Structural Biology (Maier)
Publications
131 found
Show per page
Chancellor, Andrew et al. (2024) ‘The carbonyl nucleobase adduct M3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells’, Immunity. 18.12.2024, 58(2), pp. 431–447.e10. Available at: https://doi.org/10.1016/j.immuni.2024.11.019.
Chancellor, Andrew et al. (2024) ‘The carbonyl nucleobase adduct M3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells’, Immunity. 18.12.2024, 58(2), pp. 431–447.e10. Available at: https://doi.org/10.1016/j.immuni.2024.11.019.
Kaczmarczyk, Andreas et al. (2024) ‘A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-48295-0.
Kaczmarczyk, Andreas et al. (2024) ‘A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-48295-0.
Morita, Iori et al. (2024) ‘Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein’, ACS Catalysis. 07.11.2024, 14, pp. 17171–17179. Available at: https://doi.org/10.1021/acscatal.4c04163.
Morita, Iori et al. (2024) ‘Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein’, ACS Catalysis. 07.11.2024, 14, pp. 17171–17179. Available at: https://doi.org/10.1021/acscatal.4c04163.
Mukherjee, Manjistha et al. (2024) ‘Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ACS Catalysis. 19.10.2024, 14(21), pp. 16266–16276. Available at: https://doi.org/10.1021/acscatal.4c03208.
Mukherjee, Manjistha et al. (2024) ‘Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ACS Catalysis. 19.10.2024, 14(21), pp. 16266–16276. Available at: https://doi.org/10.1021/acscatal.4c03208.
Varga, Norbert et al. (2024) ‘Strengthening an Intramolecular Non-Classical Hydrogen Bond to Get in Shape for Binding’, Angewandte Chemie - International Edition, 63. Available at: https://doi.org/10.1002/anie.202406024.
Varga, Norbert et al. (2024) ‘Strengthening an Intramolecular Non-Classical Hydrogen Bond to Get in Shape for Binding’, Angewandte Chemie - International Edition, 63. Available at: https://doi.org/10.1002/anie.202406024.
Nemli, Dilara D. et al. (2024) ‘Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics’, Journal of Medicinal Chemistry, 67(16), pp. 13813–13828. Available at: https://doi.org/10.1021/acs.jmedchem.4c00623.
Nemli, Dilara D. et al. (2024) ‘Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics’, Journal of Medicinal Chemistry, 67(16), pp. 13813–13828. Available at: https://doi.org/10.1021/acs.jmedchem.4c00623.
Battaglioni, Stefania et al. (2024) ‘mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR’, Proceedings of the National Academy of Sciences, 121(34). Available at: https://doi.org/10.1073/pnas.2405959121.
Battaglioni, Stefania et al. (2024) ‘mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR’, Proceedings of the National Academy of Sciences, 121(34). Available at: https://doi.org/10.1073/pnas.2405959121.
Hiller, Sebastian et al. (2024) ‘A functional chaperone condensate in the endoplasmic reticulum’, Research Square [Preprint]. Research Square (Research Square). Available at: https://doi.org/10.21203/rs.3.rs-4796355/v1.
Hiller, Sebastian et al. (2024) ‘A functional chaperone condensate in the endoplasmic reticulum’, Research Square [Preprint]. Research Square (Research Square). Available at: https://doi.org/10.21203/rs.3.rs-4796355/v1.
Chen, Dongping et al. (2024) ‘An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway’, Nature Chemistry, 16(10), pp. 1656–1664. Available at: https://doi.org/10.1038/s41557-024-01562-5.
Chen, Dongping et al. (2024) ‘An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway’, Nature Chemistry, 16(10), pp. 1656–1664. Available at: https://doi.org/10.1038/s41557-024-01562-5.
Wagner, Beatrice et al. (2024) ‘Analogues of the pan-selectin antagonist rivipansel (GMI-1070)’, European Journal of Medicinal Chemistry, 272. Available at: https://doi.org/10.1016/j.ejmech.2024.116455.
Wagner, Beatrice et al. (2024) ‘Analogues of the pan-selectin antagonist rivipansel (GMI-1070)’, European Journal of Medicinal Chemistry, 272. Available at: https://doi.org/10.1016/j.ejmech.2024.116455.
Žoldák, Gabriel et al. (2024) ‘Bacterial Chaperone Domain Insertions Convert Human FKBP12 into an Excellent Protein-Folding Catalyst—A Structural and Functional Analysis’, Molecules, 29(7). Available at: https://doi.org/10.3390/molecules29071440.
Žoldák, Gabriel et al. (2024) ‘Bacterial Chaperone Domain Insertions Convert Human FKBP12 into an Excellent Protein-Folding Catalyst—A Structural and Functional Analysis’, Molecules, 29(7). Available at: https://doi.org/10.3390/molecules29071440.
Höing, Lars et al. (2024) ‘Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products’, Chemical Science, 15(20), pp. 7749–7756. Available at: https://doi.org/10.1039/d4sc01715c.
Höing, Lars et al. (2024) ‘Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products’, Chemical Science, 15(20), pp. 7749–7756. Available at: https://doi.org/10.1039/d4sc01715c.
Yu, K. et al. (2024) ‘An artificial nickel chlorinase based on the biotin–streptavidin technology’, Chemical Communications, 60, pp. 1944–1947. Available at: https://doi.org/10.1039/d3cc05847f.
Yu, K. et al. (2024) ‘An artificial nickel chlorinase based on the biotin–streptavidin technology’, Chemical Communications, 60, pp. 1944–1947. Available at: https://doi.org/10.1039/d3cc05847f.
Mukherjee, Manjistha et al. (2023) ‘An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ChemRxiv [Preprint]. Cambridge University Press (ChemRxiv). Available at: https://doi.org/10.26434/chemrxiv-2023-s830k.
Mukherjee, Manjistha et al. (2023) ‘An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ChemRxiv [Preprint]. Cambridge University Press (ChemRxiv). Available at: https://doi.org/10.26434/chemrxiv-2023-s830k.
Degen, Morris et al. (2023) ‘Structural basis of NINJ1-mediated plasma membrane rupture in cell death’, Nature, 618(7967), pp. 1065–1071. Available at: https://doi.org/10.1038/s41586-023-05991-z.
Degen, Morris et al. (2023) ‘Structural basis of NINJ1-mediated plasma membrane rupture in cell death’, Nature, 618(7967), pp. 1065–1071. Available at: https://doi.org/10.1038/s41586-023-05991-z.
Isaikina, Polina et al. (2023) ‘A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes’, Molecular cell, 83(12), pp. 2108–2121.e7. Available at: https://doi.org/10.1016/j.molcel.2023.05.002.
Isaikina, Polina et al. (2023) ‘A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes’, Molecular cell, 83(12), pp. 2108–2121.e7. Available at: https://doi.org/10.1016/j.molcel.2023.05.002.
Shimobayashi, Mitsugu et al. (2023) ‘Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia’, eLife, 12, p. e85103. Available at: https://doi.org/10.7554/elife.85103.
Shimobayashi, Mitsugu et al. (2023) ‘Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia’, eLife, 12, p. e85103. Available at: https://doi.org/10.7554/elife.85103.
Tittes, Y.U. (2023) The architecture of polyketide synthases.
Tittes, Y.U. (2023) The architecture of polyketide synthases.
Isaikina, Polina et al. (2022) ‘A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2022.10.10.511578.
Isaikina, Polina et al. (2022) ‘A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2022.10.10.511578.
Kaczmarczyk, Andreas et al. (2022) ‘A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution’. bioRxiv. Available at: https://doi.org/10.1101/2022.10.18.512705.
Kaczmarczyk, Andreas et al. (2022) ‘A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution’. bioRxiv. Available at: https://doi.org/10.1101/2022.10.18.512705.
Battaglioni, Stefania et al. (2022) ‘mTOR substrate phosphorylation in growth control’, Cell, 185(11), pp. 1814–1836. Available at: https://doi.org/10.1016/j.cell.2022.04.013.
Battaglioni, Stefania et al. (2022) ‘mTOR substrate phosphorylation in growth control’, Cell, 185(11), pp. 1814–1836. Available at: https://doi.org/10.1016/j.cell.2022.04.013.
Chaker-Margot, Malik et al. (2022) ‘Structural basis of activation of the tumor suppressor protein neurofibromin’, Molecular Cell, 82(7), pp. 1288–1296.e5. Available at: https://doi.org/10.1016/j.molcel.2022.03.011.
Chaker-Margot, Malik et al. (2022) ‘Structural basis of activation of the tumor suppressor protein neurofibromin’, Molecular Cell, 82(7), pp. 1288–1296.e5. Available at: https://doi.org/10.1016/j.molcel.2022.03.011.
Mangia, F. (2022) Structural and Functional Characterization of the mammalian
Target of Rapamycin Complex 2.
Mangia, F. (2022) Structural and Functional Characterization of the mammalian
Target of Rapamycin Complex 2.
Miller, Ryan D. et al. (2022) ‘Computational identification of a systemic antibiotic for gram-negative bacteria’, Nature Microbiology, 7(10), pp. 1661–1672. Available at: https://doi.org/10.1038/s41564-022-01227-4.
Miller, Ryan D. et al. (2022) ‘Computational identification of a systemic antibiotic for gram-negative bacteria’, Nature Microbiology, 7(10), pp. 1661–1672. Available at: https://doi.org/10.1038/s41564-022-01227-4.
Mohammed, Inayathulla et al. (2022) ‘Catalytic cycling of human mitochondrial Lon protease’, Structure, 30(9), pp. 1254–1268.e7. Available at: https://doi.org/10.1016/j.str.2022.06.006.
Mohammed, Inayathulla et al. (2022) ‘Catalytic cycling of human mitochondrial Lon protease’, Structure, 30(9), pp. 1254–1268.e7. Available at: https://doi.org/10.1016/j.str.2022.06.006.
Tittes, Yves U. et al. (2022) ‘The structure of a polyketide synthase bimodule core’, Science Advances, 8(38), p. eabo6918. Available at: https://doi.org/10.1126/sciadv.abo6918.
Tittes, Yves U. et al. (2022) ‘The structure of a polyketide synthase bimodule core’, Science Advances, 8(38), p. eabo6918. Available at: https://doi.org/10.1126/sciadv.abo6918.
Zhang, Lei et al. (2022) ‘Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol’, ChemBioChem, 24(2), p. e202200632. Available at: https://doi.org/10.1002/cbic.202200632.
Zhang, Lei et al. (2022) ‘Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol’, ChemBioChem, 24(2), p. e202200632. Available at: https://doi.org/10.1002/cbic.202200632.
Böhringer Nils et al. (2021) ‘Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs’, Microbiology Spectrum, (3), pp. e01535–21. Available at: https://doi.org/10.1128/spectrum.01535-21.
Böhringer Nils et al. (2021) ‘Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs’, Microbiology Spectrum, (3), pp. e01535–21. Available at: https://doi.org/10.1128/spectrum.01535-21.
Mohammed, Inayathulla et al. (2021) ‘Catalytic cycling of human mitochondrial Lon protease’. bioRxiv. Available at: https://doi.org/10.1101/2021.07.28.454137.
Mohammed, Inayathulla et al. (2021) ‘Catalytic cycling of human mitochondrial Lon protease’. bioRxiv. Available at: https://doi.org/10.1101/2021.07.28.454137.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Böhringer, Nils et al. (2021) ‘Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs’, Microbiology spectrum, 9(3), p. e0153521. Available at: https://doi.org/10.1128/spectrum.01535-21.
Böhringer, Nils et al. (2021) ‘Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs’, Microbiology spectrum, 9(3), p. e0153521. Available at: https://doi.org/10.1128/spectrum.01535-21.
Cramer, Jonathan et al. (2021) ‘Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2’, Journal of the American Chemical Society, 143(42), pp. 17465–17478. Available at: https://doi.org/10.1021/jacs.1c06778.
Cramer, Jonathan et al. (2021) ‘Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2’, Journal of the American Chemical Society, 143(42), pp. 17465–17478. Available at: https://doi.org/10.1021/jacs.1c06778.
Isaikina, Polina et al. (2021) ‘Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist’, Science Advances, 7(25), p. eabg8685. Available at: https://doi.org/10.1126/sciadv.abg8685.
Isaikina, Polina et al. (2021) ‘Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist’, Science Advances, 7(25), p. eabg8685. Available at: https://doi.org/10.1126/sciadv.abg8685.
Jia, Jian-Jun et al. (2021) ‘mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1’, Nucleic Acids Research, 49(6), pp. 3461–3489. Available at: https://doi.org/10.1093/nar/gkaa1239.
Jia, Jian-Jun et al. (2021) ‘mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1’, Nucleic Acids Research, 49(6), pp. 3461–3489. Available at: https://doi.org/10.1093/nar/gkaa1239.
Kaur, Hundeep et al. (2021) ‘The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase’, Nature, 593(7857), pp. 125–129. Available at: https://doi.org/10.1038/s41586-021-03455-w.
Kaur, Hundeep et al. (2021) ‘The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase’, Nature, 593(7857), pp. 125–129. Available at: https://doi.org/10.1038/s41586-021-03455-w.
Lambert, E. (2021) Investigation of the mechanistic basis of substrate recognition and translocation by the MFS flippase LtaA.
Lambert, E. (2021) Investigation of the mechanistic basis of substrate recognition and translocation by the MFS flippase LtaA.
Pipercevic, Joka et al. (2021) ‘Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), p. 183607. Available at: https://doi.org/10.1016/j.bbamem.2021.183607.
Pipercevic, Joka et al. (2021) ‘Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), p. 183607. Available at: https://doi.org/10.1016/j.bbamem.2021.183607.
Tomašič, Tihomir et al. (2021) ‘Does targeting Arg98 of FimH lead to high affinity antagonists?’, European Journal of Medicinal Chemistry, 211, p. 113093. Available at: https://doi.org/10.1016/j.ejmech.2020.113093.
Tomašič, Tihomir et al. (2021) ‘Does targeting Arg98 of FimH lead to high affinity antagonists?’, European Journal of Medicinal Chemistry, 211, p. 113093. Available at: https://doi.org/10.1016/j.ejmech.2020.113093.
Wälchli, Matthias et al. (2021) ‘Regulation of human mTOR complexes by DEPTOR’, eLife, 10, p. e70871. Available at: https://doi.org/10.7554/elife.70871.
Wälchli, Matthias et al. (2021) ‘Regulation of human mTOR complexes by DEPTOR’, eLife, 10, p. e70871. Available at: https://doi.org/10.7554/elife.70871.
Isaikina, Polina et al. (2020) ‘Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist’. bioRxiv. Available at: https://doi.org/10.1101/2020.11.27.401117.
Isaikina, Polina et al. (2020) ‘Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist’. bioRxiv. Available at: https://doi.org/10.1101/2020.11.27.401117.
Anton, L. (2020) Oligomeric structures of metabolic protein assemblies - Structure-function analysis of acetyl-CoA carboxylase and urease
.
Anton, L. (2020) Oligomeric structures of metabolic protein assemblies - Structure-function analysis of acetyl-CoA carboxylase and urease
.
Brunner, Janine D. et al. (2020) ‘Structural basis for ion selectivity in TMEM175 K+ channels’, eLife. 24.04.2020, 9. Available at: https://doi.org/10.7554/elife.53683.
Brunner, Janine D. et al. (2020) ‘Structural basis for ion selectivity in TMEM175 K+ channels’, eLife. 24.04.2020, 9. Available at: https://doi.org/10.7554/elife.53683.
Cramer, Jonathan et al. (2020) ‘Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding’, RSC Chemical Biology, 1(4), pp. 281–287. Available at: https://doi.org/10.1039/d0cb00108b.
Cramer, Jonathan et al. (2020) ‘Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding’, RSC Chemical Biology, 1(4), pp. 281–287. Available at: https://doi.org/10.1039/d0cb00108b.
Künzli, Marco et al. (2020) ‘Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity’, Science Immunology. 13.03.2020, 5(45). Available at: https://doi.org/10.1126/sciimmunol.aay5552.
Künzli, Marco et al. (2020) ‘Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity’, Science Immunology. 13.03.2020, 5(45). Available at: https://doi.org/10.1126/sciimmunol.aay5552.
Perez, Camilo and Maier, Timm (2020) Expression, Purification, and Structural Biology of Membrane Proteins. 1 edn., Methods in Molecular Biology. 1 edn. New York: Humana Press (Methods in Molecular Biology). Available at: https://doi.org/10.1007/978-1-0716-0373-4.
Perez, Camilo and Maier, Timm (2020) Expression, Purification, and Structural Biology of Membrane Proteins. 1 edn., Methods in Molecular Biology. 1 edn. New York: Humana Press (Methods in Molecular Biology). Available at: https://doi.org/10.1007/978-1-0716-0373-4.
Righetto, Ricardo D. et al. (2020) ‘High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5101. Available at: https://doi.org/10.1038/s41467-020-18870-2.
Righetto, Ricardo D. et al. (2020) ‘High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5101. Available at: https://doi.org/10.1038/s41467-020-18870-2.
Righetto, Ricardo D. et al. (2020) ‘Author Correction: High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5873. Available at: https://doi.org/10.1038/s41467-020-19845-z.
Righetto, Ricardo D. et al. (2020) ‘Author Correction: High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5873. Available at: https://doi.org/10.1038/s41467-020-19845-z.
Scaiola, Alain et al. (2020) ‘The 3.2-Å resolution structure of human mTORC2’, Science advances, 6(45), p. eabc1251. Available at: https://doi.org/10.1126/sciadv.abc1251.
Scaiola, Alain et al. (2020) ‘The 3.2-Å resolution structure of human mTORC2’, Science advances, 6(45), p. eabc1251. Available at: https://doi.org/10.1126/sciadv.abc1251.
Shimobayashi, Mitsugu et al. (2020) ‘Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia’. bioRxiv. Available at: https://doi.org/10.1101/2019.12.28.887794.
Shimobayashi, Mitsugu et al. (2020) ‘Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia’. bioRxiv. Available at: https://doi.org/10.1101/2019.12.28.887794.
Sauer, Maximilian M. et al. (2019) ‘Binding of the Bacterial Adhesin FimH to Its Natural, Multivalent High-Mannose Type Glycan Targets’, Journal of the American Chemical Society, 141(2), pp. 936–944. Available at: https://doi.org/10.1021/jacs.8b10736.
Sauer, Maximilian M. et al. (2019) ‘Binding of the Bacterial Adhesin FimH to Its Natural, Multivalent High-Mannose Type Glycan Targets’, Journal of the American Chemical Society, 141(2), pp. 936–944. Available at: https://doi.org/10.1021/jacs.8b10736.
Kaur, Hundeep et al. (2019) ‘Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach’, Journal of Biomolecular NMR, 73(6-7), pp. 375–384. Available at: https://doi.org/10.1007/s10858-019-00250-8.
Kaur, Hundeep et al. (2019) ‘Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach’, Journal of Biomolecular NMR, 73(6-7), pp. 375–384. Available at: https://doi.org/10.1007/s10858-019-00250-8.
Sauer, Maximilian M. et al. (2019) ‘Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets’, Journal of the American Chemical Society, 141(2), pp. 936–944. Available at: https://doi.org/10.1021/jacs.8b10736.
Sauer, Maximilian M. et al. (2019) ‘Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets’, Journal of the American Chemical Society, 141(2), pp. 936–944. Available at: https://doi.org/10.1021/jacs.8b10736.
Schönemann, Wojciech et al. (2019) ‘Improvement of Aglycone π-Stacking Yields Nano- to Subnanomolar FimH Antagonists’, ChemMedChem, 14(7), pp. 749–757. Available at: https://doi.org/10.1002/cmdc.201900051.
Schönemann, Wojciech et al. (2019) ‘Improvement of Aglycone π-Stacking Yields Nano- to Subnanomolar FimH Antagonists’, ChemMedChem, 14(7), pp. 749–757. Available at: https://doi.org/10.1002/cmdc.201900051.
Brunner, Janine D. et al. (2018) ‘Structural basis for ion selectivity in TMEM175 K+ channels’. bioRxiv. Available at: https://doi.org/10.1101/480863.
Brunner, Janine D. et al. (2018) ‘Structural basis for ion selectivity in TMEM175 K+ channels’. bioRxiv. Available at: https://doi.org/10.1101/480863.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’. bioRxiv. Available at: https://doi.org/10.1101/354134.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’. bioRxiv. Available at: https://doi.org/10.1101/354134.
Bauer, Daniela et al. (2018) ‘A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy’, Proceedings of the National Academy of Sciences of the United States of America. 18.04.2018, 115(18), pp. 4666–4671. Available at: https://doi.org/10.1073/pnas.1716899115.
Bauer, Daniela et al. (2018) ‘A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy’, Proceedings of the National Academy of Sciences of the United States of America. 18.04.2018, 115(18), pp. 4666–4671. Available at: https://doi.org/10.1073/pnas.1716899115.
Hagmann, A. (2018) Regulation of eukaryotic acetyl-CoA carboxylases. Available at: https://doi.org/10.5451/unibas-006827378.
Hagmann, A. (2018) Regulation of eukaryotic acetyl-CoA carboxylases. Available at: https://doi.org/10.5451/unibas-006827378.
Herbst, Dominik A. et al. (2018) ‘The structural organization of substrate loading in iterative polyketide synthases’, Nature Chemical Biology. 02.04.2018, 14(5), pp. 474–479. Available at: https://doi.org/10.1038/s41589-018-0026-3.
Herbst, Dominik A. et al. (2018) ‘The structural organization of substrate loading in iterative polyketide synthases’, Nature Chemical Biology. 02.04.2018, 14(5), pp. 474–479. Available at: https://doi.org/10.1038/s41589-018-0026-3.
Herbst, Dominik A., Townsend, Craig A. and Maier, Timm (2018) ‘The architectures of iterative type I PKS and FAS’, Natural Product Reports, 35(10), pp. 1046–1069. Available at: https://doi.org/10.1039/c8np00039e.
Herbst, Dominik A., Townsend, Craig A. and Maier, Timm (2018) ‘The architectures of iterative type I PKS and FAS’, Natural Product Reports, 35(10), pp. 1046–1069. Available at: https://doi.org/10.1039/c8np00039e.
Hunkeler, Moritz et al. (2018) ‘Structural basis for regulation of human acetyl-CoA carboxylase’, Nature, 558(7710), pp. 470–474. Available at: https://doi.org/10.1038/s41586-018-0201-4.
Hunkeler, Moritz et al. (2018) ‘Structural basis for regulation of human acetyl-CoA carboxylase’, Nature, 558(7710), pp. 470–474. Available at: https://doi.org/10.1038/s41586-018-0201-4.
Imseng, Stefan, Aylett, Christopher Hs and Maier, Timm (2018) ‘Architecture and activation of phosphatidylinositol 3-kinase related kinases’, Current opinion in structural biology, 49, pp. 177–189. Available at: https://doi.org/10.1016/j.sbi.2018.03.010.
Imseng, Stefan, Aylett, Christopher Hs and Maier, Timm (2018) ‘Architecture and activation of phosphatidylinositol 3-kinase related kinases’, Current opinion in structural biology, 49, pp. 177–189. Available at: https://doi.org/10.1016/j.sbi.2018.03.010.
Maier, Timm and Weissman, Kira J. (2018) ‘Macromolecular assemblies: Assembly, dynamics and control of activity’, Current Opinion in Structural Biology, 49, pp. vi–vii. Available at: https://doi.org/10.1016/j.sbi.2018.04.001.
Maier, Timm and Weissman, Kira J. (2018) ‘Macromolecular assemblies: Assembly, dynamics and control of activity’, Current Opinion in Structural Biology, 49, pp. vi–vii. Available at: https://doi.org/10.1016/j.sbi.2018.04.001.
Rabbani, Said et al. (2018) ‘Conformational Switch of the Bacterial Adhesin FimH in the Absence of the Regulatory Domain: Engineering a Minimalistic Allosteric System’, Journal of Biological Chemistry, 293(5), pp. 1835–1849. Available at: https://doi.org/10.1074/jbc.m117.802942.
Rabbani, Said et al. (2018) ‘Conformational Switch of the Bacterial Adhesin FimH in the Absence of the Regulatory Domain: Engineering a Minimalistic Allosteric System’, Journal of Biological Chemistry, 293(5), pp. 1835–1849. Available at: https://doi.org/10.1074/jbc.m117.802942.
Sager, Christoph P. et al. (2018) ‘The price of flexibility - a case study on septanoses as pyranose mimetics’, Chemical Science, 9(3), pp. 646–654. Available at: https://doi.org/10.1039/c7sc04289b.
Sager, Christoph P. et al. (2018) ‘The price of flexibility - a case study on septanoses as pyranose mimetics’, Chemical Science, 9(3), pp. 646–654. Available at: https://doi.org/10.1039/c7sc04289b.
Stuttfeld, E. et al. (2018) ‘Architecture of the human mTORC2 core complex’, eLife, 7, p. e33101. Available at: https://doi.org/10.7554/elife.33101.
Stuttfeld, E. et al. (2018) ‘Architecture of the human mTORC2 core complex’, eLife, 7, p. e33101. Available at: https://doi.org/10.7554/elife.33101.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’, Biology open, 7(11), p. bio036749. Available at: https://doi.org/10.1242/bio.036749.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’, Biology open, 7(11), p. bio036749. Available at: https://doi.org/10.1242/bio.036749.
Zihlmann, Pascal et al. (2018) ‘KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists’, Chemistry (Weinheim an der Bergstrasse, Germany), 24(49), pp. 13049–13057. Available at: https://doi.org/10.1002/chem.201802599.
Zihlmann, Pascal et al. (2018) ‘KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists’, Chemistry (Weinheim an der Bergstrasse, Germany), 24(49), pp. 13049–13057. Available at: https://doi.org/10.1002/chem.201802599.
Anton, Leonie et al. (2017) ‘Insights into Gasdermin D activation from the crystal structure of its C-terminal domain’. bioRxiv. Available at: https://doi.org/10.1101/187211.
Anton, Leonie et al. (2017) ‘Insights into Gasdermin D activation from the crystal structure of its C-terminal domain’. bioRxiv. Available at: https://doi.org/10.1101/187211.
Benning, F. (2017) Structure and conformational dynamics of fatty acid synthases. Available at: https://doi.org/10.5451/unibas-006772809.
Benning, F. (2017) Structure and conformational dynamics of fatty acid synthases. Available at: https://doi.org/10.5451/unibas-006772809.
Benning, Friederike M. C. et al. (2017) ‘High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase’, ACS Nano, 11(11), pp. 10852–10859. Available at: https://doi.org/10.1021/acsnano.7b04216.
Benning, Friederike M. C. et al. (2017) ‘High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase’, ACS Nano, 11(11), pp. 10852–10859. Available at: https://doi.org/10.1021/acsnano.7b04216.
Herbst, D.A. (2017) Functional architectures of polyketide synthases. Available at: https://doi.org/10.5451/unibas-006789988.
Herbst, D.A. (2017) Functional architectures of polyketide synthases. Available at: https://doi.org/10.5451/unibas-006789988.
Maier, Timm (2017) ‘Fatty acid synthases: Re-engineering biofactories’, Nature Chemical Biology, 13(4), pp. 344–345. Available at: https://doi.org/10.1038/nchembio.2338.
Maier, Timm (2017) ‘Fatty acid synthases: Re-engineering biofactories’, Nature Chemical Biology, 13(4), pp. 344–345. Available at: https://doi.org/10.1038/nchembio.2338.
Navarra, Giulio et al. (2017) ‘Carbohydrate-Lectin Interactions - An Unexpected Contribution to Affinity’, ChemBioChem, 18(6), pp. 539–544. Available at: https://doi.org/10.1002/cbic.201600615.
Navarra, Giulio et al. (2017) ‘Carbohydrate-Lectin Interactions - An Unexpected Contribution to Affinity’, ChemBioChem, 18(6), pp. 539–544. Available at: https://doi.org/10.1002/cbic.201600615.
Roth, Christian et al. (2017) ‘Amylose recognition and ring-size determination of amylomaltase’, Science Advances, 3(1), p. e1601386. Available at: https://doi.org/10.1126/sciadv.1601386.
Roth, Christian et al. (2017) ‘Amylose recognition and ring-size determination of amylomaltase’, Science Advances, 3(1), p. e1601386. Available at: https://doi.org/10.1126/sciadv.1601386.
Storm, Philip A. et al. (2017) ‘Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin’, Cell Chemical Biology, 24(3), pp. 316–325. Available at: https://doi.org/10.1016/j.chembiol.2017.01.008.
Storm, Philip A. et al. (2017) ‘Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin’, Cell Chemical Biology, 24(3), pp. 316–325. Available at: https://doi.org/10.1016/j.chembiol.2017.01.008.
Stuttfeld, Edward, Imseng, Stefan and Maier, Timm (2017) ‘A central role for a region in the middle’, eLife, 6, p. e25700. Available at: https://doi.org/10.7554/elife.25700.
Stuttfeld, Edward, Imseng, Stefan and Maier, Timm (2017) ‘A central role for a region in the middle’, eLife, 6, p. e25700. Available at: https://doi.org/10.7554/elife.25700.
Wang, Jing et al. (2017) ‘Cryo-EM structure of the extended type VI secretion system sheath-tube complex’, Nature Microbiology, 2(11), pp. 1507–1512. Available at: https://doi.org/10.1038/s41564-017-0020-7.
Wang, Jing et al. (2017) ‘Cryo-EM structure of the extended type VI secretion system sheath-tube complex’, Nature Microbiology, 2(11), pp. 1507–1512. Available at: https://doi.org/10.1038/s41564-017-0020-7.
Herbst, Dominik A. et al. (2016) ‘Erratum: Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases (Nature (2016) 531 (533-537) DOI:10.1038/nature16993)’, Nature, 536(7616), pp. 360–360. Available at: https://doi.org/10.1038/nature18281.
Herbst, Dominik A. et al. (2016) ‘Erratum: Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases (Nature (2016) 531 (533-537) DOI:10.1038/nature16993)’, Nature, 536(7616), pp. 360–360. Available at: https://doi.org/10.1038/nature18281.
Aylett, Christopher H. S. et al. (2016) ‘Architecture of human mTOR complex 1’, Science, 351(6268), pp. 48–52. Available at: https://doi.org/10.1126/science.aaa3870.
Aylett, Christopher H. S. et al. (2016) ‘Architecture of human mTOR complex 1’, Science, 351(6268), pp. 48–52. Available at: https://doi.org/10.1126/science.aaa3870.
Hagmann, Anna et al. (2016) ‘Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans’, Structure, 24(8), pp. 1227–1236. Available at: https://doi.org/10.1016/j.str.2016.06.001.
Hagmann, Anna et al. (2016) ‘Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans’, Structure, 24(8), pp. 1227–1236. Available at: https://doi.org/10.1016/j.str.2016.06.001.
Herbst, Dominik A. et al. (2016) ‘Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases’, Nature, 531(7595), pp. 533–7. Available at: https://doi.org/10.1038/nature16993.
Herbst, Dominik A. et al. (2016) ‘Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases’, Nature, 531(7595), pp. 533–7. Available at: https://doi.org/10.1038/nature16993.
Hunkeler, Moritz et al. (2016) ‘The dynamic organization of fungal acetyl-CoA carboxylase’, Nature Communications, 7, p. 11196. Available at: https://doi.org/10.1038/ncomms11196.
Hunkeler, Moritz et al. (2016) ‘The dynamic organization of fungal acetyl-CoA carboxylase’, Nature Communications, 7, p. 11196. Available at: https://doi.org/10.1038/ncomms11196.
Imseng, S. (2016) Structural studies on the target of rapamycin complex 1. Available at: https://doi.org/10.5451/unibas-006769347.
Imseng, S. (2016) Structural studies on the target of rapamycin complex 1. Available at: https://doi.org/10.5451/unibas-006769347.
Jakob, Roman P. et al. (2016) ‘Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps’, PLoS ONE, 11(6), p. e0157070. Available at: https://doi.org/10.1371/journal.pone.0157070.
Jakob, Roman P. et al. (2016) ‘Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps’, PLoS ONE, 11(6), p. e0157070. Available at: https://doi.org/10.1371/journal.pone.0157070.
Preston, Roland C. et al. (2016) ‘E-selectin ligand complexes adopt an extended high-affinity conformation’, Journal of Molecular Cell Biology, 8(1), pp. 62–72. Available at: https://doi.org/10.1093/jmcb/mjv046.
Preston, Roland C. et al. (2016) ‘E-selectin ligand complexes adopt an extended high-affinity conformation’, Journal of Molecular Cell Biology, 8(1), pp. 62–72. Available at: https://doi.org/10.1093/jmcb/mjv046.
Sauer, Maximilian M et al. (2016) ‘Catch-bond mechanism of the bacterial adhesin FimH’, Nature communications, 7, p. 10738. Available at: https://doi.org/10.1038/ncomms10738.
Sauer, Maximilian M et al. (2016) ‘Catch-bond mechanism of the bacterial adhesin FimH’, Nature communications, 7, p. 10738. Available at: https://doi.org/10.1038/ncomms10738.
Silván, Unai et al. (2016) ‘Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy’, Journal of structural biology, 195(2), pp. 159–166. Available at: https://doi.org/10.1016/j.jsb.2016.05.008.
Silván, Unai et al. (2016) ‘Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy’, Journal of structural biology, 195(2), pp. 159–166. Available at: https://doi.org/10.1016/j.jsb.2016.05.008.
Arquint, Christian et al. (2015) ‘STIL binding to Polo-box 3 of PLK4 regulates centriole duplication’, eLife, 4, p. e07888. Available at: https://doi.org/10.7554/elife.07888.
Arquint, Christian et al. (2015) ‘STIL binding to Polo-box 3 of PLK4 regulates centriole duplication’, eLife, 4, p. e07888. Available at: https://doi.org/10.7554/elife.07888.
Blatter, Markus et al. (2015) ‘The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein’, Journal of molecular biology, 427(19), pp. 3001–3022. Available at: https://doi.org/10.1016/j.jmb.2015.05.020.
Blatter, Markus et al. (2015) ‘The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein’, Journal of molecular biology, 427(19), pp. 3001–3022. Available at: https://doi.org/10.1016/j.jmb.2015.05.020.
Bukhari, H. (2015) Evolution and mechanism of fatty acid synthase multienzymes. Available at: https://doi.org/10.5451/unibas-006481144.
Bukhari, H. (2015) Evolution and mechanism of fatty acid synthase multienzymes. Available at: https://doi.org/10.5451/unibas-006481144.
Fiege, Brigitte et al. (2015) ‘The Tyrosine Gate of the Bacterial Lectin FimH : a Conformational Analysis by NMR Spectroscopy and X-ray Crystallography’, ChemBioChem, 16(8), pp. 1235–1246. Available at: https://doi.org/10.1002/cbic.201402714.
Fiege, Brigitte et al. (2015) ‘The Tyrosine Gate of the Bacterial Lectin FimH : a Conformational Analysis by NMR Spectroscopy and X-ray Crystallography’, ChemBioChem, 16(8), pp. 1235–1246. Available at: https://doi.org/10.1002/cbic.201402714.
Fujieda, Nobutaka et al. (2015) ‘Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding’, Chemical Science, 6(7), pp. 4060–4065. Available at: https://doi.org/10.1039/c5sc01065a.
Fujieda, Nobutaka et al. (2015) ‘Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding’, Chemical Science, 6(7), pp. 4060–4065. Available at: https://doi.org/10.1039/c5sc01065a.
Gruss, F. (2015) Structural insights into Omp85-mediated protein translocation and insertion in the bacterial outer membrane. Available at: https://doi.org/10.5451/unibas-006450358.
Gruss, F. (2015) Structural insights into Omp85-mediated protein translocation and insertion in the bacterial outer membrane. Available at: https://doi.org/10.5451/unibas-006450358.
Gruss, Fabian, Hiller, Sebastian and Maier, Timm (2015) ‘Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA’, Methods in Molecular Biology, 1329, pp. 259–70. Available at: https://doi.org/10.1007/978-1-4939-2871-2_20.
Gruss, Fabian, Hiller, Sebastian and Maier, Timm (2015) ‘Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA’, Methods in Molecular Biology, 1329, pp. 259–70. Available at: https://doi.org/10.1007/978-1-4939-2871-2_20.
Hunkeler, M. (2015) Dynamic architecture of multi-domain carboxylases. Available at: https://doi.org/10.5451/unibas-006672350.
Hunkeler, M. (2015) Dynamic architecture of multi-domain carboxylases. Available at: https://doi.org/10.5451/unibas-006672350.
Jakob, Roman P. et al. (2015) ‘Dimeric structure of the bacterial extracellular foldase PrsA’, Journal of Biological Chemistry. 06.04.2015, 290(6), pp. 3278–3292. Available at: https://doi.org/10.1074/jbc.m114.622910.
Jakob, Roman P. et al. (2015) ‘Dimeric structure of the bacterial extracellular foldase PrsA’, Journal of Biological Chemistry. 06.04.2015, 290(6), pp. 3278–3292. Available at: https://doi.org/10.1074/jbc.m114.622910.
Kleeb, Simon et al. (2015) ‘FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile’, Journal of Medicinal Chemistry, 58(5), pp. 2221–39. Available at: https://doi.org/10.1021/jm501524q.
Kleeb, Simon et al. (2015) ‘FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile’, Journal of Medicinal Chemistry, 58(5), pp. 2221–39. Available at: https://doi.org/10.1021/jm501524q.
Kudryashev, Mikhail et al. (2015) ‘Structure of the Type VI Secretion System Contractile Sheath’, Cell, 160(5), pp. 952–62. Available at: https://doi.org/10.1016/j.cell.2015.01.037.
Kudryashev, Mikhail et al. (2015) ‘Structure of the Type VI Secretion System Contractile Sheath’, Cell, 160(5), pp. 952–62. Available at: https://doi.org/10.1016/j.cell.2015.01.037.
Maier, Timm et al. (2015) ‘Conserved Omp85 lid-lock structure and substrate recognition in FhaC’, Nature Communications, 6, p. 7452. Available at: https://doi.org/10.1038/ncomms8452.
Maier, Timm et al. (2015) ‘Conserved Omp85 lid-lock structure and substrate recognition in FhaC’, Nature Communications, 6, p. 7452. Available at: https://doi.org/10.1038/ncomms8452.
Martin, S. (2015) Structural studies of enzymes in polyketide and lipid biosynthesis : Trans-AT polyketide synthases and eukaryotic lipins. Available at: https://doi.org/10.5451/unibas-006435310.
Martin, S. (2015) Structural studies of enzymes in polyketide and lipid biosynthesis : Trans-AT polyketide synthases and eukaryotic lipins. Available at: https://doi.org/10.5451/unibas-006435310.