Structural Biology (Maier)
Publications
129 found
Show per page
Chancellor, Andrew et al. (2024) ‘The carbonyl nucleobase adduct M3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells’, Immunity. 18.12.2024, 58(2), pp. 431–447.e10. Available at: https://doi.org/10.1016/j.immuni.2024.11.019.
Chancellor, Andrew et al. (2024) ‘The carbonyl nucleobase adduct M3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells’, Immunity. 18.12.2024, 58(2), pp. 431–447.e10. Available at: https://doi.org/10.1016/j.immuni.2024.11.019.
Kaczmarczyk, Andreas et al. (2024) ‘A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-48295-0.
Kaczmarczyk, Andreas et al. (2024) ‘A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-48295-0.
Morita, Iori et al. (2024) ‘Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein’, ACS Catalysis. 07.11.2024, 14, pp. 17171–17179. Available at: https://doi.org/10.1021/acscatal.4c04163.
Morita, Iori et al. (2024) ‘Directed Evolution of an Artificial Hydroxylase Based on a Thermostable Human Carbonic Anhydrase Protein’, ACS Catalysis. 07.11.2024, 14, pp. 17171–17179. Available at: https://doi.org/10.1021/acscatal.4c04163.
Mukherjee, Manjistha et al. (2024) ‘Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ACS Catalysis. 19.10.2024, 14(21), pp. 16266–16276. Available at: https://doi.org/10.1021/acscatal.4c03208.
Mukherjee, Manjistha et al. (2024) ‘Artificial Peroxidase Based on the Biotin–Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ACS Catalysis. 19.10.2024, 14(21), pp. 16266–16276. Available at: https://doi.org/10.1021/acscatal.4c03208.
Varga, Norbert et al. (2024) ‘Strengthening an Intramolecular Non-Classical Hydrogen Bond to Get in Shape for Binding’, Angewandte Chemie - International Edition, 63. Available at: https://doi.org/10.1002/anie.202406024.
Varga, Norbert et al. (2024) ‘Strengthening an Intramolecular Non-Classical Hydrogen Bond to Get in Shape for Binding’, Angewandte Chemie - International Edition, 63. Available at: https://doi.org/10.1002/anie.202406024.
Chen, Dongping et al. (2024) ‘An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway’, Nature Chemistry, 16(10), pp. 1656–1664. Available at: https://doi.org/10.1038/s41557-024-01562-5.
Chen, Dongping et al. (2024) ‘An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway’, Nature Chemistry, 16(10), pp. 1656–1664. Available at: https://doi.org/10.1038/s41557-024-01562-5.
Nemli, Dilara D. et al. (2024) ‘Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics’, Journal of Medicinal Chemistry, 67(16), pp. 13813–13828. Available at: https://doi.org/10.1021/acs.jmedchem.4c00623.
Nemli, Dilara D. et al. (2024) ‘Thermodynamics-Guided Design Reveals a Cooperative Hydrogen Bond in DC-SIGN-targeted Glycomimetics’, Journal of Medicinal Chemistry, 67(16), pp. 13813–13828. Available at: https://doi.org/10.1021/acs.jmedchem.4c00623.
Battaglioni, Stefania et al. (2024) ‘mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR’, Proceedings of the National Academy of Sciences, 121(34). Available at: https://doi.org/10.1073/pnas.2405959121.
Battaglioni, Stefania et al. (2024) ‘mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR’, Proceedings of the National Academy of Sciences, 121(34). Available at: https://doi.org/10.1073/pnas.2405959121.
Hiller, Sebastian et al. (2024) ‘A functional chaperone condensate in the endoplasmic reticulum’, Research Square [Preprint]. Research Square (Research Square). Available at: https://doi.org/10.21203/rs.3.rs-4796355/v1.
Hiller, Sebastian et al. (2024) ‘A functional chaperone condensate in the endoplasmic reticulum’, Research Square [Preprint]. Research Square (Research Square). Available at: https://doi.org/10.21203/rs.3.rs-4796355/v1.
Chen, Dongping et al. (2024) ‘An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway’, Nature Chemistry, 16(10), pp. 1656–1664. Available at: https://doi.org/10.1038/s41557-024-01562-5.
Chen, Dongping et al. (2024) ‘An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway’, Nature Chemistry, 16(10), pp. 1656–1664. Available at: https://doi.org/10.1038/s41557-024-01562-5.
Wagner, Beatrice et al. (2024) ‘Analogues of the pan-selectin antagonist rivipansel (GMI-1070)’, European Journal of Medicinal Chemistry, 272. Available at: https://doi.org/10.1016/j.ejmech.2024.116455.
Wagner, Beatrice et al. (2024) ‘Analogues of the pan-selectin antagonist rivipansel (GMI-1070)’, European Journal of Medicinal Chemistry, 272. Available at: https://doi.org/10.1016/j.ejmech.2024.116455.
Wagner, Beatrice et al. (2024) ‘Analogues of the pan-selectin antagonist rivipansel (GMI-1070)’, European Journal of Medicinal Chemistry, 272, p. 116455. Available at: https://doi.org/10.1016/j.ejmech.2024.116455.
Wagner, Beatrice et al. (2024) ‘Analogues of the pan-selectin antagonist rivipansel (GMI-1070)’, European Journal of Medicinal Chemistry, 272, p. 116455. Available at: https://doi.org/10.1016/j.ejmech.2024.116455.
Žoldák, Gabriel et al. (2024) ‘Bacterial Chaperone Domain Insertions Convert Human FKBP12 into an Excellent Protein-Folding Catalyst—A Structural and Functional Analysis’, Molecules, 29(7). Available at: https://doi.org/10.3390/molecules29071440.
Žoldák, Gabriel et al. (2024) ‘Bacterial Chaperone Domain Insertions Convert Human FKBP12 into an Excellent Protein-Folding Catalyst—A Structural and Functional Analysis’, Molecules, 29(7). Available at: https://doi.org/10.3390/molecules29071440.
Höing, Lars et al. (2024) ‘Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products’, Chemical Science, 15(20), pp. 7749–7756. Available at: https://doi.org/10.1039/d4sc01715c.
Höing, Lars et al. (2024) ‘Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products’, Chemical Science, 15(20), pp. 7749–7756. Available at: https://doi.org/10.1039/d4sc01715c.
Yu, K. et al. (2024) ‘An artificial nickel chlorinase based on the biotin–streptavidin technology’, Chemical Communications, 60, pp. 1944–1947. Available at: https://doi.org/10.1039/d3cc05847f.
Yu, K. et al. (2024) ‘An artificial nickel chlorinase based on the biotin–streptavidin technology’, Chemical Communications, 60, pp. 1944–1947. Available at: https://doi.org/10.1039/d3cc05847f.
Mukherjee, Manjistha et al. (2023) ‘An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ChemRxiv [Preprint]. Cambridge University Press (ChemRxiv). Available at: https://doi.org/10.26434/chemrxiv-2023-s830k.
Mukherjee, Manjistha et al. (2023) ‘An Artificial Peroxidase based on the Biotin-Streptavidin Technology that Rivals the Efficiency of Natural Peroxidases’, ChemRxiv [Preprint]. Cambridge University Press (ChemRxiv). Available at: https://doi.org/10.26434/chemrxiv-2023-s830k.
Degen, Morris et al. (2023) ‘Structural basis of NINJ1-mediated plasma membrane rupture in cell death’, Nature, 618(7967), pp. 1065–1071. Available at: https://doi.org/10.1038/s41586-023-05991-z.
Degen, Morris et al. (2023) ‘Structural basis of NINJ1-mediated plasma membrane rupture in cell death’, Nature, 618(7967), pp. 1065–1071. Available at: https://doi.org/10.1038/s41586-023-05991-z.
Isaikina, Polina et al. (2023) ‘A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes’, Molecular cell, 83(12), pp. 2108–2121.e7. Available at: https://doi.org/10.1016/j.molcel.2023.05.002.
Isaikina, Polina et al. (2023) ‘A key GPCR phosphorylation motif discovered in arrestin2⋅CCR5 phosphopeptide complexes’, Molecular cell, 83(12), pp. 2108–2121.e7. Available at: https://doi.org/10.1016/j.molcel.2023.05.002.
Shimobayashi, Mitsugu et al. (2023) ‘Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia’, eLife, 12, p. e85103. Available at: https://doi.org/10.7554/elife.85103.
Shimobayashi, Mitsugu et al. (2023) ‘Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia’, eLife, 12, p. e85103. Available at: https://doi.org/10.7554/elife.85103.
Isaikina, Polina et al. (2022) ‘A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2022.10.10.511578.
Isaikina, Polina et al. (2022) ‘A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes’. Cold Spring Harbor Laboratory: bioRxiv. Available at: https://doi.org/10.1101/2022.10.10.511578.
Kaczmarczyk, Andreas et al. (2022) ‘A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution’. bioRxiv. Available at: https://doi.org/10.1101/2022.10.18.512705.
Kaczmarczyk, Andreas et al. (2022) ‘A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution’. bioRxiv. Available at: https://doi.org/10.1101/2022.10.18.512705.
Battaglioni, Stefania et al. (2022) ‘mTOR substrate phosphorylation in growth control’, Cell, 185(11), pp. 1814–1836. Available at: https://doi.org/10.1016/j.cell.2022.04.013.
Battaglioni, Stefania et al. (2022) ‘mTOR substrate phosphorylation in growth control’, Cell, 185(11), pp. 1814–1836. Available at: https://doi.org/10.1016/j.cell.2022.04.013.
Chaker-Margot, Malik et al. (2022) ‘Structural basis of activation of the tumor suppressor protein neurofibromin’, Molecular Cell, 82(7), pp. 1288–1296.e5. Available at: https://doi.org/10.1016/j.molcel.2022.03.011.
Chaker-Margot, Malik et al. (2022) ‘Structural basis of activation of the tumor suppressor protein neurofibromin’, Molecular Cell, 82(7), pp. 1288–1296.e5. Available at: https://doi.org/10.1016/j.molcel.2022.03.011.
Miller, Ryan D. et al. (2022) ‘Computational identification of a systemic antibiotic for gram-negative bacteria’, Nature Microbiology, 7(10), pp. 1661–1672. Available at: https://doi.org/10.1038/s41564-022-01227-4.
Miller, Ryan D. et al. (2022) ‘Computational identification of a systemic antibiotic for gram-negative bacteria’, Nature Microbiology, 7(10), pp. 1661–1672. Available at: https://doi.org/10.1038/s41564-022-01227-4.
Mohammed, Inayathulla et al. (2022) ‘Catalytic cycling of human mitochondrial Lon protease’, Structure, 30(9), pp. 1254–1268.e7. Available at: https://doi.org/10.1016/j.str.2022.06.006.
Mohammed, Inayathulla et al. (2022) ‘Catalytic cycling of human mitochondrial Lon protease’, Structure, 30(9), pp. 1254–1268.e7. Available at: https://doi.org/10.1016/j.str.2022.06.006.
Tittes, Yves U. et al. (2022) ‘The structure of a polyketide synthase bimodule core’, Science Advances, 8(38), p. eabo6918. Available at: https://doi.org/10.1126/sciadv.abo6918.
Tittes, Yves U. et al. (2022) ‘The structure of a polyketide synthase bimodule core’, Science Advances, 8(38), p. eabo6918. Available at: https://doi.org/10.1126/sciadv.abo6918.
Zhang, Lei et al. (2022) ‘Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol’, ChemBioChem, 24(2), p. e202200632. Available at: https://doi.org/10.1002/cbic.202200632.
Zhang, Lei et al. (2022) ‘Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol’, ChemBioChem, 24(2), p. e202200632. Available at: https://doi.org/10.1002/cbic.202200632.
Böhringer Nils et al. (2021) ‘Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs’, Microbiology Spectrum, (3), pp. e01535–21. Available at: https://doi.org/10.1128/spectrum.01535-21.
Böhringer Nils et al. (2021) ‘Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs’, Microbiology Spectrum, (3), pp. e01535–21. Available at: https://doi.org/10.1128/spectrum.01535-21.
Mohammed, Inayathulla et al. (2021) ‘Catalytic cycling of human mitochondrial Lon protease’. bioRxiv. Available at: https://doi.org/10.1101/2021.07.28.454137.
Mohammed, Inayathulla et al. (2021) ‘Catalytic cycling of human mitochondrial Lon protease’. bioRxiv. Available at: https://doi.org/10.1101/2021.07.28.454137.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Böhringer, Nils et al. (2021) ‘Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs’, Microbiology spectrum, 9(3), p. e0153521. Available at: https://doi.org/10.1128/spectrum.01535-21.
Böhringer, Nils et al. (2021) ‘Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs’, Microbiology spectrum, 9(3), p. e0153521. Available at: https://doi.org/10.1128/spectrum.01535-21.
Cramer, Jonathan et al. (2021) ‘Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2’, Journal of the American Chemical Society, 143(42), pp. 17465–17478. Available at: https://doi.org/10.1021/jacs.1c06778.
Cramer, Jonathan et al. (2021) ‘Sweet Drugs for Bad Bugs: A Glycomimetic Strategy against the DC-SIGN-Mediated Dissemination of SARS-CoV-2’, Journal of the American Chemical Society, 143(42), pp. 17465–17478. Available at: https://doi.org/10.1021/jacs.1c06778.
Isaikina, Polina et al. (2021) ‘Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist’, Science Advances, 7(25), p. eabg8685. Available at: https://doi.org/10.1126/sciadv.abg8685.
Isaikina, Polina et al. (2021) ‘Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist’, Science Advances, 7(25), p. eabg8685. Available at: https://doi.org/10.1126/sciadv.abg8685.
Jia, Jian-Jun et al. (2021) ‘mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1’, Nucleic Acids Research, 49(6), pp. 3461–3489. Available at: https://doi.org/10.1093/nar/gkaa1239.
Jia, Jian-Jun et al. (2021) ‘mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1’, Nucleic Acids Research, 49(6), pp. 3461–3489. Available at: https://doi.org/10.1093/nar/gkaa1239.
Kaur, Hundeep et al. (2021) ‘The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase’, Nature, 593(7857), pp. 125–129. Available at: https://doi.org/10.1038/s41586-021-03455-w.
Kaur, Hundeep et al. (2021) ‘The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase’, Nature, 593(7857), pp. 125–129. Available at: https://doi.org/10.1038/s41586-021-03455-w.
Pipercevic, Joka et al. (2021) ‘Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), p. 183607. Available at: https://doi.org/10.1016/j.bbamem.2021.183607.
Pipercevic, Joka et al. (2021) ‘Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia’, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(7), p. 183607. Available at: https://doi.org/10.1016/j.bbamem.2021.183607.
Tomašič, Tihomir et al. (2021) ‘Does targeting Arg98 of FimH lead to high affinity antagonists?’, European Journal of Medicinal Chemistry, 211, p. 113093. Available at: https://doi.org/10.1016/j.ejmech.2020.113093.
Tomašič, Tihomir et al. (2021) ‘Does targeting Arg98 of FimH lead to high affinity antagonists?’, European Journal of Medicinal Chemistry, 211, p. 113093. Available at: https://doi.org/10.1016/j.ejmech.2020.113093.
Wälchli, Matthias et al. (2021) ‘Regulation of human mTOR complexes by DEPTOR’, eLife, 10, p. e70871. Available at: https://doi.org/10.7554/elife.70871.
Wälchli, Matthias et al. (2021) ‘Regulation of human mTOR complexes by DEPTOR’, eLife, 10, p. e70871. Available at: https://doi.org/10.7554/elife.70871.
Isaikina, Polina et al. (2020) ‘Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist’. bioRxiv. Available at: https://doi.org/10.1101/2020.11.27.401117.
Isaikina, Polina et al. (2020) ‘Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist’. bioRxiv. Available at: https://doi.org/10.1101/2020.11.27.401117.
Brunner, Janine D et al. (2020) ‘Structural basis for ion selectivity in TMEM175 K+ channels’, eLife, 9. Available at: https://doi.org/10.7554/elife.53683.
Brunner, Janine D et al. (2020) ‘Structural basis for ion selectivity in TMEM175 K+ channels’, eLife, 9. Available at: https://doi.org/10.7554/elife.53683.
Künzli, Marco et al. (2020) ‘Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity’, Science Immunology, 5(45). Available at: https://doi.org/10.1126/sciimmunol.aay5552.
Künzli, Marco et al. (2020) ‘Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity’, Science Immunology, 5(45). Available at: https://doi.org/10.1126/sciimmunol.aay5552.
Brunner, Janine D. et al. (2020) ‘Structural basis for ion selectivity in TMEM175 K+ channels’, eLife, 9, p. 53683. Available at: https://doi.org/10.7554/elife.53683.
Brunner, Janine D. et al. (2020) ‘Structural basis for ion selectivity in TMEM175 K+ channels’, eLife, 9, p. 53683. Available at: https://doi.org/10.7554/elife.53683.
Cramer, Jonathan et al. (2020) ‘Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding’, RSC Chemical Biology, 1(4), pp. 281–287. Available at: https://doi.org/10.1039/d0cb00108b.
Cramer, Jonathan et al. (2020) ‘Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding’, RSC Chemical Biology, 1(4), pp. 281–287. Available at: https://doi.org/10.1039/d0cb00108b.
Künzli, Marco et al. (2020) ‘Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity’, Science Immunology, 5(45), p. eaay5552. Available at: https://doi.org/10.1126/sciimmunol.aay5552.
Künzli, Marco et al. (2020) ‘Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity’, Science Immunology, 5(45), p. eaay5552. Available at: https://doi.org/10.1126/sciimmunol.aay5552.
Perez, Camilo and Maier, Timm (2020) Expression, Purification, and Structural Biology of Membrane Proteins. 1 edn., Methods in Molecular Biology. 1 edn. New York: Humana Press (Methods in Molecular Biology). Available at: https://doi.org/10.1007/978-1-0716-0373-4.
Perez, Camilo and Maier, Timm (2020) Expression, Purification, and Structural Biology of Membrane Proteins. 1 edn., Methods in Molecular Biology. 1 edn. New York: Humana Press (Methods in Molecular Biology). Available at: https://doi.org/10.1007/978-1-0716-0373-4.
Righetto, Ricardo D. et al. (2020) ‘High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5101. Available at: https://doi.org/10.1038/s41467-020-18870-2.
Righetto, Ricardo D. et al. (2020) ‘High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5101. Available at: https://doi.org/10.1038/s41467-020-18870-2.
Righetto, Ricardo D. et al. (2020) ‘Author Correction: High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5873. Available at: https://doi.org/10.1038/s41467-020-19845-z.
Righetto, Ricardo D. et al. (2020) ‘Author Correction: High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica’, Nature Communications, 11(1), p. 5873. Available at: https://doi.org/10.1038/s41467-020-19845-z.
Scaiola, Alain et al. (2020) ‘The 3.2-Å resolution structure of human mTORC2’, Science advances, 6(45), p. eabc1251. Available at: https://doi.org/10.1126/sciadv.abc1251.
Scaiola, Alain et al. (2020) ‘The 3.2-Å resolution structure of human mTORC2’, Science advances, 6(45), p. eabc1251. Available at: https://doi.org/10.1126/sciadv.abc1251.
Shimobayashi, Mitsugu et al. (2020) ‘Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia’. bioRxiv. Available at: https://doi.org/10.1101/2019.12.28.887794.
Shimobayashi, Mitsugu et al. (2020) ‘Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia’. bioRxiv. Available at: https://doi.org/10.1101/2019.12.28.887794.
Kaur, Hundeep et al. (2019) ‘Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach’, Journal of Biomolecular NMR, 73(6-7), pp. 375–384. Available at: https://doi.org/10.1007/s10858-019-00250-8.
Kaur, Hundeep et al. (2019) ‘Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach’, Journal of Biomolecular NMR, 73(6-7), pp. 375–384. Available at: https://doi.org/10.1007/s10858-019-00250-8.
Sauer, Maximilian M. et al. (2019) ‘Binding of the Bacterial Adhesin FimH to Its Natural, Multivalent High-Mannose Type Glycan Targets’, Journal of the American Chemical Society, 141(2), pp. 936–944. Available at: https://doi.org/10.1021/jacs.8b10736.
Sauer, Maximilian M. et al. (2019) ‘Binding of the Bacterial Adhesin FimH to Its Natural, Multivalent High-Mannose Type Glycan Targets’, Journal of the American Chemical Society, 141(2), pp. 936–944. Available at: https://doi.org/10.1021/jacs.8b10736.
Kaur, Hundeep et al. (2019) ‘Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach’, Journal of Biomolecular NMR, 73(6-7), pp. 375–384. Available at: https://doi.org/10.1007/s10858-019-00250-8.
Kaur, Hundeep et al. (2019) ‘Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach’, Journal of Biomolecular NMR, 73(6-7), pp. 375–384. Available at: https://doi.org/10.1007/s10858-019-00250-8.
Sauer, Maximilian M. et al. (2019) ‘Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets’, Journal of the American Chemical Society, 141(2), pp. 936–944. Available at: https://doi.org/10.1021/jacs.8b10736.
Sauer, Maximilian M. et al. (2019) ‘Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets’, Journal of the American Chemical Society, 141(2), pp. 936–944. Available at: https://doi.org/10.1021/jacs.8b10736.
Schönemann, Wojciech et al. (2019) ‘Improvement of Aglycone π-Stacking Yields Nano- to Subnanomolar FimH Antagonists’, ChemMedChem, 14(7), pp. 749–757. Available at: https://doi.org/10.1002/cmdc.201900051.
Schönemann, Wojciech et al. (2019) ‘Improvement of Aglycone π-Stacking Yields Nano- to Subnanomolar FimH Antagonists’, ChemMedChem, 14(7), pp. 749–757. Available at: https://doi.org/10.1002/cmdc.201900051.
Brunner, Janine D. et al. (2018) ‘Structural basis for ion selectivity in TMEM175 K+ channels’. bioRxiv. Available at: https://doi.org/10.1101/480863.
Brunner, Janine D. et al. (2018) ‘Structural basis for ion selectivity in TMEM175 K+ channels’. bioRxiv. Available at: https://doi.org/10.1101/480863.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’. bioRxiv. Available at: https://doi.org/10.1101/354134.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’. bioRxiv. Available at: https://doi.org/10.1101/354134.
Bauer, Daniela et al. (2018) ‘A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy’, Proceedings of the National Academy of Sciences, 115(18), pp. 4666–4671. Available at: https://doi.org/10.1073/pnas.1716899115.
Bauer, Daniela et al. (2018) ‘A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy’, Proceedings of the National Academy of Sciences, 115(18), pp. 4666–4671. Available at: https://doi.org/10.1073/pnas.1716899115.
Herbst, Dominik A. et al. (2018) ‘The structural organization of substrate loading in iterative polyketide synthases’, Nature Chemical Biology, 14(5), pp. 474–479. Available at: https://doi.org/10.1038/s41589-018-0026-3.
Herbst, Dominik A. et al. (2018) ‘The structural organization of substrate loading in iterative polyketide synthases’, Nature Chemical Biology, 14(5), pp. 474–479. Available at: https://doi.org/10.1038/s41589-018-0026-3.
Bauer, Daniela et al. (2018) ‘A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy’, Proceedings of the National Academy of Sciences of the United States of America, 115(18), pp. 4666–4671. Available at: https://doi.org/10.1073/pnas.1716899115.
Bauer, Daniela et al. (2018) ‘A folding nucleus and minimal ATP binding domain of Hsp70 identified by single-molecule force spectroscopy’, Proceedings of the National Academy of Sciences of the United States of America, 115(18), pp. 4666–4671. Available at: https://doi.org/10.1073/pnas.1716899115.
Herbst, Dominik A. et al. (2018) ‘The structural organization of substrate loading in iterative polyketide synthases’, Nature Chemical Biology, 14(5), pp. 474–479. Available at: https://doi.org/10.1038/s41589-018-0026-3.
Herbst, Dominik A. et al. (2018) ‘The structural organization of substrate loading in iterative polyketide synthases’, Nature Chemical Biology, 14(5), pp. 474–479. Available at: https://doi.org/10.1038/s41589-018-0026-3.
Herbst, Dominik A., Townsend, Craig A. and Maier, Timm (2018) ‘The architectures of iterative type I PKS and FAS’, Natural Product Reports, 35(10), pp. 1046–1069. Available at: https://doi.org/10.1039/c8np00039e.
Herbst, Dominik A., Townsend, Craig A. and Maier, Timm (2018) ‘The architectures of iterative type I PKS and FAS’, Natural Product Reports, 35(10), pp. 1046–1069. Available at: https://doi.org/10.1039/c8np00039e.
Hunkeler, Moritz et al. (2018) ‘Structural basis for regulation of human acetyl-CoA carboxylase’, Nature, 558(7710), pp. 470–474. Available at: https://doi.org/10.1038/s41586-018-0201-4.
Hunkeler, Moritz et al. (2018) ‘Structural basis for regulation of human acetyl-CoA carboxylase’, Nature, 558(7710), pp. 470–474. Available at: https://doi.org/10.1038/s41586-018-0201-4.
Imseng, Stefan, Aylett, Christopher Hs and Maier, Timm (2018) ‘Architecture and activation of phosphatidylinositol 3-kinase related kinases’, Current opinion in structural biology, 49, pp. 177–189. Available at: https://doi.org/10.1016/j.sbi.2018.03.010.
Imseng, Stefan, Aylett, Christopher Hs and Maier, Timm (2018) ‘Architecture and activation of phosphatidylinositol 3-kinase related kinases’, Current opinion in structural biology, 49, pp. 177–189. Available at: https://doi.org/10.1016/j.sbi.2018.03.010.
Maier, Timm and Weissman, Kira J. (2018) ‘Macromolecular assemblies: Assembly, dynamics and control of activity’, Current Opinion in Structural Biology, 49, pp. vi–vii. Available at: https://doi.org/10.1016/j.sbi.2018.04.001.
Maier, Timm and Weissman, Kira J. (2018) ‘Macromolecular assemblies: Assembly, dynamics and control of activity’, Current Opinion in Structural Biology, 49, pp. vi–vii. Available at: https://doi.org/10.1016/j.sbi.2018.04.001.
Rabbani, Said et al. (2018) ‘Conformational Switch of the Bacterial Adhesin FimH in the Absence of the Regulatory Domain: Engineering a Minimalistic Allosteric System’, Journal of Biological Chemistry, 293(5), pp. 1835–1849. Available at: https://doi.org/10.1074/jbc.m117.802942.
Rabbani, Said et al. (2018) ‘Conformational Switch of the Bacterial Adhesin FimH in the Absence of the Regulatory Domain: Engineering a Minimalistic Allosteric System’, Journal of Biological Chemistry, 293(5), pp. 1835–1849. Available at: https://doi.org/10.1074/jbc.m117.802942.
Sager, Christoph P. et al. (2018) ‘The price of flexibility - a case study on septanoses as pyranose mimetics’, Chemical Science, 9(3), pp. 646–654. Available at: https://doi.org/10.1039/c7sc04289b.
Sager, Christoph P. et al. (2018) ‘The price of flexibility - a case study on septanoses as pyranose mimetics’, Chemical Science, 9(3), pp. 646–654. Available at: https://doi.org/10.1039/c7sc04289b.
Stuttfeld, E. et al. (2018) ‘Architecture of the human mTORC2 core complex’, eLife, 7, p. e33101. Available at: https://doi.org/10.7554/elife.33101.
Stuttfeld, E. et al. (2018) ‘Architecture of the human mTORC2 core complex’, eLife, 7, p. e33101. Available at: https://doi.org/10.7554/elife.33101.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’, Biology open, 7(11), p. bio036749. Available at: https://doi.org/10.1242/bio.036749.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’, Biology open, 7(11), p. bio036749. Available at: https://doi.org/10.1242/bio.036749.
Zihlmann, Pascal et al. (2018) ‘KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists’, Chemistry (Weinheim an der Bergstrasse, Germany), 24(49), pp. 13049–13057. Available at: https://doi.org/10.1002/chem.201802599.
Zihlmann, Pascal et al. (2018) ‘KinITC-One Method Supports both Thermodynamic and Kinetic SARs as Exemplified on FimH Antagonists’, Chemistry (Weinheim an der Bergstrasse, Germany), 24(49), pp. 13049–13057. Available at: https://doi.org/10.1002/chem.201802599.
Anton, Leonie et al. (2017) ‘Insights into Gasdermin D activation from the crystal structure of its C-terminal domain’. bioRxiv. Available at: https://doi.org/10.1101/187211.
Anton, Leonie et al. (2017) ‘Insights into Gasdermin D activation from the crystal structure of its C-terminal domain’. bioRxiv. Available at: https://doi.org/10.1101/187211.
Benning, Friederike M. C. et al. (2017) ‘High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase’, ACS Nano, 11(11), pp. 10852–10859. Available at: https://doi.org/10.1021/acsnano.7b04216.
Benning, Friederike M. C. et al. (2017) ‘High-Speed Atomic Force Microscopy Visualization of the Dynamics of the Multienzyme Fatty Acid Synthase’, ACS Nano, 11(11), pp. 10852–10859. Available at: https://doi.org/10.1021/acsnano.7b04216.
Maier, Timm (2017) ‘Fatty acid synthases: Re-engineering biofactories’, Nature Chemical Biology, 13(4), pp. 344–345. Available at: https://doi.org/10.1038/nchembio.2338.
Maier, Timm (2017) ‘Fatty acid synthases: Re-engineering biofactories’, Nature Chemical Biology, 13(4), pp. 344–345. Available at: https://doi.org/10.1038/nchembio.2338.
Navarra, Giulio et al. (2017) ‘Carbohydrate-Lectin Interactions - An Unexpected Contribution to Affinity’, ChemBioChem, 18(6), pp. 539–544. Available at: https://doi.org/10.1002/cbic.201600615.
Navarra, Giulio et al. (2017) ‘Carbohydrate-Lectin Interactions - An Unexpected Contribution to Affinity’, ChemBioChem, 18(6), pp. 539–544. Available at: https://doi.org/10.1002/cbic.201600615.
Roth, Christian et al. (2017) ‘Amylose recognition and ring-size determination of amylomaltase’, Science Advances, 3(1), p. e1601386. Available at: https://doi.org/10.1126/sciadv.1601386.
Roth, Christian et al. (2017) ‘Amylose recognition and ring-size determination of amylomaltase’, Science Advances, 3(1), p. e1601386. Available at: https://doi.org/10.1126/sciadv.1601386.
Storm, Philip A. et al. (2017) ‘Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin’, Cell Chemical Biology, 24(3), pp. 316–325. Available at: https://doi.org/10.1016/j.chembiol.2017.01.008.
Storm, Philip A. et al. (2017) ‘Functional and Structural Analysis of Programmed C-Methylation in the Biosynthesis of the Fungal Polyketide Citrinin’, Cell Chemical Biology, 24(3), pp. 316–325. Available at: https://doi.org/10.1016/j.chembiol.2017.01.008.
Stuttfeld, Edward, Imseng, Stefan and Maier, Timm (2017) ‘A central role for a region in the middle’, eLife, 6, p. e25700. Available at: https://doi.org/10.7554/elife.25700.
Stuttfeld, Edward, Imseng, Stefan and Maier, Timm (2017) ‘A central role for a region in the middle’, eLife, 6, p. e25700. Available at: https://doi.org/10.7554/elife.25700.
Wang, Jing et al. (2017) ‘Cryo-EM structure of the extended type VI secretion system sheath-tube complex’, Nature Microbiology, 2(11), pp. 1507–1512. Available at: https://doi.org/10.1038/s41564-017-0020-7.
Wang, Jing et al. (2017) ‘Cryo-EM structure of the extended type VI secretion system sheath-tube complex’, Nature Microbiology, 2(11), pp. 1507–1512. Available at: https://doi.org/10.1038/s41564-017-0020-7.
Herbst, Dominik A. et al. (2016) ‘Erratum: Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases (Nature (2016) 531 (533-537) DOI:10.1038/nature16993)’, Nature, 536(7616), pp. 360–360. Available at: https://doi.org/10.1038/nature18281.
Herbst, Dominik A. et al. (2016) ‘Erratum: Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases (Nature (2016) 531 (533-537) DOI:10.1038/nature16993)’, Nature, 536(7616), pp. 360–360. Available at: https://doi.org/10.1038/nature18281.
Aylett, Christopher H. S. et al. (2016) ‘Architecture of human mTOR complex 1’, Science, 351(6268), pp. 48–52. Available at: https://doi.org/10.1126/science.aaa3870.
Aylett, Christopher H. S. et al. (2016) ‘Architecture of human mTOR complex 1’, Science, 351(6268), pp. 48–52. Available at: https://doi.org/10.1126/science.aaa3870.
Hagmann, Anna et al. (2016) ‘Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans’, Structure, 24(8), pp. 1227–1236. Available at: https://doi.org/10.1016/j.str.2016.06.001.
Hagmann, Anna et al. (2016) ‘Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans’, Structure, 24(8), pp. 1227–1236. Available at: https://doi.org/10.1016/j.str.2016.06.001.
Herbst, Dominik A. et al. (2016) ‘Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases’, Nature, 531(7595), pp. 533–7. Available at: https://doi.org/10.1038/nature16993.
Herbst, Dominik A. et al. (2016) ‘Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases’, Nature, 531(7595), pp. 533–7. Available at: https://doi.org/10.1038/nature16993.
Hunkeler, Moritz et al. (2016) ‘The dynamic organization of fungal acetyl-CoA carboxylase’, Nature Communications, 7, p. 11196. Available at: https://doi.org/10.1038/ncomms11196.
Hunkeler, Moritz et al. (2016) ‘The dynamic organization of fungal acetyl-CoA carboxylase’, Nature Communications, 7, p. 11196. Available at: https://doi.org/10.1038/ncomms11196.
Jakob, Roman P. et al. (2016) ‘Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps’, PLoS ONE, 11(6), p. e0157070. Available at: https://doi.org/10.1371/journal.pone.0157070.
Jakob, Roman P. et al. (2016) ‘Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps’, PLoS ONE, 11(6), p. e0157070. Available at: https://doi.org/10.1371/journal.pone.0157070.
Preston, Roland C. et al. (2016) ‘E-selectin ligand complexes adopt an extended high-affinity conformation’, Journal of Molecular Cell Biology, 8(1), pp. 62–72. Available at: https://doi.org/10.1093/jmcb/mjv046.
Preston, Roland C. et al. (2016) ‘E-selectin ligand complexes adopt an extended high-affinity conformation’, Journal of Molecular Cell Biology, 8(1), pp. 62–72. Available at: https://doi.org/10.1093/jmcb/mjv046.
Sauer, Maximilian M et al. (2016) ‘Catch-bond mechanism of the bacterial adhesin FimH’, Nature communications, 7, p. 10738. Available at: https://doi.org/10.1038/ncomms10738.
Sauer, Maximilian M et al. (2016) ‘Catch-bond mechanism of the bacterial adhesin FimH’, Nature communications, 7, p. 10738. Available at: https://doi.org/10.1038/ncomms10738.
Silván, Unai et al. (2016) ‘Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy’, Journal of structural biology, 195(2), pp. 159–166. Available at: https://doi.org/10.1016/j.jsb.2016.05.008.
Silván, Unai et al. (2016) ‘Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy’, Journal of structural biology, 195(2), pp. 159–166. Available at: https://doi.org/10.1016/j.jsb.2016.05.008.
Jakob, Roman P. et al. (2015) ‘Dimeric Structure of the Bacterial Extracellular Foldase PrsA’, Journal of Biological Chemistry, 290(6), pp. 3278–3292. Available at: https://doi.org/10.1074/jbc.m114.622910.
Jakob, Roman P. et al. (2015) ‘Dimeric Structure of the Bacterial Extracellular Foldase PrsA’, Journal of Biological Chemistry, 290(6), pp. 3278–3292. Available at: https://doi.org/10.1074/jbc.m114.622910.
Arquint, Christian et al. (2015) ‘STIL binding to Polo-box 3 of PLK4 regulates centriole duplication’, eLife, 4, p. e07888. Available at: https://doi.org/10.7554/elife.07888.
Arquint, Christian et al. (2015) ‘STIL binding to Polo-box 3 of PLK4 regulates centriole duplication’, eLife, 4, p. e07888. Available at: https://doi.org/10.7554/elife.07888.
Blatter, Markus et al. (2015) ‘The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein’, Journal of molecular biology, 427(19), pp. 3001–3022. Available at: https://doi.org/10.1016/j.jmb.2015.05.020.
Blatter, Markus et al. (2015) ‘The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein’, Journal of molecular biology, 427(19), pp. 3001–3022. Available at: https://doi.org/10.1016/j.jmb.2015.05.020.
Fiege, Brigitte et al. (2015) ‘The Tyrosine Gate of the Bacterial Lectin FimH : a Conformational Analysis by NMR Spectroscopy and X-ray Crystallography’, ChemBioChem, 16(8), pp. 1235–1246. Available at: https://doi.org/10.1002/cbic.201402714.
Fiege, Brigitte et al. (2015) ‘The Tyrosine Gate of the Bacterial Lectin FimH : a Conformational Analysis by NMR Spectroscopy and X-ray Crystallography’, ChemBioChem, 16(8), pp. 1235–1246. Available at: https://doi.org/10.1002/cbic.201402714.
Fujieda, Nobutaka et al. (2015) ‘Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding’, Chemical Science, 6(7), pp. 4060–4065. Available at: https://doi.org/10.1039/c5sc01065a.
Fujieda, Nobutaka et al. (2015) ‘Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding’, Chemical Science, 6(7), pp. 4060–4065. Available at: https://doi.org/10.1039/c5sc01065a.
Gruss, Fabian, Hiller, Sebastian and Maier, Timm (2015) ‘Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA’, Methods in Molecular Biology, 1329, pp. 259–70. Available at: https://doi.org/10.1007/978-1-4939-2871-2_20.
Gruss, Fabian, Hiller, Sebastian and Maier, Timm (2015) ‘Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA’, Methods in Molecular Biology, 1329, pp. 259–70. Available at: https://doi.org/10.1007/978-1-4939-2871-2_20.
Jakob, Roman P. et al. (2015) ‘Dimeric structure of the bacterial extracellular foldase PrsA’, Journal of Biological Chemistry, 290(6), pp. 3278–92. Available at: https://doi.org/10.1074/jbc.m114.622910.
Jakob, Roman P. et al. (2015) ‘Dimeric structure of the bacterial extracellular foldase PrsA’, Journal of Biological Chemistry, 290(6), pp. 3278–92. Available at: https://doi.org/10.1074/jbc.m114.622910.
Kleeb, Simon et al. (2015) ‘FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile’, Journal of Medicinal Chemistry, 58(5), pp. 2221–39. Available at: https://doi.org/10.1021/jm501524q.
Kleeb, Simon et al. (2015) ‘FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile’, Journal of Medicinal Chemistry, 58(5), pp. 2221–39. Available at: https://doi.org/10.1021/jm501524q.
Kudryashev, Mikhail et al. (2015) ‘Structure of the Type VI Secretion System Contractile Sheath’, Cell, 160(5), pp. 952–62. Available at: https://doi.org/10.1016/j.cell.2015.01.037.
Kudryashev, Mikhail et al. (2015) ‘Structure of the Type VI Secretion System Contractile Sheath’, Cell, 160(5), pp. 952–62. Available at: https://doi.org/10.1016/j.cell.2015.01.037.
Maier, Timm et al. (2015) ‘Conserved Omp85 lid-lock structure and substrate recognition in FhaC’, Nature Communications, 6, p. 7452. Available at: https://doi.org/10.1038/ncomms8452.
Maier, Timm et al. (2015) ‘Conserved Omp85 lid-lock structure and substrate recognition in FhaC’, Nature Communications, 6, p. 7452. Available at: https://doi.org/10.1038/ncomms8452.
Morgado, Leonor (2015) ‘NMR studies of the insertase BamA in three different membrane mimetics’, in Meeting 29th Annual Symposium of the Protein-Society . Barcelona, SPAIN (Meeting 29th Annual Symposium of the Protein-Society ), pp. 298–299.
Morgado, Leonor (2015) ‘NMR studies of the insertase BamA in three different membrane mimetics’, in Meeting 29th Annual Symposium of the Protein-Society . Barcelona, SPAIN (Meeting 29th Annual Symposium of the Protein-Society ), pp. 298–299.
Morgado, Leonor et al. (2015) ‘Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy’, Journal of biomolecular NMR, 61(3-4), pp. 333–45. Available at: https://doi.org/10.1007/s10858-015-9906-y.
Morgado, Leonor et al. (2015) ‘Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy’, Journal of biomolecular NMR, 61(3-4), pp. 333–45. Available at: https://doi.org/10.1007/s10858-015-9906-y.
Bukhari, Habib S.T., Jakob, Roman P. and Maier, Timm (2014) ‘Evolutionary Origins of the Multienzyme Architecture of Giant Fungal Fatty Acid Synthase’, Structure, 22(12), pp. 1775–1785. Available at: https://doi.org/10.1016/j.str.2014.09.016.
Bukhari, Habib S.T., Jakob, Roman P. and Maier, Timm (2014) ‘Evolutionary Origins of the Multienzyme Architecture of Giant Fungal Fatty Acid Synthase’, Structure, 22(12), pp. 1775–1785. Available at: https://doi.org/10.1016/j.str.2014.09.016.