Structural Biology (Maier)
Publications
108 found
Show per page
Chancellor, Andrew et al. (2024) ‘The carbonyl nucleobase adduct M3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells’, Immunity. 18.12.2024, p. Online ahead of print. Available at: https://doi.org/10.1016/j.immuni.2024.11.019.
Chancellor, Andrew et al. (2024) ‘The carbonyl nucleobase adduct M3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells’, Immunity. 18.12.2024, p. Online ahead of print. Available at: https://doi.org/10.1016/j.immuni.2024.11.019.
Morita, Iori et al. (2024) ‘Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein’, ACS Catalysis. 07.11.2024, 14, pp. 17171–17179. Available at: https://doi.org/10.1021/acscatal.4c04163.
Morita, Iori et al. (2024) ‘Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein’, ACS Catalysis. 07.11.2024, 14, pp. 17171–17179. Available at: https://doi.org/10.1021/acscatal.4c04163.
Mukherjee, Manjistha et al. (2024) ‘Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ACS Catalysis. 19.10.2024, 14(21), pp. 16266–16276. Available at: https://doi.org/10.1021/acscatal.4c03208.
Mukherjee, Manjistha et al. (2024) ‘Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ACS Catalysis. 19.10.2024, 14(21), pp. 16266–16276. Available at: https://doi.org/10.1021/acscatal.4c03208.
Battaglioni, Stefania et al. (2024) ‘mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR’, Proceedings of the National Academy of Sciences, 121(34). Available at: https://doi.org/10.1073/pnas.2405959121.
Battaglioni, Stefania et al. (2024) ‘mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR’, Proceedings of the National Academy of Sciences, 121(34). Available at: https://doi.org/10.1073/pnas.2405959121.
Hiller, Sebastian et al. (2024) ‘A functional chaperone condensate in the endoplasmic reticulum’, Research Square [Preprint]. Research Square. Available at: https://doi.org/10.21203/rs.3.rs-4796355/v1.
Hiller, Sebastian et al. (2024) ‘A functional chaperone condensate in the endoplasmic reticulum’, Research Square [Preprint]. Research Square. Available at: https://doi.org/10.21203/rs.3.rs-4796355/v1.
Chen, Dongping et al. (2024) ‘An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway’, Nature Chemistry, 16(10), pp. 1656–1664. Available at: https://doi.org/10.1038/s41557-024-01562-5.
Chen, Dongping et al. (2024) ‘An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway’, Nature Chemistry, 16(10), pp. 1656–1664. Available at: https://doi.org/10.1038/s41557-024-01562-5.
Kaczmarczyk, Andreas et al. (2024) ‘A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution’, Nature Communications [Preprint], (15). Available at: https://doi.org/10.1038/s41467-024-48295-0.
Kaczmarczyk, Andreas et al. (2024) ‘A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution’, Nature Communications [Preprint], (15). Available at: https://doi.org/10.1038/s41467-024-48295-0.
Höing, Lars et al. (2024) ‘Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products’, Chemical Science, 15(20), pp. 7749–7756. Available at: https://doi.org/10.1039/d4sc01715c.
Höing, Lars et al. (2024) ‘Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products’, Chemical Science, 15(20), pp. 7749–7756. Available at: https://doi.org/10.1039/d4sc01715c.
Nemli, Dilara D. et al. (2024) ‘Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics’, Journal of Medicinal Chemistry, 67(16), pp. 13813–13828. Available at: https://doi.org/10.1021/acs.jmedchem.4c00623.
Nemli, Dilara D. et al. (2024) ‘Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics’, Journal of Medicinal Chemistry, 67(16), pp. 13813–13828. Available at: https://doi.org/10.1021/acs.jmedchem.4c00623.
Yu, K. et al. (2024) ‘An artificial nickel chlorinase based on the biotin–streptavidin technology’, Chemical Communications, 60, pp. 1944–1947. Available at: https://doi.org/10.1039/d3cc05847f.
Yu, K. et al. (2024) ‘An artificial nickel chlorinase based on the biotin–streptavidin technology’, Chemical Communications, 60, pp. 1944–1947. Available at: https://doi.org/10.1039/d3cc05847f.
Mukherjee, Manjistha et al. (2023) ‘An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ChemRxiv [Preprint]. Cambridge University Press. Available at: https://doi.org/10.26434/chemrxiv-2023-s830k.
Mukherjee, Manjistha et al. (2023) ‘An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ChemRxiv [Preprint]. Cambridge University Press. Available at: https://doi.org/10.26434/chemrxiv-2023-s830k.
Degen, Morris et al. (2023) ‘Structural basis of NINJ1-mediated plasma membrane rupture in cell death’, Nature, 618(7967), pp. 1065–1071. Available at: https://doi.org/10.1038/s41586-023-05991-z.
Degen, Morris et al. (2023) ‘Structural basis of NINJ1-mediated plasma membrane rupture in cell death’, Nature, 618(7967), pp. 1065–1071. Available at: https://doi.org/10.1038/s41586-023-05991-z.
Isaikina, Polina et al. (2023) ‘A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes’, Molecular cell, 83(12), pp. 2108–2121.e7. Available at: https://doi.org/10.1016/j.molcel.2023.05.002.
Isaikina, Polina et al. (2023) ‘A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes’, Molecular cell, 83(12), pp. 2108–2121.e7. Available at: https://doi.org/10.1016/j.molcel.2023.05.002.
Shimobayashi, Mitsugu et al. (2023) ‘Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia’, eLife, 12, p. e85103. Available at: https://doi.org/10.7554/elife.85103.
Shimobayashi, Mitsugu et al. (2023) ‘Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia’, eLife, 12, p. e85103. Available at: https://doi.org/10.7554/elife.85103.
Isaikina, Polina et al. (2022) ‘A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2022.10.10.511578.
Isaikina, Polina et al. (2022) ‘A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2022.10.10.511578.
Kaczmarczyk, Andreas et al. (2022) ‘A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution’. bioRxiv. Available at: https://doi.org/10.1101/2022.10.18.512705.
Kaczmarczyk, Andreas et al. (2022) ‘A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution’. bioRxiv. Available at: https://doi.org/10.1101/2022.10.18.512705.
Battaglioni, Stefania et al. (2022) ‘mTOR substrate phosphorylation in growth control’, Cell, 185(11), pp. 1814–1836. Available at: https://doi.org/10.1016/j.cell.2022.04.013.
Battaglioni, Stefania et al. (2022) ‘mTOR substrate phosphorylation in growth control’, Cell, 185(11), pp. 1814–1836. Available at: https://doi.org/10.1016/j.cell.2022.04.013.
Chaker-Margot, Malik et al. (2022) ‘Structural basis of activation of the tumor suppressor protein neurofibromin’, Molecular Cell, 82(7), pp. 1288–1296.e5. Available at: https://doi.org/10.1016/j.molcel.2022.03.011.
Chaker-Margot, Malik et al. (2022) ‘Structural basis of activation of the tumor suppressor protein neurofibromin’, Molecular Cell, 82(7), pp. 1288–1296.e5. Available at: https://doi.org/10.1016/j.molcel.2022.03.011.
Miller, Ryan D. et al. (2022) ‘Computational identification of a systemic antibiotic for gram-negative bacteria’, Nature Microbiology, 7(10), pp. 1661–1672. Available at: https://doi.org/10.1038/s41564-022-01227-4.
Miller, Ryan D. et al. (2022) ‘Computational identification of a systemic antibiotic for gram-negative bacteria’, Nature Microbiology, 7(10), pp. 1661–1672. Available at: https://doi.org/10.1038/s41564-022-01227-4.
Mohammed, Inayathulla et al. (2022) ‘Catalytic cycling of human mitochondrial Lon protease’, Structure, 30(9), pp. 1254–1268.e7. Available at: https://doi.org/10.1016/j.str.2022.06.006.
Mohammed, Inayathulla et al. (2022) ‘Catalytic cycling of human mitochondrial Lon protease’, Structure, 30(9), pp. 1254–1268.e7. Available at: https://doi.org/10.1016/j.str.2022.06.006.
Tittes, Yves U. et al. (2022) ‘The structure of a polyketide synthase bimodule core’, Science Advances, 8(38), p. eabo6918. Available at: https://doi.org/10.1126/sciadv.abo6918.
Tittes, Yves U. et al. (2022) ‘The structure of a polyketide synthase bimodule core’, Science Advances, 8(38), p. eabo6918. Available at: https://doi.org/10.1126/sciadv.abo6918.
Mohammed, Inayathulla et al. (2021) ‘Catalytic cycling of human mitochondrial Lon protease’. bioRxiv. Available at: https://doi.org/10.1101/2021.07.28.454137.
Mohammed, Inayathulla et al. (2021) ‘Catalytic cycling of human mitochondrial Lon protease’. bioRxiv. Available at: https://doi.org/10.1101/2021.07.28.454137.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Cramer, Jonathan et al. (2021) ‘Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2’, Journal of the American Chemical Society, 143(42), pp. 17465–17478. Available at: https://doi.org/10.1021/jacs.1c06778.
Cramer, Jonathan et al. (2021) ‘Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2’, Journal of the American Chemical Society, 143(42), pp. 17465–17478. Available at: https://doi.org/10.1021/jacs.1c06778.
Jia, Jian-Jun et al. (2021) ‘mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1’, Nucleic Acids Research, 49(6), pp. 3461–3489. Available at: https://doi.org/10.1093/nar/gkaa1239.
Jia, Jian-Jun et al. (2021) ‘mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1’, Nucleic Acids Research, 49(6), pp. 3461–3489. Available at: https://doi.org/10.1093/nar/gkaa1239.
Kaur, Hundeep et al. (2021) ‘The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase’, Nature, 593(7857), pp. 125–129. Available at: https://doi.org/10.1038/s41586-021-03455-w.
Kaur, Hundeep et al. (2021) ‘The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase’, Nature, 593(7857), pp. 125–129. Available at: https://doi.org/10.1038/s41586-021-03455-w.
Pipercevic, Joka et al. (2021) ‘Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), p. 183607. Available at: https://doi.org/10.1016/j.bbamem.2021.183607.
Pipercevic, Joka et al. (2021) ‘Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), p. 183607. Available at: https://doi.org/10.1016/j.bbamem.2021.183607.
Tomašič, Tihomir et al. (2021) ‘Does targeting Arg98 of FimH lead to high affinity antagonists?’, European Journal of Medicinal Chemistry, 211, p. 113093. Available at: https://doi.org/10.1016/j.ejmech.2020.113093.
Tomašič, Tihomir et al. (2021) ‘Does targeting Arg98 of FimH lead to high affinity antagonists?’, European Journal of Medicinal Chemistry, 211, p. 113093. Available at: https://doi.org/10.1016/j.ejmech.2020.113093.
Wälchli, Matthias et al. (2021) ‘Regulation of human mTOR complexes by DEPTOR’, eLife, 10, p. e70871. Available at: https://doi.org/10.7554/elife.70871.
Wälchli, Matthias et al. (2021) ‘Regulation of human mTOR complexes by DEPTOR’, eLife, 10, p. e70871. Available at: https://doi.org/10.7554/elife.70871.
Isaikina, Polina et al. (2020) ‘Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist’. bioRxiv. Available at: https://doi.org/10.1101/2020.11.27.401117.
Isaikina, Polina et al. (2020) ‘Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist’. bioRxiv. Available at: https://doi.org/10.1101/2020.11.27.401117.
Brunner, Janine D. et al. (2020) ‘Structural basis for ion selectivity in TMEM175 K+ channels’, eLife, 9, p. 53683. Available at: https://doi.org/10.7554/elife.53683.
Brunner, Janine D. et al. (2020) ‘Structural basis for ion selectivity in TMEM175 K+ channels’, eLife, 9, p. 53683. Available at: https://doi.org/10.7554/elife.53683.
Cramer, Jonathan et al. (2020) ‘Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding’, RSC Chemical Biology, 1(4), pp. 281–287. Available at: https://doi.org/10.1039/d0cb00108b.
Cramer, Jonathan et al. (2020) ‘Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding’, RSC Chemical Biology, 1(4), pp. 281–287. Available at: https://doi.org/10.1039/d0cb00108b.
Künzli, Marco et al. (2020) ‘Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity’, Science Immunology, 5(45), p. eaay5552. Available at: https://doi.org/10.1126/sciimmunol.aay5552.
Künzli, Marco et al. (2020) ‘Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity’, Science Immunology, 5(45), p. eaay5552. Available at: https://doi.org/10.1126/sciimmunol.aay5552.
Righetto, Ricardo D. et al. (2020) ‘High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5101. Available at: https://doi.org/10.1038/s41467-020-18870-2.
Righetto, Ricardo D. et al. (2020) ‘High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5101. Available at: https://doi.org/10.1038/s41467-020-18870-2.
Righetto, Ricardo D. et al. (2020) ‘Author Correction: High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5873. Available at: https://doi.org/10.1038/s41467-020-19845-z.
Righetto, Ricardo D. et al. (2020) ‘Author Correction: High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5873. Available at: https://doi.org/10.1038/s41467-020-19845-z.
Scaiola, Alain et al. (2020) ‘The 3.2-Å resolution structure of human mTORC2’, Science advances, 6(45), p. eabc1251. Available at: https://doi.org/10.1126/sciadv.abc1251.
Scaiola, Alain et al. (2020) ‘The 3.2-Å resolution structure of human mTORC2’, Science advances, 6(45), p. eabc1251. Available at: https://doi.org/10.1126/sciadv.abc1251.
Shimobayashi, Mitsugu et al. (2020) ‘Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia’. bioRxiv. Available at: https://doi.org/10.1101/2019.12.28.887794.
Shimobayashi, Mitsugu et al. (2020) ‘Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia’. bioRxiv. Available at: https://doi.org/10.1101/2019.12.28.887794.
Kaur, Hundeep et al. (2019) ‘Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach’, Journal of Biomolecular NMR, 73(6-7), pp. 375–384. Available at: https://doi.org/10.1007/s10858-019-00250-8.
Kaur, Hundeep et al. (2019) ‘Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach’, Journal of Biomolecular NMR, 73(6-7), pp. 375–384. Available at: https://doi.org/10.1007/s10858-019-00250-8.
Sauer, Maximilian M. et al. (2019) ‘Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets’, Journal of the American Chemical Society, 141(2), pp. 936–944. Available at: https://doi.org/10.1021/jacs.8b10736.
Sauer, Maximilian M. et al. (2019) ‘Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets’, Journal of the American Chemical Society, 141(2), pp. 936–944. Available at: https://doi.org/10.1021/jacs.8b10736.
Schönemann, Wojciech et al. (2019) ‘Improvement of Aglycone π-Stacking Yields Nano- to Subnanomolar FimH Antagonists’, ChemMedChem, 14(7), pp. 749–757. Available at: https://doi.org/10.1002/cmdc.201900051.
Schönemann, Wojciech et al. (2019) ‘Improvement of Aglycone π-Stacking Yields Nano- to Subnanomolar FimH Antagonists’, ChemMedChem, 14(7), pp. 749–757. Available at: https://doi.org/10.1002/cmdc.201900051.
Brunner, Janine D. et al. (2018) ‘Structural basis for ion selectivity in TMEM175 K+ channels’. bioRxiv. Available at: https://doi.org/10.1101/480863.
Brunner, Janine D. et al. (2018) ‘Structural basis for ion selectivity in TMEM175 K+ channels’. bioRxiv. Available at: https://doi.org/10.1101/480863.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’. bioRxiv. Available at: https://doi.org/10.1101/354134.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’. bioRxiv. Available at: https://doi.org/10.1101/354134.
Bauer, Daniela et al. (2018) ‘A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy’, Proceedings of the National Academy of Sciences of the United States of America, 115(18), pp. 4666–4671. Available at: https://doi.org/10.1073/pnas.1716899115.
Bauer, Daniela et al. (2018) ‘A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy’, Proceedings of the National Academy of Sciences of the United States of America, 115(18), pp. 4666–4671. Available at: https://doi.org/10.1073/pnas.1716899115.
Herbst, Dominik A. et al. (2018) ‘The structural organization of substrate loading in iterative polyketide synthases’, Nature Chemical Biology, 14(5), pp. 474–479. Available at: https://doi.org/10.1038/s41589-018-0026-3.
Herbst, Dominik A. et al. (2018) ‘The structural organization of substrate loading in iterative polyketide synthases’, Nature Chemical Biology, 14(5), pp. 474–479. Available at: https://doi.org/10.1038/s41589-018-0026-3.
Herbst, Dominik A., Townsend, Craig A. and Maier, Timm (2018) ‘The architectures of iterative type I PKS and FAS’, Natural Product Reports, 35(10), pp. 1046–1069. Available at: https://doi.org/10.1039/c8np00039e.
Herbst, Dominik A., Townsend, Craig A. and Maier, Timm (2018) ‘The architectures of iterative type I PKS and FAS’, Natural Product Reports, 35(10), pp. 1046–1069. Available at: https://doi.org/10.1039/c8np00039e.
Hunkeler, Moritz et al. (2018) ‘Structural basis for regulation of human acetyl-CoA carboxylase’, Nature, 558(7710), pp. 470–474. Available at: https://doi.org/10.1038/s41586-018-0201-4.
Hunkeler, Moritz et al. (2018) ‘Structural basis for regulation of human acetyl-CoA carboxylase’, Nature, 558(7710), pp. 470–474. Available at: https://doi.org/10.1038/s41586-018-0201-4.
Imseng, Stefan, Aylett, Christopher Hs and Maier, Timm (2018) ‘Architecture and activation of phosphatidylinositol 3-kinase related kinases’, Current opinion in structural biology, 49, pp. 177–189. Available at: https://doi.org/10.1016/j.sbi.2018.03.010.
Imseng, Stefan, Aylett, Christopher Hs and Maier, Timm (2018) ‘Architecture and activation of phosphatidylinositol 3-kinase related kinases’, Current opinion in structural biology, 49, pp. 177–189. Available at: https://doi.org/10.1016/j.sbi.2018.03.010.
Maier, Timm and Weissman, Kira J. (2018) ‘Macromolecular assemblies: Assembly, dynamics and control of activity’, Current Opinion in Structural Biology, 49, pp. vi–vii. Available at: https://doi.org/10.1016/j.sbi.2018.04.001.
Maier, Timm and Weissman, Kira J. (2018) ‘Macromolecular assemblies: Assembly, dynamics and control of activity’, Current Opinion in Structural Biology, 49, pp. vi–vii. Available at: https://doi.org/10.1016/j.sbi.2018.04.001.
Rabbani, Said et al. (2018) ‘Conformational Switch of the Bacterial Adhesin FimH in the Absence of the Regulatory Domain: Engineering a Minimalistic Allosteric System’, Journal of Biological Chemistry, 293(5), pp. 1835–1849. Available at: https://doi.org/10.1074/jbc.m117.802942.
Rabbani, Said et al. (2018) ‘Conformational Switch of the Bacterial Adhesin FimH in the Absence of the Regulatory Domain: Engineering a Minimalistic Allosteric System’, Journal of Biological Chemistry, 293(5), pp. 1835–1849. Available at: https://doi.org/10.1074/jbc.m117.802942.
Sager, Christoph P. et al. (2018) ‘The price of flexibility - a case study on septanoses as pyranose mimetics’, Chemical Science, 9(3), pp. 646–654. Available at: https://doi.org/10.1039/c7sc04289b.
Sager, Christoph P. et al. (2018) ‘The price of flexibility - a case study on septanoses as pyranose mimetics’, Chemical Science, 9(3), pp. 646–654. Available at: https://doi.org/10.1039/c7sc04289b.
Stuttfeld, E. et al. (2018) ‘Architecture of the human mTORC2 core complex’, eLife, 7, p. e33101. Available at: https://doi.org/10.7554/elife.33101.
Stuttfeld, E. et al. (2018) ‘Architecture of the human mTORC2 core complex’, eLife, 7, p. e33101. Available at: https://doi.org/10.7554/elife.33101.
Zihlmann, Pascal et al. (2018) ‘KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists’, Chemistry (Weinheim an der Bergstrasse, Germany), 24(49), pp. 13049–13057. Available at: https://doi.org/10.1002/chem.201802599.
Zihlmann, Pascal et al. (2018) ‘KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists’, Chemistry (Weinheim an der Bergstrasse, Germany), 24(49), pp. 13049–13057. Available at: https://doi.org/10.1002/chem.201802599.
Anton, Leonie et al. (2017) ‘Insights into Gasdermin D activation from the crystal structure of its C-terminal domain’. bioRxiv. Available at: https://doi.org/10.1101/187211.
Anton, Leonie et al. (2017) ‘Insights into Gasdermin D activation from the crystal structure of its C-terminal domain’. bioRxiv. Available at: https://doi.org/10.1101/187211.
Benning, Friederike M. C. et al. (2017) ‘High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase’, ACS Nano, 11(11), pp. 10852–10859. Available at: https://doi.org/10.1021/acsnano.7b04216.
Benning, Friederike M. C. et al. (2017) ‘High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase’, ACS Nano, 11(11), pp. 10852–10859. Available at: https://doi.org/10.1021/acsnano.7b04216.
Maier, Timm (2017) ‘Fatty acid synthases: Re-engineering biofactories’, Nature Chemical Biology, 13(4), pp. 344–345. Available at: https://doi.org/10.1038/nchembio.2338.
Maier, Timm (2017) ‘Fatty acid synthases: Re-engineering biofactories’, Nature Chemical Biology, 13(4), pp. 344–345. Available at: https://doi.org/10.1038/nchembio.2338.
Navarra, Giulio et al. (2017) ‘Carbohydrate-Lectin Interactions - An Unexpected Contribution to Affinity’, ChemBioChem, 18(6), pp. 539–544. Available at: https://doi.org/10.1002/cbic.201600615.
Navarra, Giulio et al. (2017) ‘Carbohydrate-Lectin Interactions - An Unexpected Contribution to Affinity’, ChemBioChem, 18(6), pp. 539–544. Available at: https://doi.org/10.1002/cbic.201600615.
Roth, Christian et al. (2017) ‘Amylose recognition and ring-size determination of amylomaltase’, Science Advances, 3(1), p. e1601386. Available at: https://doi.org/10.1126/sciadv.1601386.
Roth, Christian et al. (2017) ‘Amylose recognition and ring-size determination of amylomaltase’, Science Advances, 3(1), p. e1601386. Available at: https://doi.org/10.1126/sciadv.1601386.
Storm, Philip A. et al. (2017) ‘Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin’, Cell Chemical Biology, 24(3), pp. 316–325. Available at: https://doi.org/10.1016/j.chembiol.2017.01.008.
Storm, Philip A. et al. (2017) ‘Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin’, Cell Chemical Biology, 24(3), pp. 316–325. Available at: https://doi.org/10.1016/j.chembiol.2017.01.008.
Stuttfeld, Edward, Imseng, Stefan and Maier, Timm (2017) ‘A central role for a region in the middle’, eLife, 6, p. e25700. Available at: https://doi.org/10.7554/elife.25700.
Stuttfeld, Edward, Imseng, Stefan and Maier, Timm (2017) ‘A central role for a region in the middle’, eLife, 6, p. e25700. Available at: https://doi.org/10.7554/elife.25700.
Wang, Jing et al. (2017) ‘Cryo-EM structure of the extended type VI secretion system sheath-tube complex’, Nature Microbiology, 2(11), pp. 1507–1512. Available at: https://doi.org/10.1038/s41564-017-0020-7.
Wang, Jing et al. (2017) ‘Cryo-EM structure of the extended type VI secretion system sheath-tube complex’, Nature Microbiology, 2(11), pp. 1507–1512. Available at: https://doi.org/10.1038/s41564-017-0020-7.
Herbst, Dominik A. et al. (2016) ‘Erratum: Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases (Nature (2016) 531 (533-537) DOI:10.1038/nature16993)’, Nature, 536(7616), pp. 360–360. Available at: https://doi.org/10.1038/nature18281.
Herbst, Dominik A. et al. (2016) ‘Erratum: Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases (Nature (2016) 531 (533-537) DOI:10.1038/nature16993)’, Nature, 536(7616), pp. 360–360. Available at: https://doi.org/10.1038/nature18281.
Aylett, Christopher H. S. et al. (2016) ‘Architecture of human mTOR complex 1’, Science, 351(6268), pp. 48–52. Available at: https://doi.org/10.1126/science.aaa3870.
Aylett, Christopher H. S. et al. (2016) ‘Architecture of human mTOR complex 1’, Science, 351(6268), pp. 48–52. Available at: https://doi.org/10.1126/science.aaa3870.
Hagmann, Anna et al. (2016) ‘Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans’, Structure, 24(8), pp. 1227–1236. Available at: https://doi.org/10.1016/j.str.2016.06.001.
Hagmann, Anna et al. (2016) ‘Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans’, Structure, 24(8), pp. 1227–1236. Available at: https://doi.org/10.1016/j.str.2016.06.001.
Herbst, Dominik A. et al. (2016) ‘Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases’, Nature, 531(7595), pp. 533–7. Available at: https://doi.org/10.1038/nature16993.
Herbst, Dominik A. et al. (2016) ‘Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases’, Nature, 531(7595), pp. 533–7. Available at: https://doi.org/10.1038/nature16993.
Hunkeler, Moritz et al. (2016) ‘The dynamic organization of fungal acetyl-CoA carboxylase’, Nature Communications, 7, p. 11196. Available at: https://doi.org/10.1038/ncomms11196.
Hunkeler, Moritz et al. (2016) ‘The dynamic organization of fungal acetyl-CoA carboxylase’, Nature Communications, 7, p. 11196. Available at: https://doi.org/10.1038/ncomms11196.
Jakob, Roman P. et al. (2016) ‘Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps’, PLoS ONE, 11(6), p. e0157070. Available at: https://doi.org/10.1371/journal.pone.0157070.
Jakob, Roman P. et al. (2016) ‘Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps’, PLoS ONE, 11(6), p. e0157070. Available at: https://doi.org/10.1371/journal.pone.0157070.
Preston, Roland C. et al. (2016) ‘E-selectin ligand complexes adopt an extended high-affinity conformation’, Journal of Molecular Cell Biology, 8(1), pp. 62–72. Available at: https://doi.org/10.1093/jmcb/mjv046.
Preston, Roland C. et al. (2016) ‘E-selectin ligand complexes adopt an extended high-affinity conformation’, Journal of Molecular Cell Biology, 8(1), pp. 62–72. Available at: https://doi.org/10.1093/jmcb/mjv046.
Sauer, Maximilian M et al. (2016) ‘Catch-bond mechanism of the bacterial adhesin FimH’, Nature communications, 7, p. 10738. Available at: https://doi.org/10.1038/ncomms10738.
Sauer, Maximilian M et al. (2016) ‘Catch-bond mechanism of the bacterial adhesin FimH’, Nature communications, 7, p. 10738. Available at: https://doi.org/10.1038/ncomms10738.
Silván, Unai et al. (2016) ‘Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy’, Journal of structural biology, 195(2), pp. 159–166. Available at: https://doi.org/10.1016/j.jsb.2016.05.008.
Silván, Unai et al. (2016) ‘Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy’, Journal of structural biology, 195(2), pp. 159–166. Available at: https://doi.org/10.1016/j.jsb.2016.05.008.
Arquint, Christian et al. (2015) ‘STIL binding to Polo-box 3 of PLK4 regulates centriole duplication’, eLife, 4, p. e07888. Available at: https://doi.org/10.7554/elife.07888.
Arquint, Christian et al. (2015) ‘STIL binding to Polo-box 3 of PLK4 regulates centriole duplication’, eLife, 4, p. e07888. Available at: https://doi.org/10.7554/elife.07888.
Blatter, Markus et al. (2015) ‘The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein’, Journal of molecular biology, 427(19), pp. 3001–3022. Available at: https://doi.org/10.1016/j.jmb.2015.05.020.
Blatter, Markus et al. (2015) ‘The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein’, Journal of molecular biology, 427(19), pp. 3001–3022. Available at: https://doi.org/10.1016/j.jmb.2015.05.020.
Fiege, Brigitte et al. (2015) ‘The Tyrosine Gate of the Bacterial Lectin FimH : a Conformational Analysis by NMR Spectroscopy and X-ray Crystallography’, ChemBioChem, 16(8), pp. 1235–1246. Available at: https://doi.org/10.1002/cbic.201402714.
Fiege, Brigitte et al. (2015) ‘The Tyrosine Gate of the Bacterial Lectin FimH : a Conformational Analysis by NMR Spectroscopy and X-ray Crystallography’, ChemBioChem, 16(8), pp. 1235–1246. Available at: https://doi.org/10.1002/cbic.201402714.
Fujieda, Nobutaka et al. (2015) ‘Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding’, Chemical Science, 6(7), pp. 4060–4065. Available at: https://doi.org/10.1039/c5sc01065a.
Fujieda, Nobutaka et al. (2015) ‘Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding’, Chemical Science, 6(7), pp. 4060–4065. Available at: https://doi.org/10.1039/c5sc01065a.
Gruss, Fabian, Hiller, Sebastian and Maier, Timm (2015) ‘Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA’, Methods in Molecular Biology, 1329, pp. 259–70. Available at: https://doi.org/10.1007/978-1-4939-2871-2_20.
Gruss, Fabian, Hiller, Sebastian and Maier, Timm (2015) ‘Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA’, Methods in Molecular Biology, 1329, pp. 259–70. Available at: https://doi.org/10.1007/978-1-4939-2871-2_20.
Jakob, Roman P. et al. (2015) ‘Dimeric structure of the bacterial extracellular foldase PrsA’, Journal of Biological Chemistry, 290(6), pp. 3278–92. Available at: https://doi.org/10.1074/jbc.m114.622910.
Jakob, Roman P. et al. (2015) ‘Dimeric structure of the bacterial extracellular foldase PrsA’, Journal of Biological Chemistry, 290(6), pp. 3278–92. Available at: https://doi.org/10.1074/jbc.m114.622910.
Kleeb, Simon et al. (2015) ‘FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile’, Journal of Medicinal Chemistry, 58(5), pp. 2221–39. Available at: https://doi.org/10.1021/jm501524q.
Kleeb, Simon et al. (2015) ‘FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile’, Journal of Medicinal Chemistry, 58(5), pp. 2221–39. Available at: https://doi.org/10.1021/jm501524q.
Maier, Timm et al. (2015) ‘Conserved Omp85 lid-lock structure and substrate recognition in FhaC’, Nature Communications, 6, p. 7452. Available at: https://doi.org/10.1038/ncomms8452.
Maier, Timm et al. (2015) ‘Conserved Omp85 lid-lock structure and substrate recognition in FhaC’, Nature Communications, 6, p. 7452. Available at: https://doi.org/10.1038/ncomms8452.
Morgado, Leonor (2015) ‘NMR studies of the insertase BamA in three different membrane mimetics’, in Meeting 29th Annual Symposium of the Protein-Society . Barcelona, SPAIN (Meeting 29th Annual Symposium of the Protein-Society ), pp. 298–299.
Morgado, Leonor (2015) ‘NMR studies of the insertase BamA in three different membrane mimetics’, in Meeting 29th Annual Symposium of the Protein-Society . Barcelona, SPAIN (Meeting 29th Annual Symposium of the Protein-Society ), pp. 298–299.
Morgado, Leonor et al. (2015) ‘Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy’, Journal of biomolecular NMR, 61(3-4), pp. 333–45. Available at: https://doi.org/10.1007/s10858-015-9906-y.
Morgado, Leonor et al. (2015) ‘Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy’, Journal of biomolecular NMR, 61(3-4), pp. 333–45. Available at: https://doi.org/10.1007/s10858-015-9906-y.
Bukhari, Habib S. T., Jakob, Roman P. and Maier, Timm (2014) ‘Evolutionary origins of the multienzyme architecture of giant fungal Fatty Acid synthase’, Structure, 22(12), pp. 1775–1785. Available at: https://doi.org/10.1016/j.str.2014.09.016.
Bukhari, Habib S. T., Jakob, Roman P. and Maier, Timm (2014) ‘Evolutionary origins of the multienzyme architecture of giant fungal Fatty Acid synthase’, Structure, 22(12), pp. 1775–1785. Available at: https://doi.org/10.1016/j.str.2014.09.016.
Gruss, Fabian et al. (2013) ‘The structural basis of autotransporter translocation by TamA’, Nature structural & molecular biology, 20(11), pp. 1318–U247. Available at: https://doi.org/10.1038/nsmb.2689.
Gruss, Fabian et al. (2013) ‘The structural basis of autotransporter translocation by TamA’, Nature structural & molecular biology, 20(11), pp. 1318–U247. Available at: https://doi.org/10.1038/nsmb.2689.
Sauer, Evelyn et al. (2013) ‘Conserved sequence motifs and the structure of the mTOR kinase domain’, Biochemical Society Transactions, 41(4), pp. 889–95. Available at: https://doi.org/10.1042/bst20130113.
Sauer, Evelyn et al. (2013) ‘Conserved sequence motifs and the structure of the mTOR kinase domain’, Biochemical Society Transactions, 41(4), pp. 889–95. Available at: https://doi.org/10.1042/bst20130113.
Maier, T. et al. (2010) ‘Structure and function of eukaryotic fatty acid synthases’, Quarterly Reviews of Biophysics, 43(3), pp. 373–422. Available at: https://doi.org/10.1017/s0033583510000156.
Maier, T. et al. (2010) ‘Structure and function of eukaryotic fatty acid synthases’, Quarterly Reviews of Biophysics, 43(3), pp. 373–422. Available at: https://doi.org/10.1017/s0033583510000156.
Mocibob, Marko et al. (2010) ‘Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis’, Proceedings of the National Academy of Sciences of the United States of America, 107(33), pp. 14585–90. Available at: https://doi.org/10.1073/pnas.1007470107.
Mocibob, Marko et al. (2010) ‘Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis’, Proceedings of the National Academy of Sciences of the United States of America, 107(33), pp. 14585–90. Available at: https://doi.org/10.1073/pnas.1007470107.
Mocibob, M. et al. (2010) ‘New links between protein biosynthesis and nonribosomal peptide synthesis’, The FEBS journal, 277, pp. 260–261.
Mocibob, M. et al. (2010) ‘New links between protein biosynthesis and nonribosomal peptide synthesis’, The FEBS journal, 277, pp. 260–261.
Müller, M. et al. (2009) ‘The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism’, Nature, 459(7247), pp. 726–U135. Available at: https://doi.org/10.1038/nature08026.
Müller, M. et al. (2009) ‘The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism’, Nature, 459(7247), pp. 726–U135. Available at: https://doi.org/10.1038/nature08026.
Bingel-Erlenmeyer, R. et al. (2008) ‘A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing’, Nature, 452(7183), pp. 108–U13. Available at: https://doi.org/10.1038/nature06683.
Bingel-Erlenmeyer, R. et al. (2008) ‘A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing’, Nature, 452(7183), pp. 108–U13. Available at: https://doi.org/10.1038/nature06683.
Leibundgut, M. et al. (2008) ‘The multienzyme architecture of eukaryotic fatty acid synthases’, Current Opinion in Structural Biology, 18(6), pp. 714–725. Available at: https://doi.org/10.1016/j.sbi.2008.09.008.
Leibundgut, M. et al. (2008) ‘The multienzyme architecture of eukaryotic fatty acid synthases’, Current Opinion in Structural Biology, 18(6), pp. 714–725. Available at: https://doi.org/10.1016/j.sbi.2008.09.008.
Maier, T., Leibundgut, M. and Ban, N. (2008) ‘The crystal structure of a mammalian fatty acid synthase’, Science, 321(5894), pp. 1315–1322. Available at: https://doi.org/10.1126/science.1161269.
Maier, T., Leibundgut, M. and Ban, N. (2008) ‘The crystal structure of a mammalian fatty acid synthase’, Science, 321(5894), pp. 1315–1322. Available at: https://doi.org/10.1126/science.1161269.
Merz, F. et al. (2008) ‘Molecular mechanism and structure of Trigger Factor bound to the translating ribosome’, The EMBO Journal, 27(11), pp. 1622–32. Available at: https://doi.org/10.1038/emboj.2008.89.
Merz, F. et al. (2008) ‘Molecular mechanism and structure of Trigger Factor bound to the translating ribosome’, The EMBO Journal, 27(11), pp. 1622–32. Available at: https://doi.org/10.1038/emboj.2008.89.
Rossmann, M. et al. (2008) ‘Crystal structures of human saposins C and D: Implications for lipid recognition and membrane interactions’, Structure, 16(5), pp. 809–817. Available at: https://doi.org/10.1016/j.str.2008.02.016.
Rossmann, M. et al. (2008) ‘Crystal structures of human saposins C and D: Implications for lipid recognition and membrane interactions’, Structure, 16(5), pp. 809–817. Available at: https://doi.org/10.1016/j.str.2008.02.016.
Bilokapic, S. et al. (2006) ‘Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition’, The EMBO Journal, 25(11), pp. 2498–509. Available at: https://doi.org/10.1038/sj.emboj.7601129.
Bilokapic, S. et al. (2006) ‘Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition’, The EMBO Journal, 25(11), pp. 2498–509. Available at: https://doi.org/10.1038/sj.emboj.7601129.
Jenni, S. et al. (2006) ‘Architecture of a fungal fatty acid synthase at 5 angstrom resolution’, Science, 311(5765), pp. 1263–1267. Available at: https://doi.org/10.1126/science.1123251.
Jenni, S. et al. (2006) ‘Architecture of a fungal fatty acid synthase at 5 angstrom resolution’, Science, 311(5765), pp. 1263–1267. Available at: https://doi.org/10.1126/science.1123251.
Maier, T., Jenni, S. and Ban, N. (2006) ‘Architecture of mammalian fatty acid synthase at 4.5 angstrom resolution’, Science, 311(5765), pp. 1258–1262. Available at: https://doi.org/10.1126/science.1123248.
Maier, T., Jenni, S. and Ban, N. (2006) ‘Architecture of mammalian fatty acid synthase at 4.5 angstrom resolution’, Science, 311(5765), pp. 1258–1262. Available at: https://doi.org/10.1126/science.1123248.
Schultz-Heienbrok, Robert et al. (2006) ‘Crystallization and preliminary characterization of three different crystal forms of human saposin C heterologously expressed in Pichia pastoris’, Acta Crystallographica Section F, 62(Pt 2), pp. 117–20. Available at: https://doi.org/10.1107/s1744309105043186.
Schultz-Heienbrok, Robert et al. (2006) ‘Crystallization and preliminary characterization of three different crystal forms of human saposin C heterologously expressed in Pichia pastoris’, Acta Crystallographica Section F, 62(Pt 2), pp. 117–20. Available at: https://doi.org/10.1107/s1744309105043186.
Wendeler, M. et al. (2006) ‘The enzyme-binding region of human GM2-activator protein’, FEBS Journal, 273(5), pp. 982–991. Available at: https://doi.org/10.1111/j.1742-4658.2006.05126.x.
Wendeler, M. et al. (2006) ‘The enzyme-binding region of human GM2-activator protein’, FEBS Journal, 273(5), pp. 982–991. Available at: https://doi.org/10.1111/j.1742-4658.2006.05126.x.
Ferbitz, L. et al. (2005) ‘Cytosolic proteins at birth: The chaperone trigger factor forms a molecular cradle for newborn proteins’, Cell Structure And Function, 30, pp. 9–9.
Ferbitz, L. et al. (2005) ‘Cytosolic proteins at birth: The chaperone trigger factor forms a molecular cradle for newborn proteins’, Cell Structure And Function, 30, pp. 9–9.
Maier, T. et al. (2005) ‘A cradle for new proteins: trigger factor at the ribosorne’, Current Opinion in Structural Biology, 15(2), pp. 204–212. Available at: https://doi.org/10.1016/j.sbi.2005.03.005.
Maier, T. et al. (2005) ‘A cradle for new proteins: trigger factor at the ribosorne’, Current Opinion in Structural Biology, 15(2), pp. 204–212. Available at: https://doi.org/10.1016/j.sbi.2005.03.005.
Maier, T. et al. (2005) ‘Reinforced HNA backbone hydration in the crystal structure of a decameric HNA/RNA hybrid’, Journal of the American Chemical Society, 127(9), pp. 2937–43. Available at: https://doi.org/10.1021/ja045843v.
Maier, T. et al. (2005) ‘Reinforced HNA backbone hydration in the crystal structure of a decameric HNA/RNA hybrid’, Journal of the American Chemical Society, 127(9), pp. 2937–43. Available at: https://doi.org/10.1021/ja045843v.
Schultz-Heienbrok, R., Maier, T. and Strater, N. (2005) ‘A large hinge bending domain rotation is necessary for the catalytic function of Escherichia coli 5 `-nucleotidase’, Biochemistry, 44(7), pp. 2244–2252. Available at: https://doi.org/10.1021/bi047989c.
Schultz-Heienbrok, R., Maier, T. and Strater, N. (2005) ‘A large hinge bending domain rotation is necessary for the catalytic function of Escherichia coli 5 `-nucleotidase’, Biochemistry, 44(7), pp. 2244–2252. Available at: https://doi.org/10.1021/bi047989c.