Cell and Developmental Biology (Mango)
Publications
65 found
Show per page
Bayer, Emily A et al. (2025) ‘The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.01.01.631014.
Bayer, Emily A et al. (2025) ‘The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.01.01.631014.
Delaney, Colin E. et al. (2024) ‘H3K9 methylation-independent activity for HPL-2/HP1 in heterochromatin foci, gene repression, and organogenesis’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.09.29.615660.
Delaney, Colin E. et al. (2024) ‘H3K9 methylation-independent activity for HPL-2/HP1 in heterochromatin foci, gene repression, and organogenesis’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.09.29.615660.
Wan, Yinan et al. (2024) ‘Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.08.27.609868.
Wan, Yinan et al. (2024) ‘Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.08.27.609868.
Tocchini, C. and Mango, S.E. (2024) ‘An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in Caenorhabditis elegans’, PLOS Biology, 22(3), p. e3002526. Available at: https://doi.org/10.1371/journal.pbio.3002526.
Tocchini, C. and Mango, S.E. (2024) ‘An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in Caenorhabditis elegans’, PLOS Biology, 22(3), p. e3002526. Available at: https://doi.org/10.1371/journal.pbio.3002526.
Gutnik, Silvia et al. (2024) ‘Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes’, Genome Biology, 25. Available at: https://doi.org/10.1186/s13059-024-03199-6.
Gutnik, Silvia et al. (2024) ‘Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes’, Genome Biology, 25. Available at: https://doi.org/10.1186/s13059-024-03199-6.
Tocchini, C. and Mango, S.E. (2023) ‘An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in<i>Caenorhabditis elegans</i>’. bioRxiv. Available at: https://doi.org/10.1101/2023.06.13.544769.
Tocchini, C. and Mango, S.E. (2023) ‘An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in<i>Caenorhabditis elegans</i>’. bioRxiv. Available at: https://doi.org/10.1101/2023.06.13.544769.
Gutnik, Silvia, Sawh, Ahilya and Mango, Susan E. (2022) ‘Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes’. bioRxiv. Available at: https://doi.org/10.1101/2022.11.01.514763.
Gutnik, Silvia, Sawh, Ahilya and Mango, Susan E. (2022) ‘Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes’. bioRxiv. Available at: https://doi.org/10.1101/2022.11.01.514763.
Sawh, Ahilya N. and Mango, Susan E. (2022) ‘Chromosome organization in 4D: insights from C. elegans development’, Current Opinion in Genetics & Development, 75, p. 101939. Available at: https://doi.org/10.1016/j.gde.2022.101939.
Sawh, Ahilya N. and Mango, Susan E. (2022) ‘Chromosome organization in 4D: insights from C. elegans development’, Current Opinion in Genetics & Development, 75, p. 101939. Available at: https://doi.org/10.1016/j.gde.2022.101939.
Tocchini, Cristina et al. (2021) ‘Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions’, Development, 148(24), p. 200027. Available at: https://doi.org/10.1242/dev.200027.
Tocchini, Cristina et al. (2021) ‘Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions’, Development, 148(24), p. 200027. Available at: https://doi.org/10.1242/dev.200027.
Tocchini, Cristina et al. (2021) ‘Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions’. bioRxiv. Available at: https://doi.org/10.1101/2021.05.20.444977.
Tocchini, Cristina et al. (2021) ‘Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions’. bioRxiv. Available at: https://doi.org/10.1101/2021.05.20.444977.
Wasson, Jadiel A. et al. (2021) ‘Neuronal control of maternal provisioning in response to social cues’, Science Advances, 7(34), p. eabf8782. Available at: https://doi.org/10.1126/sciadv.abf8782.
Wasson, Jadiel A. et al. (2021) ‘Neuronal control of maternal provisioning in response to social cues’, Science Advances, 7(34), p. eabf8782. Available at: https://doi.org/10.1126/sciadv.abf8782.
Choi, Joonhee et al. (2020) ‘Probing and manipulating embryogenesis via nanoscale thermometry and temperature control’, Proceedings of the National Academy of Sciences of the United States of America, 117(26), pp. 14636–14641. Available at: https://doi.org/10.1073/pnas.1922730117.
Choi, Joonhee et al. (2020) ‘Probing and manipulating embryogenesis via nanoscale thermometry and temperature control’, Proceedings of the National Academy of Sciences of the United States of America, 117(26), pp. 14636–14641. Available at: https://doi.org/10.1073/pnas.1922730117.
Sawh, Ahilya N. and Mango, Susan E. (2020) ‘Multiplexed Sequential DNA FISH in Caenorhabditis elegans Embryos’, STAR Protocols, 1(3), p. 100107. Available at: https://doi.org/10.1016/j.xpro.2020.100107.
Sawh, Ahilya N. and Mango, Susan E. (2020) ‘Multiplexed Sequential DNA FISH in Caenorhabditis elegans Embryos’, STAR Protocols, 1(3), p. 100107. Available at: https://doi.org/10.1016/j.xpro.2020.100107.
Sawh, Ahilya N. et al. (2020) ‘Lamina-Dependent Stretching and Unconventional Chromosome Compartments in Early C. elegans Embryos’, Molecular Cell, 78(1), pp. 96–111.e6. Available at: https://doi.org/10.1016/j.molcel.2020.02.006.
Sawh, Ahilya N. et al. (2020) ‘Lamina-Dependent Stretching and Unconventional Chromosome Compartments in Early C. elegans Embryos’, Molecular Cell, 78(1), pp. 96–111.e6. Available at: https://doi.org/10.1016/j.molcel.2020.02.006.
Mutlu, Beste et al. (2019) ‘Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis’, Development (Cambridge, England), 146(19), p. dev174516. Available at: https://doi.org/10.1242/dev.174516.
Mutlu, Beste et al. (2019) ‘Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis’, Development (Cambridge, England), 146(19), p. dev174516. Available at: https://doi.org/10.1242/dev.174516.
Chen, H. M. et al. (2018) ‘A heterochromatic histone methyltransferase lowers nucleosome occupancy at euchromatic promoters’. bioRxiv. Available at: https://doi.org/10.1101/429191.
Chen, H. M. et al. (2018) ‘A heterochromatic histone methyltransferase lowers nucleosome occupancy at euchromatic promoters’. bioRxiv. Available at: https://doi.org/10.1101/429191.
Mutlu, Beste et al. (2018) ‘Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in; C. elegans; embryos’, Science advances, 4(8), p. eaat6224. Available at: https://doi.org/10.1126/sciadv.aat6224.
Mutlu, Beste et al. (2018) ‘Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in; C. elegans; embryos’, Science advances, 4(8), p. eaat6224. Available at: https://doi.org/10.1126/sciadv.aat6224.
Von Stetina, Stephen E. et al. (2017) ‘Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6’, Molecular Biology of the Cell, 28(15), pp. 2042–2065. Available at: https://doi.org/10.1091/mbc.e16-09-0644.
Von Stetina, Stephen E. et al. (2017) ‘Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6’, Molecular Biology of the Cell, 28(15), pp. 2042–2065. Available at: https://doi.org/10.1091/mbc.e16-09-0644.
Zaret, Kenneth S. and Mango, Susan E. (2016) ‘Pioneer transcription factors, chromatin dynamics, and cell fate control’, Current opinion in genetics & development, 37, pp. 76–81. Available at: https://doi.org/10.1016/j.gde.2015.12.003.
Zaret, Kenneth S. and Mango, Susan E. (2016) ‘Pioneer transcription factors, chromatin dynamics, and cell fate control’, Current opinion in genetics & development, 37, pp. 76–81. Available at: https://doi.org/10.1016/j.gde.2015.12.003.
Hsu, H.-T. et al. (2015) ‘Recruitment of RNA polymerase II by the pioneer transcription factor PHA-4’, Science, 348(6241), pp. 1372–6. Available at: https://doi.org/10.1126/science.aab1223.
Hsu, H.-T. et al. (2015) ‘Recruitment of RNA polymerase II by the pioneer transcription factor PHA-4’, Science, 348(6241), pp. 1372–6. Available at: https://doi.org/10.1126/science.aab1223.
Von Stetina, Stephen E. and Mango, Susan E. (2015) ‘PAR-6, but not E-cadherin and β-integrin, is necessary for epithelial polarization in C. elegans’, Developmental biology, 403(1), pp. 5–14. Available at: https://doi.org/10.1016/j.ydbio.2015.03.002.
Von Stetina, Stephen E. and Mango, Susan E. (2015) ‘PAR-6, but not E-cadherin and β-integrin, is necessary for epithelial polarization in C. elegans’, Developmental biology, 403(1), pp. 5–14. Available at: https://doi.org/10.1016/j.ydbio.2015.03.002.
Choi, Youngeun and Mango, Susan E. (2014) ‘Hunting for Darwin’s gemmules and Lamarck’s fluid: transgenerational signaling and histone methylation’, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1839(12), pp. 1440–53. Available at: https://doi.org/10.1016/j.bbagrm.2014.05.011.
Choi, Youngeun and Mango, Susan E. (2014) ‘Hunting for Darwin’s gemmules and Lamarck’s fluid: transgenerational signaling and histone methylation’, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1839(12), pp. 1440–53. Available at: https://doi.org/10.1016/j.bbagrm.2014.05.011.
Rosains, Jacqueline and Mango, Susan E. (2012) ‘Genetic characterization of smg-8 mutants reveals no role in C. elegans nonsense mediated decay’, PLoS ONE, 7(11), p. e49490. Available at: https://doi.org/10.1371/journal.pone.0049490.
Rosains, Jacqueline and Mango, Susan E. (2012) ‘Genetic characterization of smg-8 mutants reveals no role in C. elegans nonsense mediated decay’, PLoS ONE, 7(11), p. e49490. Available at: https://doi.org/10.1371/journal.pone.0049490.
Mango, Susan E. (2011) ‘Ageing: generations of longevity’, Nature, 479(7373), pp. 302–303. Available at: https://doi.org/10.1038/479302a.
Mango, Susan E. (2011) ‘Ageing: generations of longevity’, Nature, 479(7373), pp. 302–303. Available at: https://doi.org/10.1038/479302a.
Meister, Peter, Mango, Susan E. and Gasser, Susan M. (2011) ‘Locking the genome: nuclear organization and cell fate’, Current Opinion in Genetics & Development, 21(2), pp. 167–74. Available at: https://doi.org/10.1016/j.gde.2011.01.023.
Meister, Peter, Mango, Susan E. and Gasser, Susan M. (2011) ‘Locking the genome: nuclear organization and cell fate’, Current Opinion in Genetics & Development, 21(2), pp. 167–74. Available at: https://doi.org/10.1016/j.gde.2011.01.023.
Fakhouri, Tala H. I. et al. (2010) ‘Dynamic chromatin organization during foregut development mediated by the organ selector gene PHA-4/FoxA’, PLoS Genetics, 6(8), p. e1001060. Available at: https://doi.org/10.1371/journal.pgen.1001060.
Fakhouri, Tala H. I. et al. (2010) ‘Dynamic chromatin organization during foregut development mediated by the organ selector gene PHA-4/FoxA’, PLoS Genetics, 6(8), p. e1001060. Available at: https://doi.org/10.1371/journal.pgen.1001060.
Zhong, Mei et al. (2010) ‘Genome-wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA-4/FOXA in development and environmental response’, PLoS Genetics, 6(2), p. e1000848. Available at: https://doi.org/10.1371/journal.pgen.1000848.
Zhong, Mei et al. (2010) ‘Genome-wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA-4/FOXA in development and environmental response’, PLoS Genetics, 6(2), p. e1000848. Available at: https://doi.org/10.1371/journal.pgen.1000848.
Mango, Susan E. (2009) ‘The molecular basis of organ formation: insights from the C. elegans foregut’, Annual Review of Cell and Developmental Biology, 25, pp. 597–628. Available at: https://doi.org/10.1146/annurev.cellbio.24.110707.175411.
Mango, Susan E. (2009) ‘The molecular basis of organ formation: insights from the C. elegans foregut’, Annual Review of Cell and Developmental Biology, 25, pp. 597–628. Available at: https://doi.org/10.1146/annurev.cellbio.24.110707.175411.
Yuzyuk, T. et al. (2009) ‘The polycomb complex protein mes-2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos’, Developmental Cell, 16(5), pp. 699–710. Available at: https://doi.org/10.1016/j.devcel.2009.03.008.
Yuzyuk, T. et al. (2009) ‘The polycomb complex protein mes-2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos’, Developmental Cell, 16(5), pp. 699–710. Available at: https://doi.org/10.1016/j.devcel.2009.03.008.
Sheaffer, Karyn L., Updike, Dustin L. and Mango, Susan E. (2008) ‘The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging’, Current Biology, 18(18), pp. 1355–1364. Available at: https://doi.org/10.1016/j.cub.2008.07.097.
Sheaffer, Karyn L., Updike, Dustin L. and Mango, Susan E. (2008) ‘The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging’, Current Biology, 18(18), pp. 1355–1364. Available at: https://doi.org/10.1016/j.cub.2008.07.097.
Von Stetina, Stephen E. and Mango, Susan E. (2008) ‘Wormnet: a crystal ball for Caenorhabditis elegans’, Genome Biology, 9(6), p. 226. Available at: https://doi.org/10.1186/gb-2008-9-6-226.
Von Stetina, Stephen E. and Mango, Susan E. (2008) ‘Wormnet: a crystal ball for Caenorhabditis elegans’, Genome Biology, 9(6), p. 226. Available at: https://doi.org/10.1186/gb-2008-9-6-226.
Kiefer, Julie C., Smith, Pliny A. and Mango, Susan E. (2007) ‘PHA-4/FoxA cooperates with TAM-1/TRIM to regulate cell fate restriction in the C. elegans foregut’, Developmental Biology, 303(2), pp. 611–24. Available at: https://doi.org/10.1016/j.ydbio.2006.11.042.
Kiefer, Julie C., Smith, Pliny A. and Mango, Susan E. (2007) ‘PHA-4/FoxA cooperates with TAM-1/TRIM to regulate cell fate restriction in the C. elegans foregut’, Developmental Biology, 303(2), pp. 611–24. Available at: https://doi.org/10.1016/j.ydbio.2006.11.042.
Mango, Susan E. (2007) ‘The C. elegans pharynx: a model for organogenesis’, WormBook : the online review of C. elegans biology, pp. 1–26. Available at: https://doi.org/10.1895/wormbook.1.129.1.
Mango, Susan E. (2007) ‘The C. elegans pharynx: a model for organogenesis’, WormBook : the online review of C. elegans biology, pp. 1–26. Available at: https://doi.org/10.1895/wormbook.1.129.1.
Mango, Susan E. (2007) ‘A green light to expression in time and space’, Nature Biotechnology, 25(6), pp. 645–646. Available at: https://doi.org/10.1038/nbt0607-645.
Mango, Susan E. (2007) ‘A green light to expression in time and space’, Nature Biotechnology, 25(6), pp. 645–646. Available at: https://doi.org/10.1038/nbt0607-645.
Smith, Pliny A. and Mango, Susan E. (2007) ‘Role of T-box gene tbx-2 for anterior foregut muscle development in C. elegans’, Developmental Biology, 302(1), pp. 25–39. Available at: https://doi.org/10.1016/j.ydbio.2006.08.023.
Smith, Pliny A. and Mango, Susan E. (2007) ‘Role of T-box gene tbx-2 for anterior foregut muscle development in C. elegans’, Developmental Biology, 302(1), pp. 25–39. Available at: https://doi.org/10.1016/j.ydbio.2006.08.023.
Updike, Dustin L. and Mango, Susan E. (2007) ‘Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB’, Genetics, 177(2), pp. 819–33. Available at: https://doi.org/10.1534/genetics.107.076653.
Updike, Dustin L. and Mango, Susan E. (2007) ‘Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB’, Genetics, 177(2), pp. 819–33. Available at: https://doi.org/10.1534/genetics.107.076653.
Deplancke, Bart et al. (2006) ‘A gene-centered C. elegans protein-DNA interaction network’, Cell, 125(6), pp. 1193–1205. Available at: https://doi.org/10.1016/j.cell.2006.04.038.
Deplancke, Bart et al. (2006) ‘A gene-centered C. elegans protein-DNA interaction network’, Cell, 125(6), pp. 1193–1205. Available at: https://doi.org/10.1016/j.cell.2006.04.038.
Jenkins, Noah, Saam, Jennifer R. and Mango, Susan E. (2006) ‘CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization’, Science, 313(5791), pp. 1298–301. Available at: https://doi.org/10.1126/science.1130291.
Jenkins, Noah, Saam, Jennifer R. and Mango, Susan E. (2006) ‘CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization’, Science, 313(5791), pp. 1298–301. Available at: https://doi.org/10.1126/science.1130291.
Updike, Dustin L. and Mango, Susan E. (2006) ‘Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA’, PLoS Genetics, 2(9), p. e161. Available at: https://doi.org/10.1371/journal.pgen.0020161.
Updike, Dustin L. and Mango, Susan E. (2006) ‘Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA’, PLoS Genetics, 2(9), p. e161. Available at: https://doi.org/10.1371/journal.pgen.0020161.
Han, Zhenbo et al. (2005) ‘The C. elegans Tousled-like kinase contributes to chromosome segregation as a substrate and regulator of the Aurora B kinase’, Current Biology, 15(10), pp. 894–904. Available at: https://doi.org/10.1016/j.cub.2005.04.019.
Han, Zhenbo et al. (2005) ‘The C. elegans Tousled-like kinase contributes to chromosome segregation as a substrate and regulator of the Aurora B kinase’, Current Biology, 15(10), pp. 894–904. Available at: https://doi.org/10.1016/j.cub.2005.04.019.
Kaltenbach, Linda S., Updike, Dustin L. and Mango, Susan E. (2005) ‘Contribution of the amino and carboxyl termini for PHA-4/FoxA function in Caenorhabditis elegans’, Developmental Dynamics, 234(2), pp. 346–54. Available at: https://doi.org/10.1002/dvdy.20550.
Kaltenbach, Linda S., Updike, Dustin L. and Mango, Susan E. (2005) ‘Contribution of the amino and carboxyl termini for PHA-4/FoxA function in Caenorhabditis elegans’, Developmental Dynamics, 234(2), pp. 346–54. Available at: https://doi.org/10.1002/dvdy.20550.
Ao, Wanyuan et al. (2004) ‘Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR’, Science, 305(5691), pp. 1743–6. Available at: https://doi.org/10.1126/science.1102216.
Ao, Wanyuan et al. (2004) ‘Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR’, Science, 305(5691), pp. 1743–6. Available at: https://doi.org/10.1126/science.1102216.
Fay, David S. et al. (2004) ‘The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18’, Developmental Biology, 271(1), pp. 11–25. Available at: https://doi.org/10.1016/j.ydbio.2004.03.022.
Fay, David S. et al. (2004) ‘The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18’, Developmental Biology, 271(1), pp. 11–25. Available at: https://doi.org/10.1016/j.ydbio.2004.03.022.
Gaudet, Jeb et al. (2004) ‘Whole-genome analysis of temporal gene expression during foregut development’, PLoS Biology, 2(11), p. e352. Available at: https://doi.org/10.1371/journal.pbio.0020352.
Gaudet, Jeb et al. (2004) ‘Whole-genome analysis of temporal gene expression during foregut development’, PLoS Biology, 2(11), p. e352. Available at: https://doi.org/10.1371/journal.pbio.0020352.
Li, Siming et al. (2004) ‘A map of the interactome network of the metazoan C. elegans’, Science, 303(5657), pp. 540–543. Available at: https://doi.org/10.1126/science.1091403.
Li, Siming et al. (2004) ‘A map of the interactome network of the metazoan C. elegans’, Science, 303(5657), pp. 540–543. Available at: https://doi.org/10.1126/science.1091403.
Portereiko, Michael F., Saam, Jennifer and Mango, Susan E. (2004) ‘ZEN-4/MKLP1 is required to polarize the foregut epithelium’, Current Biology, 14(11), pp. 932–41. Available at: https://doi.org/10.1016/j.cub.2004.05.052.
Portereiko, Michael F., Saam, Jennifer and Mango, Susan E. (2004) ‘ZEN-4/MKLP1 is required to polarize the foregut epithelium’, Current Biology, 14(11), pp. 932–41. Available at: https://doi.org/10.1016/j.cub.2004.05.052.
Alder, Matthew N. et al. (2003) ‘Gene silencing in Caenorhabditis elegans by transitive RNA interference’, RNA, 9(1), pp. 25–32. Available at: https://doi.org/10.1261/rna.2650903.
Alder, Matthew N. et al. (2003) ‘Gene silencing in Caenorhabditis elegans by transitive RNA interference’, RNA, 9(1), pp. 25–32. Available at: https://doi.org/10.1261/rna.2650903.
Han, Zhenbo et al. (2003) ‘The C. elegans Tousled-like kinase (TLK-1) has an essential role in transcription’, Current Biology, 13(22), pp. 1921–1929. Available at: https://doi.org/10.1016/j.cub.2003.10.035.
Han, Zhenbo et al. (2003) ‘The C. elegans Tousled-like kinase (TLK-1) has an essential role in transcription’, Current Biology, 13(22), pp. 1921–1929. Available at: https://doi.org/10.1016/j.cub.2003.10.035.
Gaudet, J. and Mango, S. E. (2002) ‘Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4’, Science, 295(5556), pp. 821–5. Available at: https://doi.org/10.1126/science.1065175.
Gaudet, J. and Mango, S. E. (2002) ‘Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4’, Science, 295(5556), pp. 821–5. Available at: https://doi.org/10.1126/science.1065175.
Jorgensen, Erik M. and Mango, Susan E. (2002) ‘The art and design of genetic screens: caenorhabditis elegans’, Nature reviews. Genetics, 3(5), pp. 356–369. Available at: https://doi.org/10.1038/nrg794.
Jorgensen, Erik M. and Mango, Susan E. (2002) ‘The art and design of genetic screens: caenorhabditis elegans’, Nature reviews. Genetics, 3(5), pp. 356–369. Available at: https://doi.org/10.1038/nrg794.
Mango, Susan E. (2001) ‘Stop making nonSense: the C. elegans smg genes’, Trends in genetics : TIG, 17(11), pp. 646–53. Available at: https://doi.org/10.1016/s0168-9525(01)02479-9.
Mango, Susan E. (2001) ‘Stop making nonSense: the C. elegans smg genes’, Trends in genetics : TIG, 17(11), pp. 646–53. Available at: https://doi.org/10.1016/s0168-9525(01)02479-9.
Portereiko, Michael F. and Mango, Susan E. (2001) ‘Early morphogenesis of the Caenorhabditis elegans pharynx’, Developmental Biology, 233(2), pp. 482–94. Available at: https://doi.org/10.1006/dbio.2001.0235.
Portereiko, Michael F. and Mango, Susan E. (2001) ‘Early morphogenesis of the Caenorhabditis elegans pharynx’, Developmental Biology, 233(2), pp. 482–94. Available at: https://doi.org/10.1006/dbio.2001.0235.
Domeier, Mary Ellen et al. (2000) ‘A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans’, Science, 289(5486), pp. 1928–1930. Available at: https://doi.org/10.1126/science.289.5486.1928.
Domeier, Mary Ellen et al. (2000) ‘A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans’, Science, 289(5486), pp. 1928–1930. Available at: https://doi.org/10.1126/science.289.5486.1928.
Kaltenbach, Linda et al. (2000) ‘The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis’, Molecular Cell, 6(3), pp. 705–713. Available at: https://doi.org/10.1016/s1097-2765(00)00068-x.
Kaltenbach, Linda et al. (2000) ‘The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis’, Molecular Cell, 6(3), pp. 705–713. Available at: https://doi.org/10.1016/s1097-2765(00)00068-x.
Labouesse, Michel and Mango, Susan E. (1999) ‘Patterning the C. elegans embryo: moving beyond the cell lineage’, Trends in Genetics, 15(8), pp. 307–13. Available at: https://doi.org/10.1016/s0168-9525(99)01750-3.
Labouesse, Michel and Mango, Susan E. (1999) ‘Patterning the C. elegans embryo: moving beyond the cell lineage’, Trends in Genetics, 15(8), pp. 307–13. Available at: https://doi.org/10.1016/s0168-9525(99)01750-3.
Horner, Michael A. et al. (1998) ‘pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans’, Genes and Development, 12(13), pp. 1947–52. Available at: https://doi.org/10.1101/gad.12.13.1947.
Horner, Michael A. et al. (1998) ‘pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans’, Genes and Development, 12(13), pp. 1947–52. Available at: https://doi.org/10.1101/gad.12.13.1947.
Goodwin, E. B. et al. (1997) ‘A genetic pathway for regulation of tra-2 translation’, Development, 124(3), pp. 749–758.
Goodwin, E. B. et al. (1997) ‘A genetic pathway for regulation of tra-2 translation’, Development, 124(3), pp. 749–758.
Mango, S. E., Lambie, E. J. and Kimble, J. (1994) ‘The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans’, Development, 120(10), pp. 3019–3031.
Mango, S. E., Lambie, E. J. and Kimble, J. (1994) ‘The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans’, Development, 120(10), pp. 3019–3031.
Mango, S. E. et al. (1994) ‘Two maternal genes, apx-1 and pie-1, are required to distinguish the fates of equivalent blastomeres in the early Caenorhabditis elegans embryo’, Development, 120(8), pp. 2305–15.
Mango, S. E. et al. (1994) ‘Two maternal genes, apx-1 and pie-1, are required to distinguish the fates of equivalent blastomeres in the early Caenorhabditis elegans embryo’, Development, 120(8), pp. 2305–15.
Kimble, J. et al. (1992) ‘Regulation of induction by GLP1, and localized cell surface receptor in Caenorhabditis elegans’, Cold Spring Harbor Symposia on Quantitative Biology, 57, pp. 401–7. Available at: https://doi.org/10.1101/sqb.1992.057.01.045.
Kimble, J. et al. (1992) ‘Regulation of induction by GLP1, and localized cell surface receptor in Caenorhabditis elegans’, Cold Spring Harbor Symposia on Quantitative Biology, 57, pp. 401–7. Available at: https://doi.org/10.1101/sqb.1992.057.01.045.
Mango, Susan E., Maine, Eleanor M. and Kimble, Judith (1991) ‘Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans’, Nature, 352(6338), pp. 811–5. Available at: https://doi.org/10.1038/352811a0.
Mango, Susan E., Maine, Eleanor M. and Kimble, Judith (1991) ‘Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans’, Nature, 352(6338), pp. 811–5. Available at: https://doi.org/10.1038/352811a0.
Cole, M. D. and Mango, S. E. (1990) ‘cis-acting determinants of c-myc mRNA stability’, Enzyme, 44(1-4), pp. 167–80. Available at: https://doi.org/10.1159/000468755.
Cole, M. D. and Mango, S. E. (1990) ‘cis-acting determinants of c-myc mRNA stability’, Enzyme, 44(1-4), pp. 167–80. Available at: https://doi.org/10.1159/000468755.
Mango, S. E. et al. (1989) ‘Germ line c-myc is not down-regulated by loss or exclusion of activating factors in myc-induced macrophage tumors’, Molecular and Cellular Biology, 9(8), pp. 3482–90. Available at: https://doi.org/10.1128/mcb.9.8.3482.
Mango, S. E. et al. (1989) ‘Germ line c-myc is not down-regulated by loss or exclusion of activating factors in myc-induced macrophage tumors’, Molecular and Cellular Biology, 9(8), pp. 3482–90. Available at: https://doi.org/10.1128/mcb.9.8.3482.
Postel, E. H., Mango, S. E. and Flint, S. J. (1989) ‘A nuclease-hypersensitive element of the human c-myc promoter interacts with a transcription initiation factor’, Molecular and Cellular Biology, 9(11), pp. 5123–5133. Available at: https://doi.org/10.1128/mcb.9.11.5123.
Postel, E. H., Mango, S. E. and Flint, S. J. (1989) ‘A nuclease-hypersensitive element of the human c-myc promoter interacts with a transcription initiation factor’, Molecular and Cellular Biology, 9(11), pp. 5123–5133. Available at: https://doi.org/10.1128/mcb.9.11.5123.
Ueno-Nishio, Shizue et al. (1984) ‘Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli’, Journal of Bacteriology, 160(1), pp. 379–84. Available at: https://doi.org/10.1128/jb.160.1.379-384.1984.
Ueno-Nishio, Shizue et al. (1984) ‘Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli’, Journal of Bacteriology, 160(1), pp. 379–84. Available at: https://doi.org/10.1128/jb.160.1.379-384.1984.