053273318088770.
Clabbers, Max T. B. and Abrahams, Jan Pieter (2018) ‘Electron diffraction and three-dimensional crystallography for structural biology’, CRYSTALLOGRAPHY REVIEWS, 24(3), pp. 176–204. Available at: https://doi.org/10.1080/0889311x.2018.1446427.
Clabbers, Max T. B. and Abrahams, Jan Pieter (2018) ‘Electron diffraction and three-dimensional crystallography for structural biology’, CRYSTALLOGRAPHY REVIEWS, 24(3), pp. 176–204. Available at: https://doi.org/10.1080/0889311x.2018.1446427.
Clabbers, Max T. B. et al. (2018) ‘Electron diffraction data processing with DIALS’, Acta crystallographica. Section D, Structural biology, 74(Pt 6), pp. 506–518. Available at: https://doi.org/10.1107/s2059798318007726.
Clabbers, Max T. B. et al. (2018) ‘Electron diffraction data processing with DIALS’, Acta crystallographica. Section D, Structural biology, 74(Pt 6), pp. 506–518. Available at: https://doi.org/10.1107/s2059798318007726.
Thomas, Brijith et al. (2018) ‘A Molecular Level Approach To Elucidate the Supramolecular Packing of Light-Harvesting Antenna Systems’, Chemistry (Weinheim an der Bergstrasse, Germany), 24(56), pp. 14989–14993. Available at: https://doi.org/10.1002/chem.201802288.
Thomas, Brijith et al. (2018) ‘A Molecular Level Approach To Elucidate the Supramolecular Packing of Light-Harvesting Antenna Systems’, Chemistry (Weinheim an der Bergstrasse, Germany), 24(56), pp. 14989–14993. Available at: https://doi.org/10.1002/chem.201802288.
Tinti, Gemma et al. (2018) ‘Electron crystallography with the EIGER detector’, IUCrJ, 5(Pt 2), pp. 190–199. Available at: https://doi.org/10.1107/s2052252518000945.
Tinti, Gemma et al. (2018) ‘Electron crystallography with the EIGER detector’, IUCrJ, 5(Pt 2), pp. 190–199. Available at: https://doi.org/10.1107/s2052252518000945.
Tinti, G. et al. (2018) ‘CCDC 1817054: Experimental Crystal Structure Determination’, Cambridge Structural Database, p. 1817054. Available at: https://doi.org/10.5517/ccdc.csd.cc1yzsnc.
Tinti, G. et al. (2018) ‘CCDC 1817054: Experimental Crystal Structure Determination’, Cambridge Structural Database, p. 1817054. Available at: https://doi.org/10.5517/ccdc.csd.cc1yzsnc.
Wallin, Cecilia et al. (2018) ‘The Neuronal Tau Protein Blocks in Vitro Fibrillation of the Amyloid-β (Aβ) Peptide at the Oligomeric Stage’, Journal of the American Chemical Society, pp. 8138–8146. Available at: https://doi.org/10.1021/jacs.7b13623.
Wallin, Cecilia et al. (2018) ‘The Neuronal Tau Protein Blocks in Vitro Fibrillation of the Amyloid-β (Aβ) Peptide at the Oligomeric Stage’, Journal of the American Chemical Society, pp. 8138–8146. Available at: https://doi.org/10.1021/jacs.7b13623.
Clabbers, Max T. B. et al. (2017) ‘Protein structure determination by electron diffraction using a single three-dimensional nanocrystal’, Acta crystallographica. Section D, Structural biology, 73(Pt 9), pp. 738–748. Available at: https://doi.org/10.1107/s2059798317010348.
Clabbers, Max T. B. et al. (2017) ‘Protein structure determination by electron diffraction using a single three-dimensional nanocrystal’, Acta crystallographica. Section D, Structural biology, 73(Pt 9), pp. 738–748. Available at: https://doi.org/10.1107/s2059798317010348.
Matheson, John et al. (2017) ‘Testing and Comparison of Imaging Detectors for Electrons in the Energy Range 10-20 keV’, Journal of Instrumentation, 12(11), p. C11016. Available at: https://doi.org/10.1088/1748-0221/12/11/c11016.
Matheson, John et al. (2017) ‘Testing and Comparison of Imaging Detectors for Electrons in the Energy Range 10-20 keV’, Journal of Instrumentation, 12(11), p. C11016. Available at: https://doi.org/10.1088/1748-0221/12/11/c11016.
Nederlof, Igor et al. (2017) ‘Electron Crystallography of Protein Nano-Crystals’, Acta Crystallographica Section A: Foundations And Advances, A73, pp. a297–a298. Available at: https://doi.org/10.1107/s0108767317097082.
Nederlof, Igor et al. (2017) ‘Electron Crystallography of Protein Nano-Crystals’, Acta Crystallographica Section A: Foundations And Advances, A73, pp. a297–a298. Available at: https://doi.org/10.1107/s0108767317097082.
Nikolopoulos, Stavros et al. (2017) ‘Random electron diffraction tomography for structure analysis of pharmaceuticals’, Acta Crystallographica A-Foundation And Advances, 73, pp. C980–C980. Available at: https://doi.org/10.1107/s2053273317085941.
Nikolopoulos, Stavros et al. (2017) ‘Random electron diffraction tomography for structure analysis of pharmaceuticals’, Acta Crystallographica A-Foundation And Advances, 73, pp. C980–C980. Available at: https://doi.org/10.1107/s2053273317085941.
Su, Jian et al. (2017) ‘Neutravidin-Mediated Extraction of Isolated Small Diameter Single Walled Carbon Nanotubes for Bio-Recognition’, Journal of nanoscience and nanotechnology, 17(5), pp. 3588–3596. Available at: https://doi.org/10.1166/jnn.2017.12860.
Su, Jian et al. (2017) ‘Neutravidin-Mediated Extraction of Isolated Small Diameter Single Walled Carbon Nanotubes for Bio-Recognition’, Journal of nanoscience and nanotechnology, 17(5), pp. 3588–3596. Available at: https://doi.org/10.1166/jnn.2017.12860.
Wang, Run et al. (2017) ‘Purification of Biotinylated Proteins Using Single Walled Carbon Nanotube-Streptavidin Complexes’, Journal of nanoscience and nanotechnology, 17(2), pp. 926–31. Available at: https://doi.org/10.1166/jnn.2017.12716.
Wang, Run et al. (2017) ‘Purification of Biotinylated Proteins Using Single Walled Carbon Nanotube-Streptavidin Complexes’, Journal of nanoscience and nanotechnology, 17(2), pp. 926–31. Available at: https://doi.org/10.1166/jnn.2017.12716.
Yin, Qu et al. (2017) ‘A Novel Capturing Method for Quantification of Extra-Cellular Nanovesicles’, Journal of nanoscience and nanotechnology, 17(2), pp. 908–913. Available at: https://doi.org/10.1166/jnn.2017.12631.
Yin, Qu et al. (2017) ‘A Novel Capturing Method for Quantification of Extra-Cellular Nanovesicles’, Journal of nanoscience and nanotechnology, 17(2), pp. 908–913. Available at: https://doi.org/10.1166/jnn.2017.12631.
Abrahams, Jan Pieter (2016) ‘Electron nanodiffraction for structural biology’, Acta Crystallographica A-Foundation And Advances, 72(a1), pp. S6–S6. Available at: https://doi.org/10.1107/s2053273316099903.
Abrahams, Jan Pieter (2016) ‘Electron nanodiffraction for structural biology’, Acta Crystallographica A-Foundation And Advances, 72(a1), pp. S6–S6. Available at: https://doi.org/10.1107/s2053273316099903.
Luo, Jinghui et al. (2016) ‘Reciprocal Molecular Interactions between the Aβ Peptide Linked to Alzheimer’s Disease and Insulin Linked to Diabetes Mellitus Type II’, ACS Chemical Neuroscience, 7(3), pp. 269–74. Available at: https://doi.org/10.1021/acschemneuro.5b00325.
Luo, Jinghui et al. (2016) ‘Reciprocal Molecular Interactions between the Aβ Peptide Linked to Alzheimer’s Disease and Insulin Linked to Diabetes Mellitus Type II’, ACS Chemical Neuroscience, 7(3), pp. 269–74. Available at: https://doi.org/10.1021/acschemneuro.5b00325.
Luo, Jinghui et al. (2016) ‘Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis’, Journal of Biological Chemistry, 292(5), p. 2046. Available at: https://doi.org/10.1074/jbc.r116.714576.
Luo, Jinghui et al. (2016) ‘Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis’, Journal of Biological Chemistry, 292(5), p. 2046. Available at: https://doi.org/10.1074/jbc.r116.714576.
Tiiman, Ann et al. (2016) ‘Specific Binding of Cu(II) Ions to Amyloid-Beta Peptides Bound to Aggregation-Inhibiting Molecules or SDS Micelles Creates Complexes that Generate Radical Oxygen Species’, Journal of Alzheimer’s Disease, 54(3), pp. 971–982. Available at: https://doi.org/10.3233/jad-160427.
Tiiman, Ann et al. (2016) ‘Specific Binding of Cu(II) Ions to Amyloid-Beta Peptides Bound to Aggregation-Inhibiting Molecules or SDS Micelles Creates Complexes that Generate Radical Oxygen Species’, Journal of Alzheimer’s Disease, 54(3), pp. 971–982. Available at: https://doi.org/10.3233/jad-160427.
van Genderen, E. et al. (2016) ‘Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector’, Acta Crystallographica Section A : Foundations and Advances, 72(Pt 2), pp. 236–42. Available at: https://doi.org/10.1107/s2053273315022500.
van Genderen, E. et al. (2016) ‘Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector’, Acta Crystallographica Section A : Foundations and Advances, 72(Pt 2), pp. 236–42. Available at: https://doi.org/10.1107/s2053273315022500.
Wallin, Cecilia et al. (2016) ‘Characterization of Mn(II) ion binding to the amyloid-β peptide in Alzheimer’s disease’, Journal of Trace Elements in Medicine and Biology, 38, pp. 183–193. Available at: https://doi.org/10.1016/j.jtemb.2016.03.009.
Wallin, Cecilia et al. (2016) ‘Characterization of Mn(II) ion binding to the amyloid-β peptide in Alzheimer’s disease’, Journal of Trace Elements in Medicine and Biology, 38, pp. 183–193. Available at: https://doi.org/10.1016/j.jtemb.2016.03.009.
Abrahams, Jan Pieter et al. (2015) ‘Electron diffraction and imaging of 3D nanocrystals of pharmaceuticals, peptides and proteins’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 71. Available at: https://doi.org/10.1107/s2053273315098496.
Abrahams, Jan Pieter et al. (2015) ‘Electron diffraction and imaging of 3D nanocrystals of pharmaceuticals, peptides and proteins’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 71. Available at: https://doi.org/10.1107/s2053273315098496.
Afanasyev, Pavel et al. (2015) ‘A posteriori correction of camera characteristics from large image data sets’, Scientific Reports, 5, p. 10317. Available at: https://doi.org/10.1038/srep10317.
Afanasyev, Pavel et al. (2015) ‘A posteriori correction of camera characteristics from large image data sets’, Scientific Reports, 5, p. 10317. Available at: https://doi.org/10.1038/srep10317.
Clabbers, Max T. B. et al. (2015) ‘Electron crystallography of 3D nano-crystals’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 71. Available at: https://doi.org/10.1107/s2053273315093985.
Clabbers, Max T. B. et al. (2015) ‘Electron crystallography of 3D nano-crystals’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 71. Available at: https://doi.org/10.1107/s2053273315093985.
Abelein, Axel et al. (2014) ‘The hairpin conformation of the amyloid beta peptide is an important structural motif along the aggregation pathway’, Journal of Biological Inorganic Chemistry, 19(4-5), pp. 623–634. Available at: https://doi.org/10.1007/s00775-014-1131-8.
Abelein, Axel et al. (2014) ‘The hairpin conformation of the amyloid beta peptide is an important structural motif along the aggregation pathway’, Journal of Biological Inorganic Chemistry, 19(4-5), pp. 623–634. Available at: https://doi.org/10.1007/s00775-014-1131-8.
Luo, Jinghui and Abrahams, Jan Pieter (2014) ‘Cyclic Peptides as Inhibitors of Amyloid Fibrillation’, Chemistry - A European Journal, 20(9), pp. 2410–9. Available at: https://doi.org/10.1002/chem.201304253.
Luo, Jinghui and Abrahams, Jan Pieter (2014) ‘Cyclic Peptides as Inhibitors of Amyloid Fibrillation’, Chemistry - A European Journal, 20(9), pp. 2410–9. Available at: https://doi.org/10.1002/chem.201304253.
Luo, Jinghui et al. (2014) ‘Endogenous Polyamines Reduce the Toxicity of Soluble A beta Peptide Aggregates Associated with Alzheimer’s Disease’, Biomacromolecules, 15(6), pp. 1985–1991. Available at: https://doi.org/10.1021/bm401874j.
Luo, Jinghui et al. (2014) ‘Endogenous Polyamines Reduce the Toxicity of Soluble A beta Peptide Aggregates Associated with Alzheimer’s Disease’, Biomacromolecules, 15(6), pp. 1985–1991. Available at: https://doi.org/10.1021/bm401874j.
Luo, Jinghui et al. (2014) ‘The Aβ peptide forms non-amyloid fibrils in the presence of carbon nanotubes’, Nanoscale, 6(12), pp. 6720–6. Available at: https://doi.org/10.1039/c4nr00291a.
Luo, Jinghui et al. (2014) ‘The Aβ peptide forms non-amyloid fibrils in the presence of carbon nanotubes’, Nanoscale, 6(12), pp. 6720–6. Available at: https://doi.org/10.1039/c4nr00291a.
Luo, Jinghui et al. (2014) ‘Alzheimer Peptides Aggregate into Transient Nanoglobules That Nucleate Fibrils’, Biochemistry, 53(40), pp. 6302–8. Available at: https://doi.org/10.1021/bi5003579.
Luo, Jinghui et al. (2014) ‘Alzheimer Peptides Aggregate into Transient Nanoglobules That Nucleate Fibrils’, Biochemistry, 53(40), pp. 6302–8. Available at: https://doi.org/10.1021/bi5003579.
Luo, Jinghui et al. (2014) ‘Non-chaperone Proteins Can Inhibit Aggregation and Cytotoxicity of Alzheimer Amyloid beta Peptide’, Journal of Biological Chemistry, 289(40), pp. 27766–75. Available at: https://doi.org/10.1074/jbc.m114.574947.
Luo, Jinghui et al. (2014) ‘Non-chaperone Proteins Can Inhibit Aggregation and Cytotoxicity of Alzheimer Amyloid beta Peptide’, Journal of Biological Chemistry, 289(40), pp. 27766–75. Available at: https://doi.org/10.1074/jbc.m114.574947.
Liu, Zunfeng et al. (2013) ‘Capture of unstable protein complex on the streptavidin-coated single-walled carbon nanotubes’, Journal of Nanoparticle Research, 15(4), p. A 1582. Available at: https://doi.org/10.1007/s11051-013-1582-9.
Liu, Zunfeng et al. (2013) ‘Capture of unstable protein complex on the streptavidin-coated single-walled carbon nanotubes’, Journal of Nanoparticle Research, 15(4), p. A 1582. Available at: https://doi.org/10.1007/s11051-013-1582-9.
Luo, Jinghui et al. (2013) ‘Inhibiting and Reversing Amyloid‐β Peptide (1-40) Fibril Formation with Gramicidin S and Engineered Analogues’, Chemistry - A European Journal, 19(51), pp. 17338–48. Available at: https://doi.org/10.1002/chem.201301535.
Luo, Jinghui et al. (2013) ‘Inhibiting and Reversing Amyloid‐β Peptide (1-40) Fibril Formation with Gramicidin S and Engineered Analogues’, Chemistry - A European Journal, 19(51), pp. 17338–48. Available at: https://doi.org/10.1002/chem.201301535.
Luo, Jinghui et al. (2013) ‘Human lysozyme inhibits the in vitro aggregation of Aβ peptides, which in vivo are associated with Alzheimer’s disease’, Chemical Communications, 49(58), pp. 6507–9. Available at: https://doi.org/10.1039/c3cc42325e.
Luo, Jinghui et al. (2013) ‘Human lysozyme inhibits the in vitro aggregation of Aβ peptides, which in vivo are associated with Alzheimer’s disease’, Chemical Communications, 49(58), pp. 6507–9. Available at: https://doi.org/10.1039/c3cc42325e.
Luo, Jinghui et al. (2013) ‘Cellular Polyamines Promote Amyloid-Beta Peptide Fibrillation and Modulate the Aggregation Pathways’, Biophysical Journal. Cell Press, 104(2). Available at: https://doi.org/10.1016/j.bpj.2012.11.2170.
Luo, Jinghui et al. (2013) ‘Cellular Polyamines Promote Amyloid-Beta Peptide Fibrillation and Modulate the Aggregation Pathways’, Biophysical Journal. Cell Press, 104(2). Available at: https://doi.org/10.1016/j.bpj.2012.11.2170.
Luo, Jinghui et al. (2013) ‘Cellular Polyamines Promote Amyloid-Beta (A beta) Peptide Fibrillation and Modulate the Aggregation Pathways’, ACS Chemical Neuroscience, 4(3), pp. 454–462. Available at: https://doi.org/10.1021/cn300170x.
Luo, Jinghui et al. (2013) ‘Cellular Polyamines Promote Amyloid-Beta (A beta) Peptide Fibrillation and Modulate the Aggregation Pathways’, ACS Chemical Neuroscience, 4(3), pp. 454–462. Available at: https://doi.org/10.1021/cn300170x.
Luo, Jinghui, Zwier, Raphael and Abrahams, Jan Pieter (2013) ‘An efficient nanolitre-volume multi-channel device for highly viscous materials used in membrane protein crystallization’, Journal of applied crystallography, 46, pp. 829–831. Available at: https://doi.org/10.1107/s0021889813006742.
Luo, Jinghui, Zwier, Raphael and Abrahams, Jan Pieter (2013) ‘An efficient nanolitre-volume multi-channel device for highly viscous materials used in membrane protein crystallization’, Journal of applied crystallography, 46, pp. 829–831. Available at: https://doi.org/10.1107/s0021889813006742.
Nederlof, Igor et al. (2013) ‘Imaging protein three-dimensional nanocrystals with cryo-EM’, Acta Crystallographica. Section D, Biological Crystallography, 69(Pt 5), pp. 852–9. Available at: https://doi.org/10.1107/s0907444913002734.
Nederlof, Igor et al. (2013) ‘Imaging protein three-dimensional nanocrystals with cryo-EM’, Acta Crystallographica. Section D, Biological Crystallography, 69(Pt 5), pp. 852–9. Available at: https://doi.org/10.1107/s0907444913002734.
Nederlof, Igor et al. (2013) ‘A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals’, Acta Crystallographica. Section D, Biological Crystallography, 69, pp. 1223–1230. Available at: https://doi.org/10.1107/s0907444913009700.
Nederlof, Igor et al. (2013) ‘A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals’, Acta Crystallographica. Section D, Biological Crystallography, 69, pp. 1223–1230. Available at: https://doi.org/10.1107/s0907444913009700.
ten Bruggencate, Filip et al. (2013) ‘Visualizing the localization of transfection complexes during graphene nanoparticle-based transfection’, Journal of Materials Chemistry B, 1(46), pp. 6353–6358. Available at: https://doi.org/10.1039/c3tb21349h.
ten Bruggencate, Filip et al. (2013) ‘Visualizing the localization of transfection complexes during graphene nanoparticle-based transfection’, Journal of Materials Chemistry B, 1(46), pp. 6353–6358. Available at: https://doi.org/10.1039/c3tb21349h.
Liu, Zunfeng et al. (2012) ‘Single-walled carbon nanotubes as scaffolds to concentrate DNA for the study of DNA-protein interactions’, ChemPhysChem, 13(6), pp. 1569–75. Available at: https://doi.org/10.1002/cphc.201100896.
Liu, Zunfeng et al. (2012) ‘Single-walled carbon nanotubes as scaffolds to concentrate DNA for the study of DNA-protein interactions’, ChemPhysChem, 13(6), pp. 1569–75. Available at: https://doi.org/10.1002/cphc.201100896.
Meulenbroek, Elisabeth M. et al. (2012) ‘Structure of a post-translationally processed heterodimeric double-headed Kunitz-type serine protease inhibitor from potato’, Acta Crystallographica. Section D, Biological Crystallography, 68(Pt 7), pp. 794–9. Available at: https://doi.org/10.1107/s090744491201222x.
Meulenbroek, Elisabeth M. et al. (2012) ‘Structure of a post-translationally processed heterodimeric double-headed Kunitz-type serine protease inhibitor from potato’, Acta Crystallographica. Section D, Biological Crystallography, 68(Pt 7), pp. 794–9. Available at: https://doi.org/10.1107/s090744491201222x.
Abrahams, Jan-Pieter et al. (2011) ‘‘4D Biology for health and disease’ workshop report’, New biotechnology, 28(4), pp. 291–293. Available at: https://doi.org/10.1016/j.nbt.2010.10.003.
Abrahams, Jan-Pieter et al. (2011) ‘‘4D Biology for health and disease’ workshop report’, New biotechnology, 28(4), pp. 291–293. Available at: https://doi.org/10.1016/j.nbt.2010.10.003.
Jiang, Linhua et al. (2011) ‘Image processing and lattice determination for three-dimensional nanocrystals’, Microscopy and Microanalysis, 17(6), pp. 879–85. Available at: https://doi.org/10.1017/s1431927611012244.
Jiang, Linhua et al. (2011) ‘Image processing and lattice determination for three-dimensional nanocrystals’, Microscopy and Microanalysis, 17(6), pp. 879–85. Available at: https://doi.org/10.1017/s1431927611012244.
Nederlof, Igor, Georgieva, Dilyana and Abrahams, Jan Pieter (2011) ‘Electron diffraction of submicron 3D protein crystals’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 67. Available at: https://doi.org/10.1107/s010876731109430x.
Nederlof, Igor, Georgieva, Dilyana and Abrahams, Jan Pieter (2011) ‘Electron diffraction of submicron 3D protein crystals’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 67. Available at: https://doi.org/10.1107/s010876731109430x.
Nicolopoulos, Stavros et al. (2011) ‘Low resolution electron crystallography challenges in organic and inorganic crystals with transmission electron microscope (TEM)’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 67. Available at: https://doi.org/10.1107/s0108767311095304.
Nicolopoulos, Stavros et al. (2011) ‘Low resolution electron crystallography challenges in organic and inorganic crystals with transmission electron microscope (TEM)’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 67. Available at: https://doi.org/10.1107/s0108767311095304.
Pannu, Navraj S. et al. (2011) ‘Recent advances in the CRANK software suite for experimental phasing’, Acta Crystallographica. Section D, Biological Crystallography, 67(Pt 4), pp. 331–7. Available at: https://doi.org/10.1107/s0907444910052224.
Pannu, Navraj S. et al. (2011) ‘Recent advances in the CRANK software suite for experimental phasing’, Acta Crystallographica. Section D, Biological Crystallography, 67(Pt 4), pp. 331–7. Available at: https://doi.org/10.1107/s0907444910052224.
Waterreus, Willem-Jan et al. (2011) ‘Advances in the CRANK software suite for automated crystal structure solution’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 67. Available at: https://doi.org/10.1107/s0108767311083346.
Waterreus, Willem-Jan et al. (2011) ‘Advances in the CRANK software suite for automated crystal structure solution’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 67. Available at: https://doi.org/10.1107/s0108767311083346.
Abrahams, Jan Pieter (2010) ‘The strong phase object approximation may allow extending crystallographic phases of dynamical electron diffraction patterns of 3D protein nano-crystals’, Zeitschrift für Kristallographie - Crystalline Materials, 225(2-3), pp. 67–76. Available at: https://doi.org/10.1524/zkri.2010.1216.
Abrahams, Jan Pieter (2010) ‘The strong phase object approximation may allow extending crystallographic phases of dynamical electron diffraction patterns of 3D protein nano-crystals’, Zeitschrift für Kristallographie - Crystalline Materials, 225(2-3), pp. 67–76. Available at: https://doi.org/10.1524/zkri.2010.1216.
Jiang, Linhua et al. (2010) ‘A novel approximation method of CTF amplitude correction for 3D single particle reconstruction’, Ultramicroscopy, 110(4), pp. 350–358. Available at: https://doi.org/10.1016/j.ultramic.2010.01.011.
Jiang, Linhua et al. (2010) ‘A novel approximation method of CTF amplitude correction for 3D single particle reconstruction’, Ultramicroscopy, 110(4), pp. 350–358. Available at: https://doi.org/10.1016/j.ultramic.2010.01.011.
Liu, Zunfeng et al. (2010) ‘Stable Single-Walled Carbon Nanotube-Streptavidin Complex for Biorecognition’, Journal of Physical Chemistry C, 114(10), pp. 4345–4352. Available at: https://doi.org/10.1021/jp911441d.
Liu, Zunfeng et al. (2010) ‘Stable Single-Walled Carbon Nanotube-Streptavidin Complex for Biorecognition’, Journal of Physical Chemistry C, 114(10), pp. 4345–4352. Available at: https://doi.org/10.1021/jp911441d.
Liu, Zunfeng et al. (2010) ‘A Graphene Oxide˙Streptavidin Complex for Biorecognition - Towards Affinity Purification’, Advanced Functional Materials, 20(17), pp. 2857–2865. Available at: https://doi.org/10.1002/adfm.201000761.
Liu, Zunfeng et al. (2010) ‘A Graphene Oxide˙Streptavidin Complex for Biorecognition - Towards Affinity Purification’, Advanced Functional Materials, 20(17), pp. 2857–2865. Available at: https://doi.org/10.1002/adfm.201000761.
Sikharulidze, I. et al. (2010) ‘Improved Imaging in low Energy Electron Microscopy and Photo Emission Electron Microscopy Using Medipix2 Pixel Detector’, in Leroy, Claude; Rancoita, Pier-Giorgio; Barone, Michele; Gaddi, Andrea; Price, Larry; Ruchti, Randal (ed.) Astroparticle, Particle, Space Physics, Radiation Interaction, Detectors and Medical Physics Applications. World Scientific: World Scientific (Astroparticle, Particle, Space Physics, Radiation Interaction, Detectors and Medical Physics Applications). Available at: https://doi.org/10.1142/9789814307529_0023.
Sikharulidze, I. et al. (2010) ‘Improved Imaging in low Energy Electron Microscopy and Photo Emission Electron Microscopy Using Medipix2 Pixel Detector’, in Leroy, Claude; Rancoita, Pier-Giorgio; Barone, Michele; Gaddi, Andrea; Price, Larry; Ruchti, Randal (ed.) Astroparticle, Particle, Space Physics, Radiation Interaction, Detectors and Medical Physics Applications. World Scientific: World Scientific (Astroparticle, Particle, Space Physics, Radiation Interaction, Detectors and Medical Physics Applications). Available at: https://doi.org/10.1142/9789814307529_0023.
Abrahams, Jan Pieter et al. (2009) ‘Macromolecular Electron Crystallography’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 65. Available at: https://doi.org/10.1107/s0108767309099875.
Abrahams, Jan Pieter et al. (2009) ‘Macromolecular Electron Crystallography’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 65. Available at: https://doi.org/10.1107/s0108767309099875.
de Geus, Daniël C. et al. (2009) ‘Crystal Structure of Chlorite Dismutase, a Detoxifying Enzyme Producing Molecular Oxygen’, Journal of Molecular Biology, 387(1), pp. 192–206. Available at: https://doi.org/10.1016/j.jmb.2009.01.036.
de Geus, Daniël C. et al. (2009) ‘Crystal Structure of Chlorite Dismutase, a Detoxifying Enzyme Producing Molecular Oxygen’, Journal of Molecular Biology, 387(1), pp. 192–206. Available at: https://doi.org/10.1016/j.jmb.2009.01.036.
de Geus, Daniël C. et al. (2009) ‘Characterization of a diagnostic Fab fragment binding trimeric Lewis X’, Proteins: Structure, Function, and Bioinformatics, 76(2), pp. 439–47. Available at: https://doi.org/10.1002/prot.22356.
de Geus, Daniël C. et al. (2009) ‘Characterization of a diagnostic Fab fragment binding trimeric Lewis X’, Proteins: Structure, Function, and Bioinformatics, 76(2), pp. 439–47. Available at: https://doi.org/10.1002/prot.22356.
De Geus, D. C. et al. (2009) ‘2VXH: The Crystal Structure Of Chlorite Dismutase: A Detox Enzyme Producing Molecular Oxygen’, Worldwide Protein Data Bank, p. 2VXH. Available at: https://doi.org/10.2210/pdb2vxh/pdb.
De Geus, D. C. et al. (2009) ‘2VXH: The Crystal Structure Of Chlorite Dismutase: A Detox Enzyme Producing Molecular Oxygen’, Worldwide Protein Data Bank, p. 2VXH. Available at: https://doi.org/10.2210/pdb2vxh/pdb.
De Geus, D. C. et al. (2009) ‘2VQ1: Anti Trimeric Lewis X Fab54-5C10-A’, Worldwide Protein Data Bank, p. 2VQ1. Available at: https://doi.org/10.2210/pdb2vq1/pdb.
De Geus, D. C. et al. (2009) ‘2VQ1: Anti Trimeric Lewis X Fab54-5C10-A’, Worldwide Protein Data Bank, p. 2VQ1. Available at: https://doi.org/10.2210/pdb2vq1/pdb.
Jiang, Linhua et al. (2009) ‘An intelligent peak search program for digital electron diffraction images of 3D nano-crystals’, in Qiu, Peihua; Yiu, Cedric; Zhang, Hua; Wen, Xianbin (ed.). IEEE: IEEE. Available at: https://doi.org/10.1109/cisp.2009.5301421.
Jiang, Linhua et al. (2009) ‘An intelligent peak search program for digital electron diffraction images of 3D nano-crystals’, in Qiu, Peihua; Yiu, Cedric; Zhang, Hua; Wen, Xianbin (ed.). IEEE: IEEE. Available at: https://doi.org/10.1109/cisp.2009.5301421.
Jiang, Linhua et al. (2009) ‘Unit-cell determination from randomly oriented electron-diffraction patterns’, Acta Crystallographica. Section D, Biological Crystallography, 65(Pt 7), pp. 625–32. Available at: https://doi.org/10.1107/s0907444909003163.
Jiang, Linhua et al. (2009) ‘Unit-cell determination from randomly oriented electron-diffraction patterns’, Acta Crystallographica. Section D, Biological Crystallography, 65(Pt 7), pp. 625–32. Available at: https://doi.org/10.1107/s0907444909003163.
Meulenbroek, Elisabeth M. et al. (2009) ‘Involvement of a carboxylated lysine in UV damage endonuclease’, Protein Science, 18(3), pp. 549–58. Available at: https://doi.org/10.1002/pro.54.
Meulenbroek, Elisabeth M. et al. (2009) ‘Involvement of a carboxylated lysine in UV damage endonuclease’, Protein Science, 18(3), pp. 549–58. Available at: https://doi.org/10.1002/pro.54.
Pannu, Navraj S., Ravelli, Raimond B. G. and Abrahams, Pieter (2009) ‘The Max-Inf2/Lorentz Center workshop on New algorithms in macromolecular crystallography and electron microscopy’, Acta Crystallographica. Section D, Biological Crystallography, 65, pp. 623–624. Available at: https://doi.org/10.1107/s0907444909020861.
Pannu, Navraj S., Ravelli, Raimond B. G. and Abrahams, Pieter (2009) ‘The Max-Inf2/Lorentz Center workshop on New algorithms in macromolecular crystallography and electron microscopy’, Acta Crystallographica. Section D, Biological Crystallography, 65, pp. 623–624. Available at: https://doi.org/10.1107/s0907444909020861.
van Gastel, R. et al. (2009) ‘Medipix 2 detector applied to low energy electron microscopy’, Ultramicroscopy, 110(1), pp. 33–5. Available at: https://doi.org/10.1016/j.ultramic.2009.09.002.
van Gastel, R. et al. (2009) ‘Medipix 2 detector applied to low energy electron microscopy’, Ultramicroscopy, 110(1), pp. 33–5. Available at: https://doi.org/10.1016/j.ultramic.2009.09.002.
van Haren, Jeffrey et al. (2009) ‘Mammalian Navigators are Microtubule Plus-End Tracking Proteins that can Reorganize the Cytoskeleton to Induce Neurite-Like Extensions’, Cell Motility and the Cytoskeleton, 66(10), pp. 824–38. Available at: https://doi.org/10.1002/cm.20370.
van Haren, Jeffrey et al. (2009) ‘Mammalian Navigators are Microtubule Plus-End Tracking Proteins that can Reorganize the Cytoskeleton to Induce Neurite-Like Extensions’, Cell Motility and the Cytoskeleton, 66(10), pp. 824–38. Available at: https://doi.org/10.1002/cm.20370.
Waterreus, Willem-Jan et al. (2009) ‘Recent Advances in CRANK’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 65. Available at: https://doi.org/10.1107/s0108767309096743.
Waterreus, Willem-Jan et al. (2009) ‘Recent Advances in CRANK’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 65. Available at: https://doi.org/10.1107/s0108767309096743.
Abrahams, Jan Pieter et al. (2008) ‘Prospects for structure solution by electron diffraction of three-dimensional protein crystals’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 64. Available at: https://doi.org/10.1107/s0108767308097584.
Abrahams, Jan Pieter et al. (2008) ‘Prospects for structure solution by electron diffraction of three-dimensional protein crystals’, Acta Crystallographica A-Foundation And Advances. International Union of Crystallography, 64. Available at: https://doi.org/10.1107/s0108767308097584.
de Geus, Daniël C. et al. (2008) ‘Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of chlorite dismutase: a detoxifying enzyme producing molecular oxygen’, Acta Crystallographica Section F, 64(Pt 8), pp. 730–2. Available at: https://doi.org/10.1107/s1744309108020551.
de Geus, Daniël C. et al. (2008) ‘Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of chlorite dismutase: a detoxifying enzyme producing molecular oxygen’, Acta Crystallographica Section F, 64(Pt 8), pp. 730–2. Available at: https://doi.org/10.1107/s1744309108020551.
Jiang, L. and Abrahams, J. P. (2008) ‘3BBU: The Hsp15 protein fitted into the low resolution Cryo-EM map of the 50S.nc-tRNA.Hsp15 complex’, Worldwide Protein Data Bank, p. 3BBU. Available at: https://doi.org/10.2210/pdb3bbu/pdb.
Jiang, L. and Abrahams, J. P. (2008) ‘3BBU: The Hsp15 protein fitted into the low resolution Cryo-EM map of the 50S.nc-tRNA.Hsp15 complex’, Worldwide Protein Data Bank, p. 3BBU. Available at: https://doi.org/10.2210/pdb3bbu/pdb.
Jiang, L. and Abrahams, J. P. (2008) ‘3BBX: The Hsp15 protein fitted into the low resolution Cryo-EM map of the 50S.nc-tRNA.Hsp15 complex’, Worldwide Protein Data Bank, p. 3BBX. Available at: https://doi.org/10.2210/pdb3bbx/pdb.
Jiang, L. and Abrahams, J. P. (2008) ‘3BBX: The Hsp15 protein fitted into the low resolution Cryo-EM map of the 50S.nc-tRNA.Hsp15 complex’, Worldwide Protein Data Bank, p. 3BBX. Available at: https://doi.org/10.2210/pdb3bbx/pdb.
Jiang, L. and Abrahams, J. P. (2008) ‘3BBV: The tRNA(phe) fitted into the low resolution Cryo-EM map of the 50S.nc-tRNA.Hsp15 complex’, Worldwide Protein Data Bank, p. 3BBV. Available at: https://doi.org/10.2210/pdb3bbv/pdb.
Jiang, L. and Abrahams, J. P. (2008) ‘3BBV: The tRNA(phe) fitted into the low resolution Cryo-EM map of the 50S.nc-tRNA.Hsp15 complex’, Worldwide Protein Data Bank, p. 3BBV. Available at: https://doi.org/10.2210/pdb3bbv/pdb.
Jiang, Linhua et al. (2008) ‘EMD-1455: Recycling of Aborted Ribosomal 50S Subunit-Nascent Chain-tRNA Complexes by the Heat Shock Protein Hsp15’, Journal of Molecular Biology, 386(5), pp. 1357–67. Available at: https://doi.org/10.1016/j.jmb.2008.10.079.
Jiang, Linhua et al. (2008) ‘EMD-1455: Recycling of Aborted Ribosomal 50S Subunit-Nascent Chain-tRNA Complexes by the Heat Shock Protein Hsp15’, Journal of Molecular Biology, 386(5), pp. 1357–67. Available at: https://doi.org/10.1016/j.jmb.2008.10.079.
Jiang, L. et al. (2008) ‘EMD-1456.map’, Electron Microscopy Data Bank, pp. EMD–1456.map.
Jiang, L. et al. (2008) ‘EMD-1456.map’, Electron Microscopy Data Bank, pp. EMD–1456.map.
Meulenbroek, E. M. et al. (2008) ‘3C0S: UVDE 3 metals’, Worldwide Protein Data Bank, p. 3C0S. Available at: https://doi.org/10.2210/pdb3c0s/pdb.
Meulenbroek, E. M. et al. (2008) ‘3C0S: UVDE 3 metals’, Worldwide Protein Data Bank, p. 3C0S. Available at: https://doi.org/10.2210/pdb3c0s/pdb.
Meulenbroek, E. M. et al. (2008) ‘3C0Q: Uvde E175a’, Worldwide Protein Data Bank, p. 3C0Q. Available at: https://doi.org/10.2210/pdb3c0q/pdb.
Meulenbroek, E. M. et al. (2008) ‘3C0Q: Uvde E175a’, Worldwide Protein Data Bank, p. 3C0Q. Available at: https://doi.org/10.2210/pdb3c0q/pdb.
Meulenbroek, E. M. et al. (2008) ‘3C0L: Uvde K229r’, Worldwide Protein Data Bank, p. 3C0L. Available at: https://doi.org/10.2210/pdb3c0l/pdb.
Meulenbroek, E. M. et al. (2008) ‘3C0L: Uvde K229r’, Worldwide Protein Data Bank, p. 3C0L. Available at: https://doi.org/10.2210/pdb3c0l/pdb.
Meulenbroek, E. M. et al. (2008) ‘3BZG: UVDE pH4.4’, Worldwide Protein Data Bank, p. 3BZG. Available at: https://doi.org/10.2210/pdb3bzg/pdb.
Meulenbroek, E. M. et al. (2008) ‘3BZG: UVDE pH4.4’, Worldwide Protein Data Bank, p. 3BZG. Available at: https://doi.org/10.2210/pdb3bzg/pdb.
Meulenbroek, E. M. et al. (2008) ‘3BZJ: Uvde K229l’, Worldwide Protein Data Bank, p. 3BZJ. Available at: https://doi.org/10.2210/pdb3bzj/pdb.
Meulenbroek, E. M. et al. (2008) ‘3BZJ: Uvde K229l’, Worldwide Protein Data Bank, p. 3BZJ. Available at: https://doi.org/10.2210/pdb3bzj/pdb.
Schaffitzel, C. et al. (2008) ‘EMD-1250.map’, Electron Microscopy Data Bank, pp. EMD–1250.map.
Schaffitzel, C. et al. (2008) ‘EMD-1250.map’, Electron Microscopy Data Bank, pp. EMD–1250.map.
Schaffitzel, C. et al. (2008) ‘EMD-1251: Structure of the E. coli signal recognition particle bound to a translating ribosome’, Electron Microscopy Data Bank, pp. EMD–1251.
Schaffitzel, C. et al. (2008) ‘EMD-1251: Structure of the E. coli signal recognition particle bound to a translating ribosome’, Electron Microscopy Data Bank, pp. EMD–1251.
Zovko, Sandra et al. (2008) ‘Microtubule plus-end conformations and dynamics in the periphery of interphase mouse fibroblasts’, Molecular Biology of the Cell, 19(7), pp. 3138–46. Available at: https://doi.org/10.1091/mbc.e07-07-0681.
Zovko, Sandra et al. (2008) ‘Microtubule plus-end conformations and dynamics in the periphery of interphase mouse fibroblasts’, Molecular Biology of the Cell, 19(7), pp. 3138–46. Available at: https://doi.org/10.1091/mbc.e07-07-0681.
Georgieva, Dilyana G. et al. (2007) ‘Heterogeneous nucleation of three-dimensional protein nanocrystals’, Acta Crystallographica. Section D, Biological Crystallography, 63(Pt 5), pp. 564–70. Available at: https://doi.org/10.1107/s0907444907007810.
Georgieva, Dilyana G. et al. (2007) ‘Heterogeneous nucleation of three-dimensional protein nanocrystals’, Acta Crystallographica. Section D, Biological Crystallography, 63(Pt 5), pp. 564–70. Available at: https://doi.org/10.1107/s0907444907007810.
Paspaleva, Keti et al. (2007) ‘Crystal structure of the DNA repair enzyme ultraviolet damage endonuclease’, Structure, 15(10), pp. 1316–24. Available at: https://doi.org/10.1016/j.str.2007.05.010.
Paspaleva, Keti et al. (2007) ‘Crystal structure of the DNA repair enzyme ultraviolet damage endonuclease’, Structure, 15(10), pp. 1316–24. Available at: https://doi.org/10.1016/j.str.2007.05.010.
Plaisier, Jasper R., Jiang, Linhua and Abrahams, Jan Pieter (2007) ‘Cyclops: New modular software suite for cryo-EM’, Journal of structural biology, 157(1), pp. 19–27. Available at: https://doi.org/10.1016/j.jsb.2006.07.002.
Plaisier, Jasper R., Jiang, Linhua and Abrahams, Jan Pieter (2007) ‘Cyclops: New modular software suite for cryo-EM’, Journal of structural biology, 157(1), pp. 19–27. Available at: https://doi.org/10.1016/j.jsb.2006.07.002.