Structural Biology (Hiller)
Publications
132 found
Show per page
Santi, Isabella et al. (2024) ‘Toxin-mediated depletion of NAD and NADP drives persister formation in a human pathogen’, The EMBO Journal, 43(21), pp. 5211–5236. Available at: https://doi.org/10.1038/s44318-024-00248-5.
Santi, Isabella et al. (2024) ‘Toxin-mediated depletion of NAD and NADP drives persister formation in a human pathogen’, The EMBO Journal, 43(21), pp. 5211–5236. Available at: https://doi.org/10.1038/s44318-024-00248-5.
Hiller, Sebastian et al. (2024) ‘A functional chaperone condensate in the endoplasmic reticulum’, Research Square [Preprint]. Research Square. Available at: https://doi.org/10.21203/rs.3.rs-4796355/v1.
Hiller, Sebastian et al. (2024) ‘A functional chaperone condensate in the endoplasmic reticulum’, Research Square [Preprint]. Research Square. Available at: https://doi.org/10.21203/rs.3.rs-4796355/v1.
Lewis, Kim et al. (2024) ‘Sophisticated natural products as antibiotics’, Nature, 632(8023), pp. 39–49. Available at: https://doi.org/10.1038/s41586-024-07530-w.
Lewis, Kim et al. (2024) ‘Sophisticated natural products as antibiotics’, Nature, 632(8023), pp. 39–49. Available at: https://doi.org/10.1038/s41586-024-07530-w.
Hiller, Sebastian and Mas, Guillaume (2024) ‘Characterization of ATP hydrolysis in the Hsp70 BiP nucleotide binding domain’, Research Square [Preprint]. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-4017836/v1.
Hiller, Sebastian and Mas, Guillaume (2024) ‘Characterization of ATP hydrolysis in the Hsp70 BiP nucleotide binding domain’, Research Square [Preprint]. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-4017836/v1.
Alter, Claudio Luca et al. (2024) ‘Nano Plasma Membrane Vesicle-Lipid Nanoparticle Hybrids for Enhanced Gene Delivery and Expression’, Advanced Healthcare Materials. 10.11.2024, p. Online ahead of print. Available at: https://doi.org/10.1002/adhm.202401888.
Alter, Claudio Luca et al. (2024) ‘Nano Plasma Membrane Vesicle-Lipid Nanoparticle Hybrids for Enhanced Gene Delivery and Expression’, Advanced Healthcare Materials. 10.11.2024, p. Online ahead of print. Available at: https://doi.org/10.1002/adhm.202401888.
Hiller, Sebastian, Liu, Maili and He, Lichun (2023) Biophysics of Molecular Chaperones, Function, Mechanisms and Client Protein Interactions. Edited by Sebastian Hiller;Maili Liu;Lichun He. Royal Society of Chemistry (Function, Mechanisms and Client Protein Interactions). Available at: https://doi.org/10.1039/9781839165986.
Hiller, Sebastian, Liu, Maili and He, Lichun (2023) Biophysics of Molecular Chaperones, Function, Mechanisms and Client Protein Interactions. Edited by Sebastian Hiller;Maili Liu;Lichun He. Royal Society of Chemistry (Function, Mechanisms and Client Protein Interactions). Available at: https://doi.org/10.1039/9781839165986.
Santi, Isabella et al. (2023) ‘Toxin-mediated depletion of nicotinamide dinucleotides drives persister formation in a human pathogen’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.09.28.559889.
Santi, Isabella et al. (2023) ‘Toxin-mediated depletion of nicotinamide dinucleotides drives persister formation in a human pathogen’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.09.28.559889.
Rath, P. et al. (2023) ‘High-throughput screening of BAM inhibitors in native membrane environment’, Nature Communications, 14(1). Available at: https://doi.org/10.1038/s41467-023-41445-w.
Rath, P. et al. (2023) ‘High-throughput screening of BAM inhibitors in native membrane environment’, Nature Communications, 14(1). Available at: https://doi.org/10.1038/s41467-023-41445-w.
Pipercevic, J. et al. (2023) ‘Inositol pyrophosphates activate the vacuolar transport chaperone complex in yeast by disrupting a homotypic SPX domain interaction’, Nature Communications, 14(1). Available at: https://doi.org/10.1038/s41467-023-38315-w.
Pipercevic, J. et al. (2023) ‘Inositol pyrophosphates activate the vacuolar transport chaperone complex in yeast by disrupting a homotypic SPX domain interaction’, Nature Communications, 14(1). Available at: https://doi.org/10.1038/s41467-023-38315-w.
Brüderlin, Mitchell et al. (2023) ‘Structural features discriminating hybrid histidine kinase Rec domains from response regulator homologs’, Nature communications, 14(1), p. 1002. Available at: https://doi.org/10.1038/s41467-023-36597-8.
Brüderlin, Mitchell et al. (2023) ‘Structural features discriminating hybrid histidine kinase Rec domains from response regulator homologs’, Nature communications, 14(1), p. 1002. Available at: https://doi.org/10.1038/s41467-023-36597-8.
Degen, Morris et al. (2023) ‘Structural basis of NINJ1-mediated plasma membrane rupture in cell death’, Nature, 618(7967), pp. 1065–1071. Available at: https://doi.org/10.1038/s41586-023-05991-z.
Degen, Morris et al. (2023) ‘Structural basis of NINJ1-mediated plasma membrane rupture in cell death’, Nature, 618(7967), pp. 1065–1071. Available at: https://doi.org/10.1038/s41586-023-05991-z.
Manner, Christina et al. (2023) ‘A genetic switch controls Pseudomonas aeruginosa surface colonization’, Nature Microbiology, 8(8), pp. 1520–1533. Available at: https://doi.org/10.1038/s41564-023-01403-0.
Manner, Christina et al. (2023) ‘A genetic switch controls Pseudomonas aeruginosa surface colonization’, Nature Microbiology, 8(8), pp. 1520–1533. Available at: https://doi.org/10.1038/s41564-023-01403-0.
Hiller, Sebastian and Burmann, Björn M. (2023) ‘Describing dynamic chaperone-client complexes by solution NMR spectroscopy’, in NMR Spectroscopy in probing Functional Dynamics at Biological Interfaces. Royal Society of Chemistry (NMR Spectroscopy in probing Functional Dynamics at Biological Interfaces). Available at: https://doi.org/10.1039/9781839165702-00277.
Hiller, Sebastian and Burmann, Björn M. (2023) ‘Describing dynamic chaperone-client complexes by solution NMR spectroscopy’, in NMR Spectroscopy in probing Functional Dynamics at Biological Interfaces. Royal Society of Chemistry (NMR Spectroscopy in probing Functional Dynamics at Biological Interfaces). Available at: https://doi.org/10.1039/9781839165702-00277.
Brüderlin, Mitchell et al. (2022) ‘Intermediaries in phosphotransfer: structural features discriminating hybrid histidine kinase Rec domains from response regulator homologs’, Research Square [Preprint]. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-1729787/v1.
Brüderlin, Mitchell et al. (2022) ‘Intermediaries in phosphotransfer: structural features discriminating hybrid histidine kinase Rec domains from response regulator homologs’, Research Square [Preprint]. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-1729787/v1.
Mari, S.A. et al. (2022) ‘Gasdermin-A3 pore formation propagates along variable pathways’, Nature Communications, 13(1). Available at: https://doi.org/10.1038/s41467-022-30232-8.
Mari, S.A. et al. (2022) ‘Gasdermin-A3 pore formation propagates along variable pathways’, Nature Communications, 13(1). Available at: https://doi.org/10.1038/s41467-022-30232-8.
Agustoni, Elia et al. (2022) ‘Acquisition of enzymatic progress curves in real time by quenching-free ion exchange chromatography’, Analytical biochemistry, 639, p. 114523. Available at: https://doi.org/10.1016/j.ab.2021.114523.
Agustoni, Elia et al. (2022) ‘Acquisition of enzymatic progress curves in real time by quenching-free ion exchange chromatography’, Analytical biochemistry, 639, p. 114523. Available at: https://doi.org/10.1016/j.ab.2021.114523.
Kolloff, Christopher et al. (2022) ‘Motional clustering in supra-τ; c; conformational exchange influences NOE cross-relaxation rate’, Journal of Magnetic Resonance, 338, p. 107196. Available at: https://doi.org/10.1016/j.jmr.2022.107196.
Kolloff, Christopher et al. (2022) ‘Motional clustering in supra-τ; c; conformational exchange influences NOE cross-relaxation rate’, Journal of Magnetic Resonance, 338, p. 107196. Available at: https://doi.org/10.1016/j.jmr.2022.107196.
Manioglu, S. et al. (2022) ‘Antibiotic polymyxin arranges lipopolysaccharide into crystalline structures to solidify the bacterial membrane’, Nature Communications, 13. Available at: https://doi.org/10.1038/s41467-022-33838-0.
Manioglu, S. et al. (2022) ‘Antibiotic polymyxin arranges lipopolysaccharide into crystalline structures to solidify the bacterial membrane’, Nature Communications, 13. Available at: https://doi.org/10.1038/s41467-022-33838-0.
Miller, Ryan D. et al. (2022) ‘Computational identification of a systemic antibiotic for gram-negative bacteria’, Nature Microbiology, 7(10), pp. 1661–1672. Available at: https://doi.org/10.1038/s41564-022-01227-4.
Miller, Ryan D. et al. (2022) ‘Computational identification of a systemic antibiotic for gram-negative bacteria’, Nature Microbiology, 7(10), pp. 1661–1672. Available at: https://doi.org/10.1038/s41564-022-01227-4.
Müntener, Thomas et al. (2022) ‘Pseudocontact Shifts in Biomolecular NMR Spectroscopy’, Chemical Reviews, 122(10), pp. 9422–9467. Available at: https://doi.org/10.1021/acs.chemrev.1c00796.
Müntener, Thomas et al. (2022) ‘Pseudocontact Shifts in Biomolecular NMR Spectroscopy’, Chemical Reviews, 122(10), pp. 9422–9467. Available at: https://doi.org/10.1021/acs.chemrev.1c00796.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Böhringer, Nils et al. (2021) ‘Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs’, Microbiology spectrum, 9(3), p. e0153521. Available at: https://doi.org/10.1128/spectrum.01535-21.
Böhringer, Nils et al. (2021) ‘Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs’, Microbiology spectrum, 9(3), p. e0153521. Available at: https://doi.org/10.1128/spectrum.01535-21.
Gray, Declan A. et al. (2021) ‘Insights into SusCD-mediated glycan import by a prominent gut symbiont’, Nature Communications, 12(1), p. 44. Available at: https://doi.org/10.1038/s41467-020-20285-y.
Gray, Declan A. et al. (2021) ‘Insights into SusCD-mediated glycan import by a prominent gut symbiont’, Nature Communications, 12(1), p. 44. Available at: https://doi.org/10.1038/s41467-020-20285-y.
He, Wei et al. (2021) ‘Chaperone Spy Protects Outer Membrane Proteins from Folding Stress via Dynamic Complex Formation’, mBio, 12(5), p. e0213021. Available at: https://doi.org/10.1128/mbio.02130-21.
He, Wei et al. (2021) ‘Chaperone Spy Protects Outer Membrane Proteins from Folding Stress via Dynamic Complex Formation’, mBio, 12(5), p. e0213021. Available at: https://doi.org/10.1128/mbio.02130-21.
Hiller, Sebastian (2021) ‘Molecular chaperones and their denaturing effect on client proteins’, Journal of Biomolecular NMR, 75(1), pp. 1–8. Available at: https://doi.org/10.1007/s10858-020-00353-7.
Hiller, Sebastian (2021) ‘Molecular chaperones and their denaturing effect on client proteins’, Journal of Biomolecular NMR, 75(1), pp. 1–8. Available at: https://doi.org/10.1007/s10858-020-00353-7.
Hiller, Sebastian and Broz, Petr (2021) ‘Active membrane rupture spurs a range of cell deaths’, Nature, 591(7848), pp. 36–37. Available at: https://doi.org/10.1038/d41586-021-00297-4.
Hiller, Sebastian and Broz, Petr (2021) ‘Active membrane rupture spurs a range of cell deaths’, Nature, 591(7848), pp. 36–37. Available at: https://doi.org/10.1038/d41586-021-00297-4.
Kaur, Hundeep et al. (2021) ‘The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase’, Nature, 593(7857), pp. 125–129. Available at: https://doi.org/10.1038/s41586-021-03455-w.
Kaur, Hundeep et al. (2021) ‘The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase’, Nature, 593(7857), pp. 125–129. Available at: https://doi.org/10.1038/s41586-021-03455-w.
Macošek, Jakub, Mas, Guillaume and Hiller, Sebastian (2021) ‘Redefining Molecular Chaperones as Chaotropes’, Frontiers in molecular biosciences, 8, p. 683132. Available at: https://doi.org/10.3389/fmolb.2021.683132.
Macošek, Jakub, Mas, Guillaume and Hiller, Sebastian (2021) ‘Redefining Molecular Chaperones as Chaotropes’, Frontiers in molecular biosciences, 8, p. 683132. Available at: https://doi.org/10.3389/fmolb.2021.683132.
Pérez-Schindler, Joaquín et al. (2021) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’, Proceedings of the National Academy of Sciences of the United States of America, 118(36), p. e2105951118. Available at: https://doi.org/10.1073/pnas.2105951118.
Pérez-Schindler, Joaquín et al. (2021) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’, Proceedings of the National Academy of Sciences of the United States of America, 118(36), p. e2105951118. Available at: https://doi.org/10.1073/pnas.2105951118.
Pipercevic, Joka et al. (2021) ‘Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), p. 183607. Available at: https://doi.org/10.1016/j.bbamem.2021.183607.
Pipercevic, Joka et al. (2021) ‘Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), p. 183607. Available at: https://doi.org/10.1016/j.bbamem.2021.183607.
Ried, Martina K. et al. (2021) ‘Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis’, Nature communications, 12(1), p. 384. Available at: https://doi.org/10.1038/s41467-020-20681-4.
Ried, Martina K. et al. (2021) ‘Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis’, Nature communications, 12(1), p. 384. Available at: https://doi.org/10.1038/s41467-020-20681-4.
Ritzmann, Noah et al. (2021) ‘Monitoring the antibiotic darobactin modulating the β-barrel assembly factor BamA’, Structure, 30(March), pp. 1–10. Available at: https://doi.org/10.1016/j.str.2021.11.004.
Ritzmann, Noah et al. (2021) ‘Monitoring the antibiotic darobactin modulating the β-barrel assembly factor BamA’, Structure, 30(March), pp. 1–10. Available at: https://doi.org/10.1016/j.str.2021.11.004.
Shyp, Viktoriya et al. (2021) ‘Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus’, Nature Microbiology, 6(1), pp. 59–72. Available at: https://doi.org/10.1038/s41564-020-00809-4.
Shyp, Viktoriya et al. (2021) ‘Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus’, Nature Microbiology, 6(1), pp. 59–72. Available at: https://doi.org/10.1038/s41564-020-00809-4.
Ude, Johanna et al. (2021) ‘Outer membrane permeability: Antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa’, Proceedings of the National Academy of Sciences of the United States of America, 118(31), p. e2107644118. Available at: https://doi.org/10.1073/pnas.2107644118.
Ude, Johanna et al. (2021) ‘Outer membrane permeability: Antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa’, Proceedings of the National Academy of Sciences of the United States of America, 118(31), p. e2107644118. Available at: https://doi.org/10.1073/pnas.2107644118.
Vavassori, Stefano et al. (2021) ‘Multisystem inflammation and susceptibility to viral infections in human ZNFX1 deficiency’, The Journal of Allergy & Clinical Immunology, 148(2), pp. 381–393. Available at: https://doi.org/10.1016/j.jaci.2021.03.045.
Vavassori, Stefano et al. (2021) ‘Multisystem inflammation and susceptibility to viral infections in human ZNFX1 deficiency’, The Journal of Allergy & Clinical Immunology, 148(2), pp. 381–393. Available at: https://doi.org/10.1016/j.jaci.2021.03.045.
Bibow, Stefan et al. (2020) ‘Detergent Titration as an Efficient Method for NMR Resonance Assignments of Membrane Proteins in Lipid-Bilayer Nanodiscs’, Analytical Chemistry, 92(11), pp. 7786–7793. Available at: https://doi.org/10.1021/acs.analchem.0c00917.
Bibow, Stefan et al. (2020) ‘Detergent Titration as an Efficient Method for NMR Resonance Assignments of Membrane Proteins in Lipid-Bilayer Nanodiscs’, Analytical Chemistry, 92(11), pp. 7786–7793. Available at: https://doi.org/10.1021/acs.analchem.0c00917.
Böhm, Raphael et al. (2020) ‘The Structural Basis for Low Conductance in the Membrane Protein VDAC upon β-NADH Binding and Voltage Gating’, Structure, 28(2), pp. 206–214.e4. Available at: https://doi.org/10.1016/j.str.2019.11.015.
Böhm, Raphael et al. (2020) ‘The Structural Basis for Low Conductance in the Membrane Protein VDAC upon β-NADH Binding and Voltage Gating’, Structure, 28(2), pp. 206–214.e4. Available at: https://doi.org/10.1016/j.str.2019.11.015.
Burmann, Björn M. et al. (2020) ‘Regulation of α-synuclein by chaperones in mammalian cells’, Nature, 577(7788), pp. 127–132. Available at: https://doi.org/10.1038/s41586-019-1808-9.
Burmann, Björn M. et al. (2020) ‘Regulation of α-synuclein by chaperones in mammalian cells’, Nature, 577(7788), pp. 127–132. Available at: https://doi.org/10.1038/s41586-019-1808-9.
Dubey, Badri N. et al. (2020) ‘Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation’, Proceedings of the National Academy of Sciences of the United States of America, 117(2), pp. 1000–1008. Available at: https://doi.org/10.1073/pnas.1911427117.
Dubey, Badri N. et al. (2020) ‘Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation’, Proceedings of the National Academy of Sciences of the United States of America, 117(2), pp. 1000–1008. Available at: https://doi.org/10.1073/pnas.1911427117.
Kaczmarczyk, Andreas et al. (2020) ‘Precise Timing of Transcription by c-di-GMP Coordinates Cell Cycle and Morphogenesis in Caulobacter’, Nature Communications, 11(1), p. 816. Available at: https://doi.org/10.1038/s41467-020-14585-6.
Kaczmarczyk, Andreas et al. (2020) ‘Precise Timing of Transcription by c-di-GMP Coordinates Cell Cycle and Morphogenesis in Caulobacter’, Nature Communications, 11(1), p. 816. Available at: https://doi.org/10.1038/s41467-020-14585-6.
Kaur, Hundeep et al. (2020) ‘Sample Preparation and Technical Setup for NMR Spectroscopy with Integral Membrane Proteins’, in Expression, Purification, and Structural Biology of Membrane Proteins. Humana Press (Methods in Molecular Biology), pp. 373–396. Available at: https://doi.org/10.1007/978-1-0716-0373-4_24.
Kaur, Hundeep et al. (2020) ‘Sample Preparation and Technical Setup for NMR Spectroscopy with Integral Membrane Proteins’, in Expression, Purification, and Structural Biology of Membrane Proteins. Humana Press (Methods in Molecular Biology), pp. 373–396. Available at: https://doi.org/10.1007/978-1-0716-0373-4_24.
Kohl, Bastian et al. (2020) ‘Protocol for High-Yield Production of Photo-Leucine-Labeled Proteins in Escherichia coli’, Journal of Proteome Research, 19(8), pp. 3100–3108. Available at: https://doi.org/10.1021/acs.jproteome.0c00105.
Kohl, Bastian et al. (2020) ‘Protocol for High-Yield Production of Photo-Leucine-Labeled Proteins in Escherichia coli’, Journal of Proteome Research, 19(8), pp. 3100–3108. Available at: https://doi.org/10.1021/acs.jproteome.0c00105.
Mas, Guillaume et al. (2020) ‘Regulation of chaperone function by coupled folding and oligomerization’, Science advances, 6(43), p. eabc5822. Available at: https://doi.org/10.1126/sciadv.abc5822.
Mas, Guillaume et al. (2020) ‘Regulation of chaperone function by coupled folding and oligomerization’, Science advances, 6(43), p. eabc5822. Available at: https://doi.org/10.1126/sciadv.abc5822.
Müntener, Thomas et al. (2020) ‘NMR pseudocontact shifts in a symmetric protein homotrimer’, Journal of Biomolecular NMR, 74(8-9), pp. 413–419. Available at: https://doi.org/10.1007/s10858-020-00329-7.
Müntener, Thomas et al. (2020) ‘NMR pseudocontact shifts in a symmetric protein homotrimer’, Journal of Biomolecular NMR, 74(8-9), pp. 413–419. Available at: https://doi.org/10.1007/s10858-020-00329-7.
Orton, Henry W. et al. (2020) ‘Protein NMR resonance assignment without spectral analysis: 5D SOlid-State Automated Projection SpectroscopY (SO-APSY)’, Angewandte Chemie International Edition, 59(6), pp. 2380–2384. Available at: https://doi.org/10.1002/anie.201912211.
Orton, Henry W. et al. (2020) ‘Protein NMR resonance assignment without spectral analysis: 5D SOlid-State Automated Projection SpectroscopY (SO-APSY)’, Angewandte Chemie International Edition, 59(6), pp. 2380–2384. Available at: https://doi.org/10.1002/anie.201912211.
Rath, Parthasarathi, Sharpe, Timothy and Hiller, Sebastian (2020) ‘The electrostatic core of the outer membrane protein X from E. coli’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1862(1), p. 183031. Available at: https://doi.org/10.1016/j.bbamem.2019.183031.
Rath, Parthasarathi, Sharpe, Timothy and Hiller, Sebastian (2020) ‘The electrostatic core of the outer membrane protein X from E. coli’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1862(1), p. 183031. Available at: https://doi.org/10.1016/j.bbamem.2019.183031.
Zhang, Bing et al. (2020) ‘Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis’, Nature Structural and Molecular Biology, 27(6), pp. 561–569. Available at: https://doi.org/10.1038/s41594-020-0425-5.
Zhang, Bing et al. (2020) ‘Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis’, Nature Structural and Molecular Biology, 27(6), pp. 561–569. Available at: https://doi.org/10.1038/s41594-020-0425-5.
Dubey, Badri N. et al. (2019) ‘Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/675454.
Dubey, Badri N. et al. (2019) ‘Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/675454.
Kaczmarczyk, Andreas et al. (2019) ‘Precise transcription timing by a second-messenger drives a bacterial G1/S cell cycle transition’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/675330.
Kaczmarczyk, Andreas et al. (2019) ‘Precise transcription timing by a second-messenger drives a bacterial G1/S cell cycle transition’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/675330.
He, Lichun and Hiller, Sebastian (2019) ‘Frustrated Interfaces Facilitate Dynamic Interactions between Native Client Proteins and Holdase Chaperones’, Chembiochem : a European journal of chemical biology, 20(22), pp. 2803–2806. Available at: https://doi.org/10.1002/cbic.201900215.
He, Lichun and Hiller, Sebastian (2019) ‘Frustrated Interfaces Facilitate Dynamic Interactions between Native Client Proteins and Holdase Chaperones’, Chembiochem : a European journal of chemical biology, 20(22), pp. 2803–2806. Available at: https://doi.org/10.1002/cbic.201900215.
Hiller, Sebastian (2019) ‘Chaperone-Bound Clients: The Importance of Being Dynamic’, Trends in Biochemical Sciences, 44(6), pp. 517–527. Available at: https://doi.org/10.1016/j.tibs.2018.12.005.
Hiller, Sebastian (2019) ‘Chaperone-Bound Clients: The Importance of Being Dynamic’, Trends in Biochemical Sciences, 44(6), pp. 517–527. Available at: https://doi.org/10.1016/j.tibs.2018.12.005.
Imai, Yu et al. (2019) ‘A new antibiotic selectively kills Gram-negative pathogens’, Nature, 576(7787), p. 459–+. Available at: https://doi.org/10.1038/s41586-019-1791-1.
Imai, Yu et al. (2019) ‘A new antibiotic selectively kills Gram-negative pathogens’, Nature, 576(7787), p. 459–+. Available at: https://doi.org/10.1038/s41586-019-1791-1.
Kaur, Hundeep et al. (2019) ‘Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach’, Journal of Biomolecular NMR, 73(6-7), pp. 375–384. Available at: https://doi.org/10.1007/s10858-019-00250-8.
Kaur, Hundeep et al. (2019) ‘Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach’, Journal of Biomolecular NMR, 73(6-7), pp. 375–384. Available at: https://doi.org/10.1007/s10858-019-00250-8.
Luther, Anatol et al. (2019) ‘Chimeric peptidomimetic antibiotics against Gram-negative bacteria’, Nature, 576(7787), pp. 452–458. Available at: https://doi.org/10.1038/s41586-019-1665-6.
Luther, Anatol et al. (2019) ‘Chimeric peptidomimetic antibiotics against Gram-negative bacteria’, Nature, 576(7787), pp. 452–458. Available at: https://doi.org/10.1038/s41586-019-1665-6.
Rath, Parthasarathi et al. (2019) ‘Two-state folding of the outer membrane protein X into a lipid bilayer membrane’, Angewandte Chemie International Edition, 58(9), pp. 2665–2669. Available at: https://doi.org/10.1002/anie.201812321.
Rath, Parthasarathi et al. (2019) ‘Two-state folding of the outer membrane protein X into a lipid bilayer membrane’, Angewandte Chemie International Edition, 58(9), pp. 2665–2669. Available at: https://doi.org/10.1002/anie.201812321.
Mas, Guillaume, Thoma, Johannes and Hiller, Sebastian (2019) ‘The Periplasmic Chaperones Skp and SurA’, in Kuhn, A. (ed.) Bacterial Cell Walls and Membranes. Cham: Springer Nature (Subcellular Biochemistry), pp. 169–186. Available at: https://doi.org/10.1007/978-3-030-18768-2_6.
Mas, Guillaume, Thoma, Johannes and Hiller, Sebastian (2019) ‘The Periplasmic Chaperones Skp and SurA’, in Kuhn, A. (ed.) Bacterial Cell Walls and Membranes. Cham: Springer Nature (Subcellular Biochemistry), pp. 169–186. Available at: https://doi.org/10.1007/978-3-030-18768-2_6.
Mazur, Adam, Broz, Petr and Hiller, Sebastian (2019) ‘An integrative protocol for the structure determination of the mouse ASC-PYD filament’, in Sohn, Jungsan (ed.) Methods in Enzymology. New York: Elsevier (Methods in Enzymology), pp. 205–222. Available at: https://doi.org/10.1016/bs.mie.2019.04.033.
Mazur, Adam, Broz, Petr and Hiller, Sebastian (2019) ‘An integrative protocol for the structure determination of the mouse ASC-PYD filament’, in Sohn, Jungsan (ed.) Methods in Enzymology. New York: Elsevier (Methods in Enzymology), pp. 205–222. Available at: https://doi.org/10.1016/bs.mie.2019.04.033.
He, Lichun and Hiller, Sebastian (2018) ‘Übereinstimmende Muster in Chaperon‐Interaktionen mit einem nativen Klientenprotein’, Angewandte Chemie, 130(20), pp. 6024–6027. Available at: https://doi.org/10.1002/ange.201713064.
He, Lichun and Hiller, Sebastian (2018) ‘Übereinstimmende Muster in Chaperon‐Interaktionen mit einem nativen Klientenprotein’, Angewandte Chemie, 130(20), pp. 6024–6027. Available at: https://doi.org/10.1002/ange.201713064.
Bibow, Stefan and Hiller, Sebastian (2018) ‘A guide to quantifying membrane protein dynamics in lipids and other native-like environments by solution-state NMR spectroscopy’, FEBS Journal, 286(9), pp. 1610–1623. Available at: https://doi.org/10.1111/febs.14639.
Bibow, Stefan and Hiller, Sebastian (2018) ‘A guide to quantifying membrane protein dynamics in lipids and other native-like environments by solution-state NMR spectroscopy’, FEBS Journal, 286(9), pp. 1610–1623. Available at: https://doi.org/10.1111/febs.14639.
Hartmann, Jean-Baptiste et al. (2018) ‘Sequence-Specific Solution NMR Assignments of the beta-Barrel Insertase BamA to Monitor Its Conformational Ensemble at the Atomic Level’, Journal of the American Chemical Society, 140(36), pp. 11252–11260. Available at: https://doi.org/10.1021/jacs.8b03220.
Hartmann, Jean-Baptiste et al. (2018) ‘Sequence-Specific Solution NMR Assignments of the beta-Barrel Insertase BamA to Monitor Its Conformational Ensemble at the Atomic Level’, Journal of the American Chemical Society, 140(36), pp. 11252–11260. Available at: https://doi.org/10.1021/jacs.8b03220.
Heilig, Rosalie et al. (2018) ‘The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice’, European journal of immunology, 48(4), pp. 584–592. Available at: https://doi.org/10.1002/eji.201747404.
Heilig, Rosalie et al. (2018) ‘The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice’, European journal of immunology, 48(4), pp. 584–592. Available at: https://doi.org/10.1002/eji.201747404.
He, Lichun and Hiller, Sebastian (2018) ‘Common Patterns in Chaperone Interactions with a Native Client Protein’, Angewandte Chemie International Edition, 57(20), pp. 5921–5924. Available at: https://doi.org/10.1002/anie.201713064.
He, Lichun and Hiller, Sebastian (2018) ‘Common Patterns in Chaperone Interactions with a Native Client Protein’, Angewandte Chemie International Edition, 57(20), pp. 5921–5924. Available at: https://doi.org/10.1002/anie.201713064.
Hiller, Sebastian and Burmann, Björn M. (2018) ‘Chaperone-client complexes: A dynamic liaison’, Journal of Magnetic Resonance, 289, pp. 142–155. Available at: https://doi.org/10.1016/j.jmr.2017.12.008.
Hiller, Sebastian and Burmann, Björn M. (2018) ‘Chaperone-client complexes: A dynamic liaison’, Journal of Magnetic Resonance, 289, pp. 142–155. Available at: https://doi.org/10.1016/j.jmr.2017.12.008.
Mas, Guillaume and Hiller, Sebastian (2018) ‘Conformational plasticity of molecular chaperones involved in periplasmic and outer membrane protein folding’, FEMS Microbiology Letters, 365(13), p. fny121. Available at: https://doi.org/10.1093/femsle/fny121.
Mas, Guillaume and Hiller, Sebastian (2018) ‘Conformational plasticity of molecular chaperones involved in periplasmic and outer membrane protein folding’, FEMS Microbiology Letters, 365(13), p. fny121. Available at: https://doi.org/10.1093/femsle/fny121.
Melo, Esther et al. (2018) ‘HtrA1 Mediated Intracellular Effects on Tubulin Using a Polarized RPE Disease Model.’, EBioMedicine, 27, pp. 258–274. Available at: https://doi.org/10.1016/j.ebiom.2017.12.011.
Melo, Esther et al. (2018) ‘HtrA1 Mediated Intracellular Effects on Tubulin Using a Polarized RPE Disease Model.’, EBioMedicine, 27, pp. 258–274. Available at: https://doi.org/10.1016/j.ebiom.2017.12.011.
Mulvihill, Estefania et al. (2018) ‘Mechanism of membrane pore formation by human gasdermin-D’, The EMBO journal, 37(14), p. e98321. Available at: https://doi.org/10.15252/embj.201798321.
Mulvihill, Estefania et al. (2018) ‘Mechanism of membrane pore formation by human gasdermin-D’, The EMBO journal, 37(14), p. e98321. Available at: https://doi.org/10.15252/embj.201798321.
Sborgi, Lorenzo et al. (2018) ‘Assay for high-throughput screening of inhibitors of the ASC-PYD inflammasome core filament’, Cell Stress, 2(4), pp. 82–90. Available at: https://doi.org/10.15698/cst2018.04.131.
Sborgi, Lorenzo et al. (2018) ‘Assay for high-throughput screening of inhibitors of the ASC-PYD inflammasome core filament’, Cell Stress, 2(4), pp. 82–90. Available at: https://doi.org/10.15698/cst2018.04.131.
Holdbrook, Daniel A. et al. (2017) ‘A Spring-Loaded Mechanism Governs the Clamp-like Dynamics of the Skp Chaperone’, Structure, 25(7), p. 1079–+. Available at: https://doi.org/10.1016/j.str.2017.05.018.
Holdbrook, Daniel A. et al. (2017) ‘A Spring-Loaded Mechanism Governs the Clamp-like Dynamics of the Skp Chaperone’, Structure, 25(7), p. 1079–+. Available at: https://doi.org/10.1016/j.str.2017.05.018.
Morgado, Leonor et al. (2017) ‘The dynamic dimer structure of the chaperone Trigger Factor’, Nature Communications, 8(1), p. 1992. Available at: https://doi.org/10.1038/s41467-017-02196-7.
Morgado, Leonor et al. (2017) ‘The dynamic dimer structure of the chaperone Trigger Factor’, Nature Communications, 8(1), p. 1992. Available at: https://doi.org/10.1038/s41467-017-02196-7.
Thoma, Johannes et al. (2017) ‘Maltoporin LamB Unfolds β Hairpins along Mechanical Stress-Dependent Unfolding Pathways’, Structure, 25(7), pp. 1139–1144.e2. Available at: https://doi.org/10.1016/j.str.2017.05.010.
Thoma, Johannes et al. (2017) ‘Maltoporin LamB Unfolds β Hairpins along Mechanical Stress-Dependent Unfolding Pathways’, Structure, 25(7), pp. 1139–1144.e2. Available at: https://doi.org/10.1016/j.str.2017.05.010.
Böhm, Raphael, Wagner, Gerhard and Hiller, Sebastian (2017) ‘Solution Nuclear Magnetic Resonance Spectroscopy of Integral Membrane Proteins’, in Reference module in Life Sciences. New York: Elsevier (Reference module in Life Sciences), pp. 1–25. Available at: https://doi.org/10.1016/b978-0-12-809633-8.08077-8.
Böhm, Raphael, Wagner, Gerhard and Hiller, Sebastian (2017) ‘Solution Nuclear Magnetic Resonance Spectroscopy of Integral Membrane Proteins’, in Reference module in Life Sciences. New York: Elsevier (Reference module in Life Sciences), pp. 1–25. Available at: https://doi.org/10.1016/b978-0-12-809633-8.08077-8.
Dick, Mathias S. et al. (2016) ‘ASC filament formation serves as a signal amplification mechanism for inflammasomes.’, Nature Communications, 7, p. 11929. Available at: https://doi.org/10.1038/ncomms11929.
Dick, Mathias S. et al. (2016) ‘ASC filament formation serves as a signal amplification mechanism for inflammasomes.’, Nature Communications, 7, p. 11929. Available at: https://doi.org/10.1038/ncomms11929.
He, Lichun et al. (2016) ‘A molecular mechanism of chaperone-client recognition’, Science Advances, 2(11), p. e1601625. Available at: https://doi.org/10.1126/sciadv.1601625.
He, Lichun et al. (2016) ‘A molecular mechanism of chaperone-client recognition’, Science Advances, 2(11), p. e1601625. Available at: https://doi.org/10.1126/sciadv.1601625.
Raschle, Thomas et al. (2016) ‘Monitoring Backbone Hydrogen-Bond Formation in β-Barrel Membrane Protein Folding’, Angewandte Chemie. International edition in English, 55(20), pp. 5952–5. Available at: https://doi.org/10.1002/anie.201509910.
Raschle, Thomas et al. (2016) ‘Monitoring Backbone Hydrogen-Bond Formation in β-Barrel Membrane Protein Folding’, Angewandte Chemie. International edition in English, 55(20), pp. 5952–5. Available at: https://doi.org/10.1002/anie.201509910.
Ravotti, Francesco et al. (2016) ‘Sequence-specific solid-state NMR assignments of the mouse ASC PYRIN domain in its filament form’, Biomolecular NMR Assignments, 10(1), pp. 107–15. Available at: https://doi.org/10.1007/s12104-015-9647-6.
Ravotti, Francesco et al. (2016) ‘Sequence-specific solid-state NMR assignments of the mouse ASC PYRIN domain in its filament form’, Biomolecular NMR Assignments, 10(1), pp. 107–15. Available at: https://doi.org/10.1007/s12104-015-9647-6.
Sborgi, Lorenzo et al. (2016) ‘GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death’, The EMBO Journal, 35(16), pp. 1766–78. Available at: https://doi.org/10.15252/embj.201694696.
Sborgi, Lorenzo et al. (2016) ‘GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death’, The EMBO Journal, 35(16), pp. 1766–78. Available at: https://doi.org/10.15252/embj.201694696.
Stanger, Frédéric V. et al. (2016) ‘Intrinsic regulation of FIC-domain AMP-transferases by oligomerization and automodification’, Proceedings of the National Academy of Sciences of the United States of America, 113(5), pp. E529–37. Available at: https://doi.org/10.1073/pnas.1516930113.
Stanger, Frédéric V. et al. (2016) ‘Intrinsic regulation of FIC-domain AMP-transferases by oligomerization and automodification’, Proceedings of the National Academy of Sciences of the United States of America, 113(5), pp. E529–37. Available at: https://doi.org/10.1073/pnas.1516930113.
Zhong, Franklin L. et al. (2016) ‘Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation’, Cell, 167(1), pp. 187–202.e17. Available at: https://doi.org/10.1016/j.cell.2016.09.001.
Zhong, Franklin L. et al. (2016) ‘Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation’, Cell, 167(1), pp. 187–202.e17. Available at: https://doi.org/10.1016/j.cell.2016.09.001.
Arquint, Christian et al. (2015) ‘STIL binding to Polo-box 3 of PLK4 regulates centriole duplication’, eLife, 4, p. e07888. Available at: https://doi.org/10.7554/elife.07888.
Arquint, Christian et al. (2015) ‘STIL binding to Polo-box 3 of PLK4 regulates centriole duplication’, eLife, 4, p. e07888. Available at: https://doi.org/10.7554/elife.07888.
Brahimi-Horn, M. Christiane et al. (2015) ‘Local mitochondrial-endolysosomal microfusion cleaves voltage-dependent anion channel 1 to promote survival in hypoxia’, Molecular and cellular biology, 35(9), pp. 1491–505. Available at: https://doi.org/10.1128/mcb.01402-14.
Brahimi-Horn, M. Christiane et al. (2015) ‘Local mitochondrial-endolysosomal microfusion cleaves voltage-dependent anion channel 1 to promote survival in hypoxia’, Molecular and cellular biology, 35(9), pp. 1491–505. Available at: https://doi.org/10.1128/mcb.01402-14.
Burmann, Björn M. and Hiller, Sebastian (2015) ‘Chaperones and chaperone-substrate complexes: dynamic playgrounds for NMR spectroscopists’, Progress in Nuclear Magnetic Resonance Spectroscopy, 86-87, pp. 41–64. Available at: https://doi.org/10.1016/j.pnmrs.2015.02.004.
Burmann, Björn M. and Hiller, Sebastian (2015) ‘Chaperones and chaperone-substrate complexes: dynamic playgrounds for NMR spectroscopists’, Progress in Nuclear Magnetic Resonance Spectroscopy, 86-87, pp. 41–64. Available at: https://doi.org/10.1016/j.pnmrs.2015.02.004.
Burmann, Björn M. et al. (2015) ‘Revisiting the interaction between the chaperone Skp and lipopolysaccharide’, Biophysical journal, 108(6), pp. 1516–26. Available at: https://doi.org/10.1016/j.bpj.2015.01.029.
Burmann, Björn M. et al. (2015) ‘Revisiting the interaction between the chaperone Skp and lipopolysaccharide’, Biophysical journal, 108(6), pp. 1516–26. Available at: https://doi.org/10.1016/j.bpj.2015.01.029.
Gruss, Fabian, Hiller, Sebastian and Maier, Timm (2015) ‘Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA’, Methods in Molecular Biology, 1329, pp. 259–70. Available at: https://doi.org/10.1007/978-1-4939-2871-2_20.
Gruss, Fabian, Hiller, Sebastian and Maier, Timm (2015) ‘Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA’, Methods in Molecular Biology, 1329, pp. 259–70. Available at: https://doi.org/10.1007/978-1-4939-2871-2_20.
Jakob, Roman P. et al. (2015) ‘Dimeric structure of the bacterial extracellular foldase PrsA’, Journal of Biological Chemistry, 290(6), pp. 3278–92. Available at: https://doi.org/10.1074/jbc.m114.622910.
Jakob, Roman P. et al. (2015) ‘Dimeric structure of the bacterial extracellular foldase PrsA’, Journal of Biological Chemistry, 290(6), pp. 3278–92. Available at: https://doi.org/10.1074/jbc.m114.622910.
Lori, Christian et al. (2015) ‘Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication’, Nature, 523(7559), pp. 236–9. Available at: https://doi.org/10.1038/nature14473.
Lori, Christian et al. (2015) ‘Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication’, Nature, 523(7559), pp. 236–9. Available at: https://doi.org/10.1038/nature14473.
Maier, Timm et al. (2015) ‘Conserved Omp85 lid-lock structure and substrate recognition in FhaC’, Nature Communications, 6, p. 7452. Available at: https://doi.org/10.1038/ncomms8452.
Maier, Timm et al. (2015) ‘Conserved Omp85 lid-lock structure and substrate recognition in FhaC’, Nature Communications, 6, p. 7452. Available at: https://doi.org/10.1038/ncomms8452.
Morgado, Leonor et al. (2015) ‘Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy’, Journal of biomolecular NMR, 61(3-4), pp. 333–45. Available at: https://doi.org/10.1007/s10858-015-9906-y.
Morgado, Leonor et al. (2015) ‘Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy’, Journal of biomolecular NMR, 61(3-4), pp. 333–45. Available at: https://doi.org/10.1007/s10858-015-9906-y.
Sborgi, Lorenzo et al. (2015) ‘Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy’, Proceedings of the National Academy of Sciences of the United States of America, 112(43), pp. 13237–42. Available at: https://doi.org/10.1073/pnas.1507579112.
Sborgi, Lorenzo et al. (2015) ‘Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy’, Proceedings of the National Academy of Sciences of the United States of America, 112(43), pp. 13237–42. Available at: https://doi.org/10.1073/pnas.1507579112.
Thoma, Johannes et al. (2015) ‘Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins’, Nature structural & molecular biology, 22(10), pp. 795–802. Available at: https://doi.org/10.1038/nsmb.3087.
Thoma, Johannes et al. (2015) ‘Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins’, Nature structural & molecular biology, 22(10), pp. 795–802. Available at: https://doi.org/10.1038/nsmb.3087.
Callon, Morgane, Burmann, Björn M. and Hiller, Sebastian (2014) ‘Structural mapping of a chaperone-substrate interaction surface’, Angewandte Chemie. International edition in English, 53(20), pp. 5069–72. Available at: https://doi.org/10.1002/anie.201310963.
Callon, Morgane, Burmann, Björn M. and Hiller, Sebastian (2014) ‘Structural mapping of a chaperone-substrate interaction surface’, Angewandte Chemie. International edition in English, 53(20), pp. 5069–72. Available at: https://doi.org/10.1002/anie.201310963.
Etzkorn, Manuela et al. (2014) ‘How amphipols embed membrane proteins : global solvent accessibility and interaction with a flexible protein terminus’, The journal of membrane biology, 247(9-10), pp. 965–970. Available at: https://doi.org/10.1007/s00232-014-9657-9.
Etzkorn, Manuela et al. (2014) ‘How amphipols embed membrane proteins : global solvent accessibility and interaction with a flexible protein terminus’, The journal of membrane biology, 247(9-10), pp. 965–970. Available at: https://doi.org/10.1007/s00232-014-9657-9.
Kentner, David et al. (2014) ‘Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. 9929–34. Available at: https://doi.org/10.1073/pnas.1406694111.
Kentner, David et al. (2014) ‘Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. 9929–34. Available at: https://doi.org/10.1073/pnas.1406694111.
Schnarwiler, Felix et al. (2014) ‘Trypanosomal TAC40 constitutes a novel subclass of mitochondrial β-barrel proteins specialized in mitochondrial genome inheritance’, Proceedings of the National Academy of Sciences of the United States of America, 111(21), pp. 7624–9. Available at: https://doi.org/10.1073/pnas.1404854111.
Schnarwiler, Felix et al. (2014) ‘Trypanosomal TAC40 constitutes a novel subclass of mitochondrial β-barrel proteins specialized in mitochondrial genome inheritance’, Proceedings of the National Academy of Sciences of the United States of America, 111(21), pp. 7624–9. Available at: https://doi.org/10.1073/pnas.1404854111.
Burmann, Björn M., Wang, Congwei and Hiller, Sebastian (2013) ‘Conformation and dynamics of the periplasmic membrane-protein-chaperone complexes OmpX-Skp and tOmpA-Skp’, Nature structural & molecular biology, 20(11), pp. 1265–72. Available at: https://doi.org/10.1038/nsmb.2677.
Burmann, Björn M., Wang, Congwei and Hiller, Sebastian (2013) ‘Conformation and dynamics of the periplasmic membrane-protein-chaperone complexes OmpX-Skp and tOmpA-Skp’, Nature structural & molecular biology, 20(11), pp. 1265–72. Available at: https://doi.org/10.1038/nsmb.2677.
Gruss, Fabian et al. (2013) ‘The structural basis of autotransporter translocation by TamA’, Nature structural & molecular biology, 20(11), pp. 1318–U247. Available at: https://doi.org/10.1038/nsmb.2689.
Gruss, Fabian et al. (2013) ‘The structural basis of autotransporter translocation by TamA’, Nature structural & molecular biology, 20(11), pp. 1318–U247. Available at: https://doi.org/10.1038/nsmb.2689.
Hiller, Sebastian (2013) ‘The functional heart of the M2 channel’, Biophysical journal, 104(8), pp. 1639–1640. Available at: https://doi.org/10.1016/j.bpj.2013.03.020.
Hiller, Sebastian (2013) ‘The functional heart of the M2 channel’, Biophysical journal, 104(8), pp. 1639–1640. Available at: https://doi.org/10.1016/j.bpj.2013.03.020.
Reckel, Sina and Hiller, Sebastian (2013) ‘Perspectives of Solution NMR Spectroscopy for Structural and Functional Studies of Integral Membrane Proteins’, Molecular physics, 111(7), pp. 843–849. Available at: https://doi.org/10.1080/00268976.2013.783639.
Reckel, Sina and Hiller, Sebastian (2013) ‘Perspectives of Solution NMR Spectroscopy for Structural and Functional Studies of Integral Membrane Proteins’, Molecular physics, 111(7), pp. 843–849. Available at: https://doi.org/10.1080/00268976.2013.783639.
Bühler, Marc and Hiller, Sebastian (2012) ‘Dynamic nature of heterochromatin highlighted by a HP1(Swi6)-dependent gene silencing mechanism’, Cell cycle, pp. 3907–3908. Available at: https://doi.org/10.4161/cc.22234.
Bühler, Marc and Hiller, Sebastian (2012) ‘Dynamic nature of heterochromatin highlighted by a HP1(Swi6)-dependent gene silencing mechanism’, Cell cycle, pp. 3907–3908. Available at: https://doi.org/10.4161/cc.22234.
Burmann, Björn M. and Hiller, Sebastian (2012) ‘Solution NMR studies of membrane-protein-chaperone complexes’, Chimia, 66(10), pp. 759–63. Available at: https://doi.org/10.2533/chimia.2012.759.
Burmann, Björn M. and Hiller, Sebastian (2012) ‘Solution NMR studies of membrane-protein-chaperone complexes’, Chimia, 66(10), pp. 759–63. Available at: https://doi.org/10.2533/chimia.2012.759.
Harsman, Anke et al. (2012) ‘Bacterial origin of a mitochondrial outer membrane protein translocase : new perspectives from comparative single channel electrophysiology’, Journal of biological chemistry, 287(37), pp. 31437–45. Available at: https://doi.org/10.1074/jbc.m112.392118.
Harsman, Anke et al. (2012) ‘Bacterial origin of a mitochondrial outer membrane protein translocase : new perspectives from comparative single channel electrophysiology’, Journal of biological chemistry, 287(37), pp. 31437–45. Available at: https://doi.org/10.1074/jbc.m112.392118.