Cell Biology (Affolter)
Publications
228 found
Show per page
Bao, Mengjing et al. (2024) ‘In vivo regulation of an endogenously-tagged protein by a light-regulated kinase’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.11.27.625702.
Bao, Mengjing et al. (2024) ‘In vivo regulation of an endogenously-tagged protein by a light-regulated kinase’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.11.27.625702.
Yin, Jianmin et al. (2024) ‘Initiation of lumen formation from junctions via differential actomyosin contractility regulated by dynamic recruitment of Rasip1’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-54143-y.
Yin, Jianmin et al. (2024) ‘Initiation of lumen formation from junctions via differential actomyosin contractility regulated by dynamic recruitment of Rasip1’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-54143-y.
Yin, Jianmin et al. (2024) ‘Oscillatory contractile forces refine endothelial cell-cell interactions for continuous lumen formation governed by Heg1/Ccm1’, Angiogenesis, (August 2024), pp. 1–16. Available at: https://doi.org/10.1007/s10456-024-09945-5.
Yin, Jianmin et al. (2024) ‘Oscillatory contractile forces refine endothelial cell-cell interactions for continuous lumen formation governed by Heg1/Ccm1’, Angiogenesis, (August 2024), pp. 1–16. Available at: https://doi.org/10.1007/s10456-024-09945-5.
Aguilar, Gustavo et al. (2024) ‘Protocol for generating in-frame seamless knockins in Drosophila using the SEED/Harvest technology’, STAR Protocols. 10.07.2024, 5(3). Available at: https://doi.org/10.1016/j.xpro.2024.102932.
Aguilar, Gustavo et al. (2024) ‘Protocol for generating in-frame seamless knockins in Drosophila using the SEED/Harvest technology’, STAR Protocols. 10.07.2024, 5(3). Available at: https://doi.org/10.1016/j.xpro.2024.102932.
Schnider, Sophie T. et al. (2024) ‘Functionalized Protein Binders in Developmental Biology’, Annual Review of Cell and Developmental Biology, 40(1), pp. 119–142. Available at: https://doi.org/10.1146/annurev-cellbio-112122-025214.
Schnider, Sophie T. et al. (2024) ‘Functionalized Protein Binders in Developmental Biology’, Annual Review of Cell and Developmental Biology, 40(1), pp. 119–142. Available at: https://doi.org/10.1146/annurev-cellbio-112122-025214.
Aguilar, Gustavo et al. (2024) ‘Seamless knockins in Drosophila via CRISPR-triggered single-strand annealing’, Developmental Cell. 05.07.2024, (October 2024), p. Online ahead of print. Available at: https://doi.org/10.1016/j.devcel.2024.06.004.
Aguilar, Gustavo et al. (2024) ‘Seamless knockins in Drosophila via CRISPR-triggered single-strand annealing’, Developmental Cell. 05.07.2024, (October 2024), p. Online ahead of print. Available at: https://doi.org/10.1016/j.devcel.2024.06.004.
Aguilar, Gustavo et al. (2023) ‘Transcriptional control of compartmental boundary positioning during Drosophila wing development’. eLife. Available at: https://doi.org/10.7554/elife.91713.1.
Aguilar, Gustavo et al. (2023) ‘Transcriptional control of compartmental boundary positioning during Drosophila wing development’. eLife. Available at: https://doi.org/10.7554/elife.91713.1.
Aguilar, Gustavo et al. (2023) ‘Transcriptional control of compartmental boundary positioning during Drosophila wing development’. bioRxiv Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.05.552106.
Aguilar, Gustavo et al. (2023) ‘Transcriptional control of compartmental boundary positioning during Drosophila wing development’. bioRxiv Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.05.552106.
Bauer, Milena et al. (2023) ‘Heterodimerization-dependent secretion of bone morphogenetic proteins in Drosophila’, Developmental Cell, Online Ahead of Print, p. Epub. Available at: https://doi.org/10.1016/j.devcel.2023.03.008.
Bauer, Milena et al. (2023) ‘Heterodimerization-dependent secretion of bone morphogenetic proteins in Drosophila’, Developmental Cell, Online Ahead of Print, p. Epub. Available at: https://doi.org/10.1016/j.devcel.2023.03.008.
Born, Gordian et al. (2023) ‘No apparent role for the Wari insulator in transcriptional regulation of the endogenous white gene of Drosophila melanogaster’, microPublication Biology, 2023, pp. 000702–000702. Available at: https://doi.org/10.17912/micropub.biology.000702.
Born, Gordian et al. (2023) ‘No apparent role for the Wari insulator in transcriptional regulation of the endogenous white gene of Drosophila melanogaster’, microPublication Biology, 2023, pp. 000702–000702. Available at: https://doi.org/10.17912/micropub.biology.000702.
Hadji Rasouliha, Sheida et al. (2023) ‘Shaping and interpretation of Dpp morphogen gradient by endocytic trafficking’. bioRxiv. Available at: https://doi.org/10.1101/2023.03.27.534445.
Hadji Rasouliha, Sheida et al. (2023) ‘Shaping and interpretation of Dpp morphogen gradient by endocytic trafficking’. bioRxiv. Available at: https://doi.org/10.1101/2023.03.27.534445.
Heutschi, Daniel et al. (2023) ‘Genetic analysis of rab7 mutants in zebrafish’. bioRxiv. Available at: https://doi.org/10.1101/2023.03.09.531857.
Heutschi, Daniel et al. (2023) ‘Genetic analysis of rab7 mutants in zebrafish’. bioRxiv. Available at: https://doi.org/10.1101/2023.03.09.531857.
Kemmler, Cassie L. et al. (2023) ‘Next-generation plasmids for transgenesis in zebrafish and beyond’, Development, 150(8), pp. 1–54. Available at: https://doi.org/10.1242/dev.201531.
Kemmler, Cassie L. et al. (2023) ‘Next-generation plasmids for transgenesis in zebrafish and beyond’, Development, 150(8), pp. 1–54. Available at: https://doi.org/10.1242/dev.201531.
Matsuda, Shinya and Affolter, Markus (2023) ‘Is Drosophila Dpp/BMP morphogen spreading required for wing patterning and growth?’, BioEssays : news and reviews in molecular, cellular and developmental biology, p. e2200218. Available at: https://doi.org/10.1002/bies.202200218.
Matsuda, Shinya and Affolter, Markus (2023) ‘Is Drosophila Dpp/BMP morphogen spreading required for wing patterning and growth?’, BioEssays : news and reviews in molecular, cellular and developmental biology, p. e2200218. Available at: https://doi.org/10.1002/bies.202200218.
Ridwan, Sharif M. et al. (2023) ‘Diffusing fraction of niche BMP ligand safeguards stem-cell differentiation’. bioRxiv. Available at: https://doi.org/10.1101/2022.09.13.507868.
Ridwan, Sharif M. et al. (2023) ‘Diffusing fraction of niche BMP ligand safeguards stem-cell differentiation’. bioRxiv. Available at: https://doi.org/10.1101/2022.09.13.507868.
Simon, Niklas et al. (2023) ‘Dally is not essential for Dpp spreading or internalization but for Dpp stability by antagonizing Tkv-mediated Dpp internalization’. bioRxiv. Available at: https://doi.org/10.1101/2023.01.15.524087.
Simon, Niklas et al. (2023) ‘Dally is not essential for Dpp spreading or internalization but for Dpp stability by antagonizing Tkv-mediated Dpp internalization’. bioRxiv. Available at: https://doi.org/10.1101/2023.01.15.524087.
Aguilar, Gustavo et al. (2022) ‘In vivo seamless genetic engineering via CRISPR-triggered single-strand annealing’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.06.17.496589.
Aguilar, Gustavo et al. (2022) ‘In vivo seamless genetic engineering via CRISPR-triggered single-strand annealing’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.06.17.496589.
Aguilar, Gustavo et al. (2022) ‘In vivo seamless genetic engineering via CRISPR-triggered single-strand annealing’. bioRxiv. Available at: https://doi.org/10.1101/2022.06.17.496589v1.
Aguilar, Gustavo et al. (2022) ‘In vivo seamless genetic engineering via CRISPR-triggered single-strand annealing’. bioRxiv. Available at: https://doi.org/10.1101/2022.06.17.496589v1.
Bauer, Milena et al. (2022) ‘Heterodimerization-dependent secretion of BMPs in Drosophila’. bioRxiv. Available at: https://doi.org/10.1101/2022.08.04.502599.
Bauer, Milena et al. (2022) ‘Heterodimerization-dependent secretion of BMPs in Drosophila’. bioRxiv. Available at: https://doi.org/10.1101/2022.08.04.502599.
Kemmler Cassie L: Moran, MoHannah R. et al. (2022) ‘Next-generation plasmids for transgenesis in zebrafish and beyond’. bioRxiv. Available at: https://doi.org/10.1101/2022.12.13.520107.
Kemmler Cassie L: Moran, MoHannah R. et al. (2022) ‘Next-generation plasmids for transgenesis in zebrafish and beyond’. bioRxiv. Available at: https://doi.org/10.1101/2022.12.13.520107.
Kotini, Maria P. et al. (2022) ‘Vinculin controls endothelial cell junction dynamics during vascular lumen formation’, Cell reports, 39(2), p. 110658. Available at: https://doi.org/10.1016/j.celrep.2022.110658.
Kotini, Maria P. et al. (2022) ‘Vinculin controls endothelial cell junction dynamics during vascular lumen formation’, Cell reports, 39(2), p. 110658. Available at: https://doi.org/10.1016/j.celrep.2022.110658.
Lepeta, Katarzyna et al. (2022) ‘Studying Protein Function Using Nanobodies and Other Protein Binders in Drosophila’, Methods in Molecular Biology, 2540, pp. 219–237. Available at: https://doi.org/10.1007/978-1-0716-2541-5_10.
Lepeta, Katarzyna et al. (2022) ‘Studying Protein Function Using Nanobodies and Other Protein Binders in Drosophila’, Methods in Molecular Biology, 2540, pp. 219–237. Available at: https://doi.org/10.1007/978-1-0716-2541-5_10.
Lepeta, Katarzyna et al. (2022) ‘Engineered kinases as a tool for phosphorylation of selected targets in vivo’, Journal of Cell Biology, 221(10), p. e202106179. Available at: https://doi.org/10.1083/jcb.202106179.
Lepeta, Katarzyna et al. (2022) ‘Engineered kinases as a tool for phosphorylation of selected targets in vivo’, Journal of Cell Biology, 221(10), p. e202106179. Available at: https://doi.org/10.1083/jcb.202106179.
Matsuda, Shinya et al. (2022) ‘Nanobody-Based GFP Traps to Study Protein Localization and Function in Developmental Biology’, Methods in Molecular Biology, 2446, pp. 581–593. Available at: https://doi.org/10.1007/978-1-0716-2075-5_30.
Matsuda, Shinya et al. (2022) ‘Nanobody-Based GFP Traps to Study Protein Localization and Function in Developmental Biology’, Methods in Molecular Biology, 2446, pp. 581–593. Available at: https://doi.org/10.1007/978-1-0716-2075-5_30.
Matsuda, Shinya et al. (2022) ‘Author Correction: Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc’, Nature Communications, 13(1), p. 389. Available at: https://doi.org/10.1038/s41467-021-27680-z.
Matsuda, Shinya et al. (2022) ‘Author Correction: Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc’, Nature Communications, 13(1), p. 389. Available at: https://doi.org/10.1038/s41467-021-27680-z.
Mesrouze, Yannick et al. (2022) ‘The role of lysine palmitoylation/myristoylation in the function of the TEAD transcription factors’, Scientific Reports, 12(1), p. 4984. Available at: https://doi.org/10.1038/s41598-022-09127-7.
Mesrouze, Yannick et al. (2022) ‘The role of lysine palmitoylation/myristoylation in the function of the TEAD transcription factors’, Scientific Reports, 12(1), p. 4984. Available at: https://doi.org/10.1038/s41598-022-09127-7.
van der Stoel, Miesje M. et al. (2022) ‘Vinculin strengthens the endothelial barrier during vascular development’, Vascular Biology, 5(1), p. e220012. Available at: https://doi.org/10.1530/vb-22-0012.
van der Stoel, Miesje M. et al. (2022) ‘Vinculin strengthens the endothelial barrier during vascular development’, Vascular Biology, 5(1), p. e220012. Available at: https://doi.org/10.1530/vb-22-0012.
Affolter, Markus (2021) ‘Preface’, Current Topics in Developmental Biology, 143, pp. xi–xiv. Available at: https://doi.org/10.1016/s0070-2153(21)00040-5.
Affolter, Markus (2021) ‘Preface’, Current Topics in Developmental Biology, 143, pp. xi–xiv. Available at: https://doi.org/10.1016/s0070-2153(21)00040-5.
Kotini, Maria P. et al. (2021) ‘Probing the Effects of the FGFR-Inhibitor Derazantinib on Vascular Development in Zebrafish Embryos’, Pharmaceuticals, 14(1), p. 25. Available at: https://doi.org/10.3390/ph14010025.
Kotini, Maria P. et al. (2021) ‘Probing the Effects of the FGFR-Inhibitor Derazantinib on Vascular Development in Zebrafish Embryos’, Pharmaceuticals, 14(1), p. 25. Available at: https://doi.org/10.3390/ph14010025.
Lee, Minkyoung et al. (2021) ‘Control of dynamic cell behaviors during angiogenesis and anastomosis by Rasip1’, Development, 148(15), p. dev197509. Available at: https://doi.org/10.1242/dev.197509.
Lee, Minkyoung et al. (2021) ‘Control of dynamic cell behaviors during angiogenesis and anastomosis by Rasip1’, Development, 148(15), p. dev197509. Available at: https://doi.org/10.1242/dev.197509.
Matsuda, Shinya et al. (2021) ‘Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc’, Nature Communications, 12(1), p. 6435. Available at: https://doi.org/10.1038/s41467-021-26726-6.
Matsuda, Shinya et al. (2021) ‘Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc’, Nature Communications, 12(1), p. 6435. Available at: https://doi.org/10.1038/s41467-021-26726-6.
Vigano, M. Alessandra et al. (2021) ‘Protein manipulation using single copies of short peptide tags in cultured cells and in; Drosophila melanogaster;’, Development, 148(6), p. dev191700. Available at: https://doi.org/10.1242/dev.191700.
Vigano, M. Alessandra et al. (2021) ‘Protein manipulation using single copies of short peptide tags in cultured cells and in; Drosophila melanogaster;’, Development, 148(6), p. dev191700. Available at: https://doi.org/10.1242/dev.191700.
Yang, Zhenguo et al. (2021) ‘The tight junctions protein Claudin-5 limits endothelial cell motility’, Journal of Cell Science, 134(1), p. jcs248237. Available at: https://doi.org/10.1242/jcs.248237.
Yang, Zhenguo et al. (2021) ‘The tight junctions protein Claudin-5 limits endothelial cell motility’, Journal of Cell Science, 134(1), p. jcs248237. Available at: https://doi.org/10.1242/jcs.248237.
Yin, Jianmin et al. (2021) ‘Building the complex architectures of vascular networks: Where to branch, where to connect and where to remodel?’, Current topics in developmental biology, 143, pp. 281–297. Available at: https://doi.org/10.1016/bs.ctdb.2021.01.002.
Yin, Jianmin et al. (2021) ‘Building the complex architectures of vascular networks: Where to branch, where to connect and where to remodel?’, Current topics in developmental biology, 143, pp. 281–297. Available at: https://doi.org/10.1016/bs.ctdb.2021.01.002.
Vigano, M. Alessandra et al. (2020) ‘Protein manipulation using single copies of short peptide tags in cultured cells and in Drosophila melanogaster’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2020.04.06.027599.
Vigano, M. Alessandra et al. (2020) ‘Protein manipulation using single copies of short peptide tags in cultured cells and in Drosophila melanogaster’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2020.04.06.027599.
Galeone, Antonio et al. (2020) ‘Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation’, eLife, 9, p. e55596. Available at: https://doi.org/10.7554/elife.55596.
Galeone, Antonio et al. (2020) ‘Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation’, eLife, 9, p. e55596. Available at: https://doi.org/10.7554/elife.55596.
Matsuda, Shinya et al. (2020) ‘Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc’, bioRxiv, November, pp. 1–31. Available at: https://doi.org/10.1101/2020.11.23.394379.
Matsuda, Shinya et al. (2020) ‘Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc’, bioRxiv, November, pp. 1–31. Available at: https://doi.org/10.1101/2020.11.23.394379.
Mesrouze, Yannick et al. (2020) ‘A new perspective on the evolution of the interaction between the Vg/VGLL1-3 proteins and the TEAD transcription factors’, Scientific Reports, 10, p. 17442. Available at: https://doi.org/10.1038/s41598-020-74584-x.
Mesrouze, Yannick et al. (2020) ‘A new perspective on the evolution of the interaction between the Vg/VGLL1-3 proteins and the TEAD transcription factors’, Scientific Reports, 10, p. 17442. Available at: https://doi.org/10.1038/s41598-020-74584-x.
Aguilar, Gustavo et al. (2019) ‘Using Nanobodies to Study Protein Function in Developing Organisms’, Antibodies, 8(1), p. 16. Available at: https://doi.org/10.3390/antib8010016.
Aguilar, Gustavo et al. (2019) ‘Using Nanobodies to Study Protein Function in Developing Organisms’, Antibodies, 8(1), p. 16. Available at: https://doi.org/10.3390/antib8010016.
Aguilar, Gustavo et al. (2019) ‘Reflections on the use of protein binders to study protein function in developmental biology’, WIREs Developmental Biology, 8(6), p. e356. Available at: https://doi.org/10.1002/wdev.356.
Aguilar, Gustavo et al. (2019) ‘Reflections on the use of protein binders to study protein function in developmental biology’, WIREs Developmental Biology, 8(6), p. e356. Available at: https://doi.org/10.1002/wdev.356.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’. bioRxiv. Available at: https://doi.org/10.1101/354134.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’. bioRxiv. Available at: https://doi.org/10.1101/354134.
Angulo-Urarte, Ana et al. (2018) ‘Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility’, Nature Communications, 9(1), p. 4826. Available at: https://doi.org/10.1038/s41467-018-07172-3.
Angulo-Urarte, Ana et al. (2018) ‘Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility’, Nature Communications, 9(1), p. 4826. Available at: https://doi.org/10.1038/s41467-018-07172-3.
Harmansa, Stefan and Affolter, Markus (2018) ‘Protein binders and their applications in developmental biology’, Development, 145(2), pp. 1–13. Available at: https://doi.org/10.1242/dev.148874.
Harmansa, Stefan and Affolter, Markus (2018) ‘Protein binders and their applications in developmental biology’, Development, 145(2), pp. 1–13. Available at: https://doi.org/10.1242/dev.148874.
Hübner, Kathleen et al. (2018) ‘Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling’, Nature communications, 9(1), p. 4860. Available at: https://doi.org/10.1038/s41467-018-07302-x.
Hübner, Kathleen et al. (2018) ‘Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling’, Nature communications, 9(1), p. 4860. Available at: https://doi.org/10.1038/s41467-018-07302-x.
Kotini, Maria Paraskevi et al. (2018) ‘Sprouting and anastomosis in the Drosophila trachea and the vertebrate vasculature: Similarities and differences in cell behaviour’, Vascular pharmacology, 112, pp. 8–16. Available at: https://doi.org/10.1016/j.vph.2018.11.002.
Kotini, Maria Paraskevi et al. (2018) ‘Sprouting and anastomosis in the Drosophila trachea and the vertebrate vasculature: Similarities and differences in cell behaviour’, Vascular pharmacology, 112, pp. 8–16. Available at: https://doi.org/10.1016/j.vph.2018.11.002.
Paatero, Ilkka et al. (2018) ‘Junction-based lamellipodia drive endothelial cell rearrangements in vivo via a VE-cadherin-F-actin based oscillatory cell-cell interaction’, Nature Comm, 9(1), p. 3545. Available at: https://doi.org/10.1038/s41467-018-05851-9.
Paatero, Ilkka et al. (2018) ‘Junction-based lamellipodia drive endothelial cell rearrangements in vivo via a VE-cadherin-F-actin based oscillatory cell-cell interaction’, Nature Comm, 9(1), p. 3545. Available at: https://doi.org/10.1038/s41467-018-05851-9.
Postika, Nikolay et al. (2018) ‘Boundaries mediate long-distance interactions between enhancers and promoters in the Drosophila Bithorax complex’, PLoS Genet, 14(12), p. e1007702. Available at: https://doi.org/10.1371/journal.pgen.1007702.
Postika, Nikolay et al. (2018) ‘Boundaries mediate long-distance interactions between enhancers and promoters in the Drosophila Bithorax complex’, PLoS Genet, 14(12), p. e1007702. Available at: https://doi.org/10.1371/journal.pgen.1007702.
Sickmann, Michèle, Affolter, Markus and Müller, Martin (2018) ‘Characterization of the new bithorax allele Ubx bx-Basel’, Drosophila Information Service, 101, pp. 76–80. Available at: http://www.ou.edu/journals/dis/DIS101/DIS101.html.
Sickmann, Michèle, Affolter, Markus and Müller, Martin (2018) ‘Characterization of the new bithorax allele Ubx bx-Basel’, Drosophila Information Service, 101, pp. 76–80. Available at: http://www.ou.edu/journals/dis/DIS101/DIS101.html.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’, Biology open, 7(11), p. bio036749. Available at: https://doi.org/10.1242/bio.036749.
Vigano, M. Alessandra et al. (2018) ‘DARPins recognizing mTFP1 as novel reagents for in vitro and in vivo protein manipulations’, Biology open, 7(11), p. bio036749. Available at: https://doi.org/10.1242/bio.036749.
Vigano, M. Alessandra et al. (2018) ‘Correction:DARPins recognizing mTFP1 as novel reagents for in vitro; and in vivo protein manipulations’, Biology open, 7(12), p. bio036749. Available at: https://doi.org/10.1242/bio.040832.
Vigano, M. Alessandra et al. (2018) ‘Correction:DARPins recognizing mTFP1 as novel reagents for in vitro; and in vivo protein manipulations’, Biology open, 7(12), p. bio036749. Available at: https://doi.org/10.1242/bio.040832.
Harmansa, Stefan et al. (2017) ‘A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila’, eLife, 6, p. 22549. Available at: https://doi.org/10.7554/elife.22549.
Harmansa, Stefan et al. (2017) ‘A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila’, eLife, 6, p. 22549. Available at: https://doi.org/10.7554/elife.22549.
Lagendijk, Anne Karine et al. (2017) ‘Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish’, Nature Communications, 8(1), p. 1402. Available at: https://doi.org/10.1038/s41467-017-01325-6.
Lagendijk, Anne Karine et al. (2017) ‘Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish’, Nature Communications, 8(1), p. 1402. Available at: https://doi.org/10.1038/s41467-017-01325-6.
Matsuda, Shinya and Affolter, Markus (2017) ‘Dpp from the anterior stripe of cells is crucial for the growth of the Drosophila wing disc’, eLife, 6, p. e22319. Available at: https://doi.org/10.7554/elife.22319.
Matsuda, Shinya and Affolter, Markus (2017) ‘Dpp from the anterior stripe of cells is crucial for the growth of the Drosophila wing disc’, eLife, 6, p. e22319. Available at: https://doi.org/10.7554/elife.22319.
Nakajima, Hiroyuki et al. (2017) ‘Flow-Dependent Endothelial YAP Regulation Contributes to Vessel Maintenance’, Developmental Cell, 40(6), pp. 523–536.e6. Available at: https://doi.org/10.1016/j.devcel.2017.02.019.
Nakajima, Hiroyuki et al. (2017) ‘Flow-Dependent Endothelial YAP Regulation Contributes to Vessel Maintenance’, Developmental Cell, 40(6), pp. 523–536.e6. Available at: https://doi.org/10.1016/j.devcel.2017.02.019.
Ochoa-Espinosa, Amanda et al. (2017) ‘Myosin II is not required for Drosophila tracheal branch elongation and cell intercalation’, Development, 144(16), pp. 2961–2968. Available at: https://doi.org/10.1242/dev.148940.
Ochoa-Espinosa, Amanda et al. (2017) ‘Myosin II is not required for Drosophila tracheal branch elongation and cell intercalation’, Development, 144(16), pp. 2961–2968. Available at: https://doi.org/10.1242/dev.148940.
Paatero, Ilkka et al. (2017) ‘Junction-based lamellipodia drive endothelial cell arrangements in vivo via a VE-cadherin/F-actin based oscillatory ratchet mechanism’, bioRxiv, pp. 1–32. Available at: https://doi.org/10.1101/212522.
Paatero, Ilkka et al. (2017) ‘Junction-based lamellipodia drive endothelial cell arrangements in vivo via a VE-cadherin/F-actin based oscillatory ratchet mechanism’, bioRxiv, pp. 1–32. Available at: https://doi.org/10.1101/212522.
Roubinet, Chantal et al. (2017) ‘Spatio-temporally separated cortical flows and spindle geometry establish physical asymmetry in fly neural stem cells’, Nature Communications, 8(1), p. 1383. Available at: https://doi.org/10.1038/s41467-017-01391-w.
Roubinet, Chantal et al. (2017) ‘Spatio-temporally separated cortical flows and spindle geometry establish physical asymmetry in fly neural stem cells’, Nature Communications, 8(1), p. 1383. Available at: https://doi.org/10.1038/s41467-017-01391-w.
Sauteur, Loïc, Affolter, Markus and Belting, Heinz-Georg (2017) ‘Distinct and redundant functions of Esam and VE-cadherin during vascular morphogenesis’, Development, 144(8), pp. 1554–1565. Available at: https://doi.org/10.1242/dev.140038.
Sauteur, Loïc, Affolter, Markus and Belting, Heinz-Georg (2017) ‘Distinct and redundant functions of Esam and VE-cadherin during vascular morphogenesis’, Development, 144(8), pp. 1554–1565. Available at: https://doi.org/10.1242/dev.140038.
Sickmann, Michèle et al. (2017) ‘The Drosophila melanogaster straw locus is allelic to laccase2.’, Drosophila Information Service, 100, pp. 171–174. Available at: http://www.ou.edu/journals/dis/DIS100/DIS%20100.pdf.
Sickmann, Michèle et al. (2017) ‘The Drosophila melanogaster straw locus is allelic to laccase2.’, Drosophila Information Service, 100, pp. 171–174. Available at: http://www.ou.edu/journals/dis/DIS100/DIS%20100.pdf.
Tsachaki, Maria et al. (2017) ‘Absence of 11-keto reduction of cortisone and 11-ketotestosterone in the model organism zebrafish’, Journal of Endocrinology, 232(2), pp. 323–335. Available at: https://doi.org/10.1530/joe-16-0495.
Tsachaki, Maria et al. (2017) ‘Absence of 11-keto reduction of cortisone and 11-ketotestosterone in the model organism zebrafish’, Journal of Endocrinology, 232(2), pp. 323–335. Available at: https://doi.org/10.1530/joe-16-0495.
Affolter, Markus (2017) ‘Fluoreszierende Eiweisse: von der Natur ins Labor’, in Füglister, Kurt M.; Hicklin, Martin; Mäser, Pascal (ed.) natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel. Basel: Schwabe (natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel), pp. 9–9.
Affolter, Markus (2017) ‘Fluoreszierende Eiweisse: von der Natur ins Labor’, in Füglister, Kurt M.; Hicklin, Martin; Mäser, Pascal (ed.) natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel. Basel: Schwabe (natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel), pp. 9–9.
Affolter, Markus (2016) ‘Seeing is Believing, or How GFP Changed My Approach to Science’, Current topics in developmental biology, 116, pp. 1–16. Available at: https://doi.org/10.1016/bs.ctdb.2015.12.001.
Affolter, Markus (2016) ‘Seeing is Believing, or How GFP Changed My Approach to Science’, Current topics in developmental biology, 116, pp. 1–16. Available at: https://doi.org/10.1016/bs.ctdb.2015.12.001.
Aydogan, Vahap, Belting, Heinz-Georg and Affolter, Markus (2016) ‘Mapping the molecular steps of secretory-lysosome-driven tracheal tube fusion’, Nature Cell Biology, 18(7), pp. 720–2. Available at: https://doi.org/10.1038/ncb3383.
Aydogan, Vahap, Belting, Heinz-Georg and Affolter, Markus (2016) ‘Mapping the molecular steps of secretory-lysosome-driven tracheal tube fusion’, Nature Cell Biology, 18(7), pp. 720–2. Available at: https://doi.org/10.1038/ncb3383.
Betz, Charles et al. (2016) ‘Cell behaviors and dynamics during angiogenesis’, Development, 143(13), pp. 2249–60. Available at: https://doi.org/10.1242/dev.135616.
Betz, Charles et al. (2016) ‘Cell behaviors and dynamics during angiogenesis’, Development, 143(13), pp. 2249–60. Available at: https://doi.org/10.1242/dev.135616.
Bieli, D. et al. (2016) ‘Development and Application of Functionalized Protein Binders in Multicellular Organisms’, International Review of Cell and Molecular Biology, 325, pp. 181–213. Available at: https://doi.org/10.1016/bs.ircmb.2016.02.006.
Bieli, D. et al. (2016) ‘Development and Application of Functionalized Protein Binders in Multicellular Organisms’, International Review of Cell and Molecular Biology, 325, pp. 181–213. Available at: https://doi.org/10.1016/bs.ircmb.2016.02.006.
Caussinus, Emmanuel and Affolter, Markus (2016) ‘deGradFP: A System to Knockdown GFP-Tagged Proteins’, Methods in Molecular Biology, 1478, pp. 177–187. Available at: https://doi.org/10.1007/978-1-4939-6371-3_9.
Caussinus, Emmanuel and Affolter, Markus (2016) ‘deGradFP: A System to Knockdown GFP-Tagged Proteins’, Methods in Molecular Biology, 1478, pp. 177–187. Available at: https://doi.org/10.1007/978-1-4939-6371-3_9.
Matsuda, Shinya, Harmansa, Stefan and Affolter, Markus (2016) ‘BMP morphogen gradients in flies’, Cytokine & Growth Factor Reviews, 27, pp. 119–27. Available at: https://doi.org/10.1016/j.cytogfr.2015.11.003.
Matsuda, Shinya, Harmansa, Stefan and Affolter, Markus (2016) ‘BMP morphogen gradients in flies’, Cytokine & Growth Factor Reviews, 27, pp. 119–27. Available at: https://doi.org/10.1016/j.cytogfr.2015.11.003.
Pasakarnis, Laurynas et al. (2016) ‘Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure’, Nature Cell Biology, 18(11), pp. 1161–1172. Available at: https://doi.org/10.1038/ncb3420.
Pasakarnis, Laurynas et al. (2016) ‘Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure’, Nature Cell Biology, 18(11), pp. 1161–1172. Available at: https://doi.org/10.1038/ncb3420.
Affolter, Markus (2015) ‘Nachruf auf Walter J. Gehring’, Zoologie: Mitteilungen der Deutschen Zoologischen Gesellschaft, 2015, pp. 73–80.
Affolter, Markus (2015) ‘Nachruf auf Walter J. Gehring’, Zoologie: Mitteilungen der Deutschen Zoologischen Gesellschaft, 2015, pp. 73–80.
Affolter, Markus and Nigg, Erich A. (2015) ‘In memoriam - Walter J. Gehring’, Chromosoma, 124(3), pp. 291–291. Available at: https://doi.org/10.1007/s00412-015-0523-z.
Affolter, Markus and Nigg, Erich A. (2015) ‘In memoriam - Walter J. Gehring’, Chromosoma, 124(3), pp. 291–291. Available at: https://doi.org/10.1007/s00412-015-0523-z.
Aydogan, Vahap et al. (2015) ‘Endothelial cell division in angiogenic sprouts of differing cellular architecture’, Biology open, 4(10), pp. 1259–69. Available at: https://doi.org/10.1242/bio.012740.
Aydogan, Vahap et al. (2015) ‘Endothelial cell division in angiogenic sprouts of differing cellular architecture’, Biology open, 4(10), pp. 1259–69. Available at: https://doi.org/10.1242/bio.012740.
Bieli, Dimitri et al. (2015) ‘The drosophila melanogaster mutants apblot and apXasta affect an essential apterous wing enhancer’, G3 : Genes, Genomes, Genetics, 5(6), pp. 1129–1143. Available at: https://doi.org/10.1534/g3.115.017707.
Bieli, Dimitri et al. (2015) ‘The drosophila melanogaster mutants apblot and apXasta affect an essential apterous wing enhancer’, G3 : Genes, Genomes, Genetics, 5(6), pp. 1129–1143. Available at: https://doi.org/10.1534/g3.115.017707.
Bieli, Dimitri et al. (2015) ‘Establishment of a Developmental Compartment Requires Interactions between Three Synergistic Cis-regulatory Modules’, PLoS genetics, 11(10), p. e1005376. Available at: https://doi.org/10.1371/journal.pgen.1005376.
Bieli, Dimitri et al. (2015) ‘Establishment of a Developmental Compartment Requires Interactions between Three Synergistic Cis-regulatory Modules’, PLoS genetics, 11(10), p. e1005376. Available at: https://doi.org/10.1371/journal.pgen.1005376.
Bürglin, Thomas R. and Affolter, Markus (2015) ‘Homeodomain proteins: an update.’, Chromosoma, 125(3), pp. 497–521. Available at: https://doi.org/10.1007/s00412-015-0543-8.
Bürglin, Thomas R. and Affolter, Markus (2015) ‘Homeodomain proteins: an update.’, Chromosoma, 125(3), pp. 497–521. Available at: https://doi.org/10.1007/s00412-015-0543-8.
Denes, Alexandru Stefan, Kanca, Oguz and Affolter, Markus (2015) ‘A cellular process that includes asymmetric cytokinesis remodels the dorsal tracheal branches in Drosophila larvae’, Development, 142(10), pp. 1794–1805. Available at: https://doi.org/10.1242/dev.118372.
Denes, Alexandru Stefan, Kanca, Oguz and Affolter, Markus (2015) ‘A cellular process that includes asymmetric cytokinesis remodels the dorsal tracheal branches in Drosophila larvae’, Development, 142(10), pp. 1794–1805. Available at: https://doi.org/10.1242/dev.118372.
Harmansa, Stefan et al. (2015) ‘Dpp spreading is required for medial but not for lateral wing disc growth’, Nature, 527(7578), pp. 317–22. Available at: https://doi.org/10.1038/nature15712.
Harmansa, Stefan et al. (2015) ‘Dpp spreading is required for medial but not for lateral wing disc growth’, Nature, 527(7578), pp. 317–22. Available at: https://doi.org/10.1038/nature15712.
Heckel, Emilie et al. (2015) ‘Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development’, Current biology, 25(10), pp. 1354–61. Available at: https://doi.org/10.1016/j.cub.2015.03.038.
Heckel, Emilie et al. (2015) ‘Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development’, Current biology, 25(10), pp. 1354–61. Available at: https://doi.org/10.1016/j.cub.2015.03.038.
Ittig, Simon J. et al. (2015) ‘A bacterial type III secretion-based protein delivery tool for broad applications in cell biology’, The Journal of cell biology, 211(4), pp. 913–931. Available at: https://doi.org/10.1083/jcb.201502074.
Ittig, Simon J. et al. (2015) ‘A bacterial type III secretion-based protein delivery tool for broad applications in cell biology’, The Journal of cell biology, 211(4), pp. 913–931. Available at: https://doi.org/10.1083/jcb.201502074.
Lenard, Anna et al. (2015) ‘Endothelial Cell Self-fusion during Vascular Pruning’, PLoS biology, 13(4), p. e1002126. Available at: https://doi.org/10.1371/journal.pbio.1002126.
Lenard, Anna et al. (2015) ‘Endothelial Cell Self-fusion during Vascular Pruning’, PLoS biology, 13(4), p. e1002126. Available at: https://doi.org/10.1371/journal.pbio.1002126.
Phng, Li-Kun et al. (2015) ‘Formin-mediated actin polymerization at endothelial junctions is required for vessel lumen formation and stabilization’, Developmental cell, 32(1), pp. 123–32. Available at: https://doi.org/10.1016/j.devcel.2014.11.017.
Phng, Li-Kun et al. (2015) ‘Formin-mediated actin polymerization at endothelial junctions is required for vessel lumen formation and stabilization’, Developmental cell, 32(1), pp. 123–32. Available at: https://doi.org/10.1016/j.devcel.2014.11.017.
Affolter, Markus and Müller, Martin (2014) ‘Walter Jakob Gehring (1939-2014)’, Developmental Cell, 30(2), pp. 120–2. Available at: https://doi.org/10.1016/j.devcel.2014.07.011.
Affolter, Markus and Müller, Martin (2014) ‘Walter Jakob Gehring (1939-2014)’, Developmental Cell, 30(2), pp. 120–2. Available at: https://doi.org/10.1016/j.devcel.2014.07.011.
Affolter, Markus and Wüthrich, Kurt (2014) ‘Walter Jakob Gehring: a Master of Developmental Biology’, Proceedings of the National Academy of Sciences of the United States of America, 111(35), pp. 12574–5. Available at: https://doi.org/10.1073/pnas.1413434111.
Affolter, Markus and Wüthrich, Kurt (2014) ‘Walter Jakob Gehring: a Master of Developmental Biology’, Proceedings of the National Academy of Sciences of the United States of America, 111(35), pp. 12574–5. Available at: https://doi.org/10.1073/pnas.1413434111.
Brauchle, Michael et al. (2014) ‘Protein interference applications in cellular and developmental biology using DARPins that recognize GFP and mCherry’, Biology open, 3(12), pp. 1252–61. Available at: https://doi.org/10.1242/bio.201410041.
Brauchle, Michael et al. (2014) ‘Protein interference applications in cellular and developmental biology using DARPins that recognize GFP and mCherry’, Biology open, 3(12), pp. 1252–61. Available at: https://doi.org/10.1242/bio.201410041.
De Smet, Frederik et al. (2014) ‘Fibroblast Growth Factor Signaling Affects Vascular Outgrowth and Is Required for the Maintenance of Blood Vessel Integrity’, Chemistry & biology, 21(10), pp. 1310–1317. Available at: https://doi.org/10.1016/j.chembiol.2014.07.018.
De Smet, Frederik et al. (2014) ‘Fibroblast Growth Factor Signaling Affects Vascular Outgrowth and Is Required for the Maintenance of Blood Vessel Integrity’, Chemistry & biology, 21(10), pp. 1310–1317. Available at: https://doi.org/10.1016/j.chembiol.2014.07.018.
Hultin, Sara et al. (2014) ‘AmotL2 Links VE-cadherin to Contractile Actin Fibres Necessary for Aortic Lumen Expansion’, Nature communications, 5, p. 3743. Available at: https://doi.org/10.1038/ncomms4743.
Hultin, Sara et al. (2014) ‘AmotL2 Links VE-cadherin to Contractile Actin Fibres Necessary for Aortic Lumen Expansion’, Nature communications, 5, p. 3743. Available at: https://doi.org/10.1038/ncomms4743.
Kanca, Oguz et al. (2014) ‘Raeppli: a whole-tissue labeling tool for live imaging of Drosophila development’, Development, 141(2), pp. 472–80. Available at: https://doi.org/10.1242/dev.102913.
Kanca, Oguz et al. (2014) ‘Raeppli: a whole-tissue labeling tool for live imaging of Drosophila development’, Development, 141(2), pp. 472–80. Available at: https://doi.org/10.1242/dev.102913.
Kanca, Oguz, Ochoa-Espinosa, Amanda and Affolter, Markus (2014) ‘IV. Tools and Methods for Studying Cell Migration and Cell Rearrangement in Tissue and Organ Development’, Methods, 68(1), pp. 228–32. Available at: https://doi.org/10.1016/j.ymeth.2014.03.004.
Kanca, Oguz, Ochoa-Espinosa, Amanda and Affolter, Markus (2014) ‘IV. Tools and Methods for Studying Cell Migration and Cell Rearrangement in Tissue and Organ Development’, Methods, 68(1), pp. 228–32. Available at: https://doi.org/10.1016/j.ymeth.2014.03.004.
Santos, M. Emília et al. (2014) ‘The evolution of cichlid fish egg-spots is linked with a cis-regulatory change’, Nature Communications, 5, p. 5149. Available at: https://doi.org/10.1038/ncomms6149.
Santos, M. Emília et al. (2014) ‘The evolution of cichlid fish egg-spots is linked with a cis-regulatory change’, Nature Communications, 5, p. 5149. Available at: https://doi.org/10.1038/ncomms6149.
Sauteur, Loïc et al. (2014) ‘Cdh5/VE-cadherin Promotes Endothelial Cell Interface Elongation via Cortical Actin Polymerization during Angiogenic Sprouting’, Cell reports, 9(2), pp. 504–13. Available at: https://doi.org/10.1016/j.celrep.2014.09.024.
Sauteur, Loïc et al. (2014) ‘Cdh5/VE-cadherin Promotes Endothelial Cell Interface Elongation via Cortical Actin Polymerization during Angiogenic Sprouting’, Cell reports, 9(2), pp. 504–13. Available at: https://doi.org/10.1016/j.celrep.2014.09.024.
Shimmi, Osamu, Matsuda, Shinya and Hatakeyama, Masatsugu (2014) ‘Insights into the molecular mechanisms underlying diversified wing venation among insects’, Proceedings of the Royal Society. Series B, Biological Sciences, 281(1789), p. 20140264. Available at: https://doi.org/10.1098/rspb.2014.0264.
Shimmi, Osamu, Matsuda, Shinya and Hatakeyama, Masatsugu (2014) ‘Insights into the molecular mechanisms underlying diversified wing venation among insects’, Proceedings of the Royal Society. Series B, Biological Sciences, 281(1789), p. 20140264. Available at: https://doi.org/10.1098/rspb.2014.0264.
Caussinus, Emmanuel, Kanca, Oguz and Affolter, Markus (2013) ‘Protein knockouts in living eukaryotes using deGradFP and green fluorescent protein fusion targets’, Current protocols in protein science, 73(30.2), p. Unit 30.2. Available at: https://doi.org/10.1002/0471140864.ps3002s73.
Caussinus, Emmanuel, Kanca, Oguz and Affolter, Markus (2013) ‘Protein knockouts in living eukaryotes using deGradFP and green fluorescent protein fusion targets’, Current protocols in protein science, 73(30.2), p. Unit 30.2. Available at: https://doi.org/10.1002/0471140864.ps3002s73.
Hayashi, Makoto et al. (2013) ‘VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation’, Nature communications, 4, p. 1672. Available at: https://doi.org/10.1038/ncomms2683.
Hayashi, Makoto et al. (2013) ‘VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation’, Nature communications, 4, p. 1672. Available at: https://doi.org/10.1038/ncomms2683.
Helker, Christian S M et al. (2013) ‘The Zebrafish Common Cardinal Veins Develop by a Novel Mechanism: Lumen Ensheathment’, Development, 140(13), pp. 2776–86. Available at: https://doi.org/10.1242/dev.091876.
Helker, Christian S M et al. (2013) ‘The Zebrafish Common Cardinal Veins Develop by a Novel Mechanism: Lumen Ensheathment’, Development, 140(13), pp. 2776–86. Available at: https://doi.org/10.1242/dev.091876.
Kochhan, Eva et al. (2013) ‘Blood Flow Changes Coincide with Cellular Rearrangements during Blood Vessel Pruning in Zebrafish Embryos’, PLoS ONE, 8(10), p. e75060. Available at: https://doi.org/10.1371/journal.pone.0075060.
Kochhan, Eva et al. (2013) ‘Blood Flow Changes Coincide with Cellular Rearrangements during Blood Vessel Pruning in Zebrafish Embryos’, PLoS ONE, 8(10), p. e75060. Available at: https://doi.org/10.1371/journal.pone.0075060.
Lenard, Anna and Affolter, Markus (2013) ‘Tugging organs into place’, Developmental cell, 27(3), pp. 243–244. Available at: https://doi.org/10.1016/j.devcel.2013.10.021.
Lenard, Anna and Affolter, Markus (2013) ‘Tugging organs into place’, Developmental cell, 27(3), pp. 243–244. Available at: https://doi.org/10.1016/j.devcel.2013.10.021.
Lenard, Anna et al. (2013) ‘In Vivo Analysis Reveals a Highly Stereotypic Morphogenetic Pathway of Vascular Anastomosis’, Developmental cell, 25(5), pp. 492–506. Available at: https://doi.org/10.1016/j.devcel.2013.05.010.
Lenard, Anna et al. (2013) ‘In Vivo Analysis Reveals a Highly Stereotypic Morphogenetic Pathway of Vascular Anastomosis’, Developmental cell, 25(5), pp. 492–506. Available at: https://doi.org/10.1016/j.devcel.2013.05.010.
Matsuda, Shinya, Blanco, Jorge and Shimmi, Osamu (2013) ‘A feed-forward loop coupling extracellular BMP transport and morphogenesis in Drosophila wing’, PLoS Genetics, 9(3), p. e1003403. Available at: https://doi.org/10.1371/journal.pgen.1003403.
Matsuda, Shinya, Blanco, Jorge and Shimmi, Osamu (2013) ‘A feed-forward loop coupling extracellular BMP transport and morphogenesis in Drosophila wing’, PLoS Genetics, 9(3), p. e1003403. Available at: https://doi.org/10.1371/journal.pgen.1003403.
Matsuda, Shinya et al. (2013) ‘Dpp/BMP transport mechanism is required for wing venation in the sawfly Athalia rosae’, Insect biochemistry and molecular biology, 43(5), pp. 466–73. Available at: https://doi.org/10.1016/j.ibmb.2013.02.008.
Matsuda, Shinya et al. (2013) ‘Dpp/BMP transport mechanism is required for wing venation in the sawfly Athalia rosae’, Insect biochemistry and molecular biology, 43(5), pp. 466–73. Available at: https://doi.org/10.1016/j.ibmb.2013.02.008.
Siekmann, Arndt F., Affolter, Markus and Belting, Heinz-Georg (2013) ‘The Tip Cell Concept Ten Years After : New Players Tune in for a Common Theme’, Experimental cell research, 319(9), pp. 1255–1263. Available at: https://doi.org/10.1016/j.yexcr.2013.01.019.
Siekmann, Arndt F., Affolter, Markus and Belting, Heinz-Georg (2013) ‘The Tip Cell Concept Ten Years After : New Players Tune in for a Common Theme’, Experimental cell research, 319(9), pp. 1255–1263. Available at: https://doi.org/10.1016/j.yexcr.2013.01.019.
Baer, Magdalena M. et al. (2012) ‘Microsomal triacylglycerol transfer protein (MTP) is required cell autonomously to expand tracheal lumen in Drosophila’, Journal of cell science, 125(24), pp. 6038–6048. Available at: https://doi.org/10.1242/jcs.110452.
Baer, Magdalena M. et al. (2012) ‘Microsomal triacylglycerol transfer protein (MTP) is required cell autonomously to expand tracheal lumen in Drosophila’, Journal of cell science, 125(24), pp. 6038–6048. Available at: https://doi.org/10.1242/jcs.110452.