Biochemistry (Hall)
Publications
278 found
Show per page
Battaglioni, Stefania et al. (2024) ‘mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR’, Proceedings of the National Academy of Sciences, 121(34). Available at: https://doi.org/10.1073/pnas.2405959121.
Battaglioni, Stefania et al. (2024) ‘mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR’, Proceedings of the National Academy of Sciences, 121(34). Available at: https://doi.org/10.1073/pnas.2405959121.
Borenäs, Marcus et al. (2024) ‘ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition’, Proceedings of the National Academy of Sciences of the United States of America, 121(1). Available at: https://doi.org/10.1073/pnas.2315242121.
Borenäs, Marcus et al. (2024) ‘ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition’, Proceedings of the National Academy of Sciences of the United States of America, 121(1). Available at: https://doi.org/10.1073/pnas.2315242121.
Mossmann, Dirk et al. (2023) ‘Arginine reprograms metabolism in liver cancer via RBM39’, Cell, 186(23), pp. 5068–5083.e23. Available at: https://doi.org/10.1016/j.cell.2023.09.011.
Mossmann, Dirk et al. (2023) ‘Arginine reprograms metabolism in liver cancer via RBM39’, Cell, 186(23), pp. 5068–5083.e23. Available at: https://doi.org/10.1016/j.cell.2023.09.011.
Cortada, Maurizio et al. (2023) ‘mTORC2 regulates auditory hair cell structure and function’, iScience, 26(9), p. 107687. Available at: https://doi.org/10.1016/j.isci.2023.107687.
Cortada, Maurizio et al. (2023) ‘mTORC2 regulates auditory hair cell structure and function’, iScience, 26(9), p. 107687. Available at: https://doi.org/10.1016/j.isci.2023.107687.
Frei, Irina C. et al. (2023) ‘Hepatic mTORC2 compensates for loss of adipose mTORC2 in mediating energy storage and glucose homeostasis’, American Journal of Physiology. Endocrinology and Metabolism, 324(6), pp. E589–E598. Available at: https://doi.org/10.1152/ajpendo.00338.2022.
Frei, Irina C. et al. (2023) ‘Hepatic mTORC2 compensates for loss of adipose mTORC2 in mediating energy storage and glucose homeostasis’, American Journal of Physiology. Endocrinology and Metabolism, 324(6), pp. E589–E598. Available at: https://doi.org/10.1152/ajpendo.00338.2022.
Linder, Markus et al. (2023) ‘Colitis Is Associated with Loss of the Histidine Phosphatase LHPP and Upregulation of Histidine Phosphorylation in Intestinal Epithelial Cells’, Biomedicine, 11(2158), pp. 1–8. Available at: https://doi.org/10.3390/biomedicines11082158.
Linder, Markus et al. (2023) ‘Colitis Is Associated with Loss of the Histidine Phosphatase LHPP and Upregulation of Histidine Phosphorylation in Intestinal Epithelial Cells’, Biomedicine, 11(2158), pp. 1–8. Available at: https://doi.org/10.3390/biomedicines11082158.
Shetty, Sunil et al. (2023) ‘TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes’, The EMBO Journal, 42(5), p. e112344. Available at: https://doi.org/10.15252/embj.2022112344.
Shetty, Sunil et al. (2023) ‘TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes’, The EMBO Journal, 42(5), p. e112344. Available at: https://doi.org/10.15252/embj.2022112344.
Shimobayashi, Mitsugu et al. (2023) ‘Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia’, eLife, 12, p. e85103. Available at: https://doi.org/10.7554/elife.85103.
Shimobayashi, Mitsugu et al. (2023) ‘Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia’, eLife, 12, p. e85103. Available at: https://doi.org/10.7554/elife.85103.
Battaglioni, Stefania et al. (2022) ‘mTOR substrate phosphorylation in growth control’, Cell, 185(11), pp. 1814–1836. Available at: https://doi.org/10.1016/j.cell.2022.04.013.
Battaglioni, Stefania et al. (2022) ‘mTOR substrate phosphorylation in growth control’, Cell, 185(11), pp. 1814–1836. Available at: https://doi.org/10.1016/j.cell.2022.04.013.
Benjamin, Don and Hall, Michael N. (2022) ‘Combining metformin with lactate transport inhibitors as a treatment modality for cancer-recommendation proposal’, Frontiers in Oncology, 12, p. 1034397. Available at: https://doi.org/10.3389/fonc.2022.1034397.
Benjamin, Don and Hall, Michael N. (2022) ‘Combining metformin with lactate transport inhibitors as a treatment modality for cancer-recommendation proposal’, Frontiers in Oncology, 12, p. 1034397. Available at: https://doi.org/10.3389/fonc.2022.1034397.
Blandino-Rosano, Manuel et al. (2022) ‘Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling’, American Journal of Physiology, Endocrinology and Metabolism, 323(2), pp. E133–E144. Available at: https://doi.org/10.1152/ajpendo.00076.2022.
Blandino-Rosano, Manuel et al. (2022) ‘Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling’, American Journal of Physiology, Endocrinology and Metabolism, 323(2), pp. E133–E144. Available at: https://doi.org/10.1152/ajpendo.00076.2022.
Frei, Irina C. et al. (2022) ‘Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis’, Molecular metabolism, 65, p. 101580. Available at: https://doi.org/10.1016/j.molmet.2022.101580.
Frei, Irina C. et al. (2022) ‘Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis’, Molecular metabolism, 65, p. 101580. Available at: https://doi.org/10.1016/j.molmet.2022.101580.
Mossmann, Dirk et al. (2022) ‘Elevated arginine levels in liver tumors promote metabolic reprogramming and tumor growth’. bioRxiv. Available at: https://doi.org/10.1101/2022.04.26.489545.
Mossmann, Dirk et al. (2022) ‘Elevated arginine levels in liver tumors promote metabolic reprogramming and tumor growth’. bioRxiv. Available at: https://doi.org/10.1101/2022.04.26.489545.
Ng, Charlotte K. Y. et al. (2022) ‘Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages’, Nature Communications, 13(1), p. 2436. Available at: https://doi.org/10.1038/s41467-022-29960-8.
Ng, Charlotte K. Y. et al. (2022) ‘Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages’, Nature Communications, 13(1), p. 2436. Available at: https://doi.org/10.1038/s41467-022-29960-8.
Park, Sujin et al. (2022) ‘Transcription factors TEAD2 and E2A globally repress acetyl-CoA synthesis to promote tumorigenesis’, Molecular Cell, 82(22), pp. 4246–4261.e11. Available at: https://doi.org/10.1016/j.molcel.2022.10.027.
Park, Sujin et al. (2022) ‘Transcription factors TEAD2 and E2A globally repress acetyl-CoA synthesis to promote tumorigenesis’, Molecular Cell, 82(22), pp. 4246–4261.e11. Available at: https://doi.org/10.1016/j.molcel.2022.10.027.
Suter, Polina et al. (2022) ‘Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model’, PLoS computational biology, 18(9), p. e1009767. Available at: https://doi.org/10.1371/journal.pcbi.1009767.
Suter, Polina et al. (2022) ‘Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model’, PLoS computational biology, 18(9), p. e1009767. Available at: https://doi.org/10.1371/journal.pcbi.1009767.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.
Dimitrakopoulos, Christos et al. (2021) ‘Multi-omics data integration reveals novel drug targets in hepatocellular carcinoma’, BMC genomics, 22(1), p. 592. Available at: https://doi.org/10.1186/s12864-021-07876-9.
Dimitrakopoulos, Christos et al. (2021) ‘Multi-omics data integration reveals novel drug targets in hepatocellular carcinoma’, BMC genomics, 22(1), p. 592. Available at: https://doi.org/10.1186/s12864-021-07876-9.
Gao, Ruize et al. (2021) ‘USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis’, Oncogenesis, 10(7), p. 52. Available at: https://doi.org/10.1038/s41389-021-00338-7.
Gao, Ruize et al. (2021) ‘USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis’, Oncogenesis, 10(7), p. 52. Available at: https://doi.org/10.1038/s41389-021-00338-7.
Muralidharan, Sneha et al. (2021) ‘A reference map of sphingolipids in murine tissues’, Cell Reports, 35(11), p. 109250. Available at: https://doi.org/10.1016/j.celrep.2021.109250.
Muralidharan, Sneha et al. (2021) ‘A reference map of sphingolipids in murine tissues’, Cell Reports, 35(11), p. 109250. Available at: https://doi.org/10.1016/j.celrep.2021.109250.
Shetty, Sunil and Hall, Michael N. (2021) ‘More writing: mTORC1 promotes m; 6; A mRNA methylation’, Molecular Cell, 81(10), pp. 2057–2058. Available at: https://doi.org/10.1016/j.molcel.2021.04.020.
Shetty, Sunil and Hall, Michael N. (2021) ‘More writing: mTORC1 promotes m; 6; A mRNA methylation’, Molecular Cell, 81(10), pp. 2057–2058. Available at: https://doi.org/10.1016/j.molcel.2021.04.020.
Teufel, Claudia et al. (2021) ‘mTOR signaling mediates ILC3-driven immunopathology’, Mucosal Immunology, 14(6), pp. 1323–1334. Available at: https://doi.org/10.1038/s41385-021-00432-4.
Teufel, Claudia et al. (2021) ‘mTOR signaling mediates ILC3-driven immunopathology’, Mucosal Immunology, 14(6), pp. 1323–1334. Available at: https://doi.org/10.1038/s41385-021-00432-4.
Wälchli, Matthias et al. (2021) ‘Regulation of human mTOR complexes by DEPTOR’, eLife, 10, p. e70871. Available at: https://doi.org/10.7554/elife.70871.
Wälchli, Matthias et al. (2021) ‘Regulation of human mTOR complexes by DEPTOR’, eLife, 10, p. e70871. Available at: https://doi.org/10.7554/elife.70871.
Ding, Xiaolei et al. (2020) ‘Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation’, Journal of Allergy and Clinical Immunology, 145(1), pp. 283–300.e8. Available at: https://doi.org/10.1016/j.jaci.2019.07.033.
Ding, Xiaolei et al. (2020) ‘Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation’, Journal of Allergy and Clinical Immunology, 145(1), pp. 283–300.e8. Available at: https://doi.org/10.1016/j.jaci.2019.07.033.
Fu, Wenxiang and Hall, Michael N. (2020) ‘Regulation of mTORC2 Signaling’, Genes, 11(9), p. 1045. Available at: https://doi.org/10.3390/genes11091045.
Fu, Wenxiang and Hall, Michael N. (2020) ‘Regulation of mTORC2 Signaling’, Genes, 11(9), p. 1045. Available at: https://doi.org/10.3390/genes11091045.
González, Asier et al. (2020) ‘AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control’, Cell metabolism, 31(3), pp. 472–492. Available at: https://doi.org/10.1016/j.cmet.2020.01.015.
González, Asier et al. (2020) ‘AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control’, Cell metabolism, 31(3), pp. 472–492. Available at: https://doi.org/10.1016/j.cmet.2020.01.015.
Liko, Dritan et al. (2020) ‘Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs’, Proceedings of the National Academy of Sciences, 117(3), pp. 1524–1532. Available at: https://doi.org/10.1073/pnas.1918931117.
Liko, Dritan et al. (2020) ‘Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs’, Proceedings of the National Academy of Sciences, 117(3), pp. 1524–1532. Available at: https://doi.org/10.1073/pnas.1918931117.
Linder, Markus et al. (2020) ‘Colitis is associated with loss of LHPP and up-regulation of histidine phosphorylation in intestinal epithelial cells’. bioRxiv. Available at: https://doi.org/10.1101/2020.10.11.334334.
Linder, Markus et al. (2020) ‘Colitis is associated with loss of LHPP and up-regulation of histidine phosphorylation in intestinal epithelial cells’. bioRxiv. Available at: https://doi.org/10.1101/2020.10.11.334334.
Scaiola, Alain et al. (2020) ‘The 3.2-Å resolution structure of human mTORC2’, Science advances, 6(45), p. eabc1251. Available at: https://doi.org/10.1126/sciadv.abc1251.
Scaiola, Alain et al. (2020) ‘The 3.2-Å resolution structure of human mTORC2’, Science advances, 6(45), p. eabc1251. Available at: https://doi.org/10.1126/sciadv.abc1251.
Shimobayashi, Mitsugu et al. (2020) ‘Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia’. bioRxiv. Available at: https://doi.org/10.1101/2019.12.28.887794.
Shimobayashi, Mitsugu et al. (2020) ‘Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia’. bioRxiv. Available at: https://doi.org/10.1101/2019.12.28.887794.
Benjamin, Don et al. (2019) ‘mTOR dependent transformed human cells have a distinct set of essential genes from bcr-abl transformed cells’, bioRxiv, pp. 1–24. Available at: https://doi.org/10.1101/737817.
Benjamin, Don et al. (2019) ‘mTOR dependent transformed human cells have a distinct set of essential genes from bcr-abl transformed cells’, bioRxiv, pp. 1–24. Available at: https://doi.org/10.1101/737817.
Benjamin, Don and Hall, Michael N. (2019) ‘Lactate jump-starts mTORC1 in cancer cells’, EMBO Reports, 20(6), p. e48302. Available at: https://doi.org/10.15252/embr.201948302.
Benjamin, Don and Hall, Michael N. (2019) ‘Lactate jump-starts mTORC1 in cancer cells’, EMBO Reports, 20(6), p. e48302. Available at: https://doi.org/10.15252/embr.201948302.
Kessi-Pérez, Eduardo I. et al. (2019) ‘KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae’, Frontiers in Microbiology, 10, p. 1686. Available at: https://doi.org/10.3389/fmicb.2019.01686.
Kessi-Pérez, Eduardo I. et al. (2019) ‘KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae’, Frontiers in Microbiology, 10, p. 1686. Available at: https://doi.org/10.3389/fmicb.2019.01686.
Kessi-Pérez, E. I. et al. (2019) ‘Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains’, Yeast, 36(1), pp. 65–74. Available at: https://doi.org/10.1002/yea.3351.
Kessi-Pérez, E. I. et al. (2019) ‘Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains’, Yeast, 36(1), pp. 65–74. Available at: https://doi.org/10.1002/yea.3351.
Li, Jing et al. (2019) ‘Shared molecular targets confer resistance over short and long evolutionary timescales’, Molecular biology and evolution, 36(4), pp. 691–708. Available at: https://doi.org/10.1093/molbev/msz006.
Li, Jing et al. (2019) ‘Shared molecular targets confer resistance over short and long evolutionary timescales’, Molecular biology and evolution, 36(4), pp. 691–708. Available at: https://doi.org/10.1093/molbev/msz006.
Suda, Kazuki et al. (2019) ‘TORC1 regulates autophagy induction in response to proteotoxic stress in yeast and human cells’, Biochemical and Biophysical Research Communications, 511(2), pp. 434–439. Available at: https://doi.org/10.1016/j.bbrc.2019.02.077.
Suda, Kazuki et al. (2019) ‘TORC1 regulates autophagy induction in response to proteotoxic stress in yeast and human cells’, Biochemical and Biophysical Research Communications, 511(2), pp. 434–439. Available at: https://doi.org/10.1016/j.bbrc.2019.02.077.
Tang, Fengyuan et al. (2019) ‘LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function’, Nature Communications, 10(1), p. 5755. Available at: https://doi.org/10.1038/s41467-019-13591-7.
Tang, Fengyuan et al. (2019) ‘LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function’, Nature Communications, 10(1), p. 5755. Available at: https://doi.org/10.1038/s41467-019-13591-7.
Trinh, Beckey et al. (2019) ‘Treatment of Primary Aldosteronism with mTORC1 Inhibitors’, The Journal of Clinical Endocrinology and Metabolism, 104(10), pp. 4703–4714. Available at: https://doi.org/10.1210/jc.2019-00563.
Trinh, Beckey et al. (2019) ‘Treatment of Primary Aldosteronism with mTORC1 Inhibitors’, The Journal of Clinical Endocrinology and Metabolism, 104(10), pp. 4703–4714. Available at: https://doi.org/10.1210/jc.2019-00563.
Bantug, G. R. et al. (2018) ‘Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells’, Immunity, 48(3), pp. 542–555.e6. Available at: https://doi.org/10.1016/j.immuni.2018.02.012.
Bantug, G. R. et al. (2018) ‘Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells’, Immunity, 48(3), pp. 542–555.e6. Available at: https://doi.org/10.1016/j.immuni.2018.02.012.
Benjamin, Don et al. (2018) ‘Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with Metformin due to NAD+ Depletion in Cancer Cells’, Cell Reports, 25(11), pp. 3047–3058.e4. Available at: https://doi.org/10.1016/j.celrep.2018.11.043.
Benjamin, Don et al. (2018) ‘Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with Metformin due to NAD+ Depletion in Cancer Cells’, Cell Reports, 25(11), pp. 3047–3058.e4. Available at: https://doi.org/10.1016/j.celrep.2018.11.043.
Dimitrakopoulos, C. et al. (2018) ‘Network-based integration of multi-omics data for prioritizing cancer genes’, Bioinformatics, 34(14), pp. 2441–2448. Available at: https://doi.org/10.1093/bioinformatics/bty148.
Dimitrakopoulos, C. et al. (2018) ‘Network-based integration of multi-omics data for prioritizing cancer genes’, Bioinformatics, 34(14), pp. 2441–2448. Available at: https://doi.org/10.1093/bioinformatics/bty148.
Hindupur, Sravanth K. et al. (2018) ‘The protein histidine phosphatase LHPP is a tumour suppressor’, Nature, 555(7698), p. 678–+. Available at: https://doi.org/10.1038/nature26140.
Hindupur, Sravanth K. et al. (2018) ‘The protein histidine phosphatase LHPP is a tumour suppressor’, Nature, 555(7698), p. 678–+. Available at: https://doi.org/10.1038/nature26140.
Martin, Sally K. et al. (2018) ‘mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis’, Scientific Reports, 8(1), p. 14501. Available at: https://doi.org/10.1038/s41598-018-32858-5.
Martin, Sally K. et al. (2018) ‘mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis’, Scientific Reports, 8(1), p. 14501. Available at: https://doi.org/10.1038/s41598-018-32858-5.
Mossmann, Dirk, Park, Sujin and Hall, Michael N. (2018) ‘mTOR signalling and cellular metabolism are mutual determinants in cancer’, Nature Reviews. Cancer, 18(12), pp. 744–757. Available at: https://doi.org/10.1038/s41568-018-0074-8.
Mossmann, Dirk, Park, Sujin and Hall, Michael N. (2018) ‘mTOR signalling and cellular metabolism are mutual determinants in cancer’, Nature Reviews. Cancer, 18(12), pp. 744–757. Available at: https://doi.org/10.1038/s41568-018-0074-8.
Mostofa, M. G. et al. (2018) ‘CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy’, Journal of Cell Biology, 217(8), pp. 2675–2690. Available at: https://doi.org/10.1083/jcb.201706164.
Mostofa, M. G. et al. (2018) ‘CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy’, Journal of Cell Biology, 217(8), pp. 2675–2690. Available at: https://doi.org/10.1083/jcb.201706164.
Shimobayashi, M. et al. (2018) ‘Insulin resistance causes inflammation in adipose tissue’, Journal of Clinical Investigation, 128(4), pp. 1538–1550. Available at: https://doi.org/10.1172/jci96139.
Shimobayashi, M. et al. (2018) ‘Insulin resistance causes inflammation in adipose tissue’, Journal of Clinical Investigation, 128(4), pp. 1538–1550. Available at: https://doi.org/10.1172/jci96139.
Singer, Jochen et al. (2018) ‘NGS-pipe: a flexible, easily extendable, and highly configurable framework for NGS analysis’, Bioinformatics, 34(1), pp. 107–108. Available at: https://doi.org/10.1093/bioinformatics/btx540.
Singer, Jochen et al. (2018) ‘NGS-pipe: a flexible, easily extendable, and highly configurable framework for NGS analysis’, Bioinformatics, 34(1), pp. 107–108. Available at: https://doi.org/10.1093/bioinformatics/btx540.
Swierczynska, Marta M. et al. (2018) ‘Proteomic Landscape of Aldosterone-Producing Adenoma’, Hypertension (Dallas, Tex. : 1979), 73(2), pp. 469–480. Available at: https://doi.org/10.1161/hypertensionaha.118.11733.
Swierczynska, Marta M. et al. (2018) ‘Proteomic Landscape of Aldosterone-Producing Adenoma’, Hypertension (Dallas, Tex. : 1979), 73(2), pp. 469–480. Available at: https://doi.org/10.1161/hypertensionaha.118.11733.
Benjamin, D. and Hall, M. N. (2017) ‘mTORC1 Controls Synthesis of Its Activator GTP’, Cell Reports, 19(13), pp. 2643–2644. Available at: https://doi.org/10.1016/j.celrep.2017.06.032.
Benjamin, D. and Hall, M. N. (2017) ‘mTORC1 Controls Synthesis of Its Activator GTP’, Cell Reports, 19(13), pp. 2643–2644. Available at: https://doi.org/10.1016/j.celrep.2017.06.032.
Blandino-Rosano, M. et al. (2017) ‘Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing’, Nature Communications, 8, p. 16014. Available at: https://doi.org/10.1038/ncomms16014.
Blandino-Rosano, M. et al. (2017) ‘Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing’, Nature Communications, 8, p. 16014. Available at: https://doi.org/10.1038/ncomms16014.
Bozadjieva, Nadejda et al. (2017) ‘Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion’, The Journal of Clinical Investigation, 127(12), pp. 4379–4393. Available at: https://doi.org/10.1172/jci90004.
Bozadjieva, Nadejda et al. (2017) ‘Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion’, The Journal of Clinical Investigation, 127(12), pp. 4379–4393. Available at: https://doi.org/10.1172/jci90004.
Fitter, Stephen et al. (2017) ‘mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation’, Molecular and Cellular Biology, 37(7), pp. e00668–16. Available at: https://doi.org/10.1128/mcb.00668-16.
Fitter, Stephen et al. (2017) ‘mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation’, Molecular and Cellular Biology, 37(7), pp. e00668–16. Available at: https://doi.org/10.1128/mcb.00668-16.
González, A. and Hall, M. N. (2017) ‘Nutrient sensing and TOR signaling in yeast and mammals’, The EMBO Journal, 36(4), pp. 397–408. Available at: https://doi.org/10.15252/embj.201696010.
González, A. and Hall, M. N. (2017) ‘Nutrient sensing and TOR signaling in yeast and mammals’, The EMBO Journal, 36(4), pp. 397–408. Available at: https://doi.org/10.15252/embj.201696010.
Guri, Y. et al. (2017) ‘mTORC2 Promotes Tumorigenesis via Lipid Synthesis’, Cancer Cell, 32(6), pp. 807–823.e12. Available at: https://doi.org/10.1016/j.ccell.2017.11.011.
Guri, Y. et al. (2017) ‘mTORC2 Promotes Tumorigenesis via Lipid Synthesis’, Cancer Cell, 32(6), pp. 807–823.e12. Available at: https://doi.org/10.1016/j.ccell.2017.11.011.
Hall, M. N. (2017) ‘An Amazing Turn of Events’, Cell, 171(1), pp. 19–22. Available at: https://doi.org/10.1016/j.cell.2017.08.021.
Hall, M. N. (2017) ‘An Amazing Turn of Events’, Cell, 171(1), pp. 19–22. Available at: https://doi.org/10.1016/j.cell.2017.08.021.
Tang, F. et al. (2017) ‘A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice’, eLife, 6, p. e32497. Available at: https://doi.org/10.7554/elife.32497.
Tang, F. et al. (2017) ‘A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice’, eLife, 6, p. e32497. Available at: https://doi.org/10.7554/elife.32497.
Albert, V. et al. (2016) ‘mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue’, EMBO Molecular Medicine, 8(3), pp. 232–246. Available at: https://doi.org/10.15252/emmm.201505610.
Albert, V. et al. (2016) ‘mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue’, EMBO Molecular Medicine, 8(3), pp. 232–246. Available at: https://doi.org/10.15252/emmm.201505610.
Benjamin, D. et al. (2016) ‘Syrosingopine sensitizes cancer cells to killing by metformin’, Science Advances, 2(12), p. e1601756. Available at: https://doi.org/10.1126/sciadv.1601756.
Benjamin, D. et al. (2016) ‘Syrosingopine sensitizes cancer cells to killing by metformin’, Science Advances, 2(12), p. e1601756. Available at: https://doi.org/10.1126/sciadv.1601756.
Dazert, E. et al. (2016) ‘Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient’, Proceedings of the National Academy of Sciences of the United States of America, 113(5), pp. 1381–1386. Available at: https://doi.org/10.1073/pnas.1523434113.
Dazert, E. et al. (2016) ‘Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient’, Proceedings of the National Academy of Sciences of the United States of America, 113(5), pp. 1381–1386. Available at: https://doi.org/10.1073/pnas.1523434113.
Ding, X. et al. (2016) ‘mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation’, Nature Communications, 7, p. 13226. Available at: https://doi.org/10.1038/ncomms13226.
Ding, X. et al. (2016) ‘mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation’, Nature Communications, 7, p. 13226. Available at: https://doi.org/10.1038/ncomms13226.
Drägert, K. et al. (2016) ‘Basal mTORC2 activity and expression of its components display diurnal variation in mouse perivascular adipose tissue’, Biochemical and Biophysical Research Communications, 473(1), pp. 317–322. Available at: https://doi.org/10.1016/j.bbrc.2016.03.102.
Drägert, K. et al. (2016) ‘Basal mTORC2 activity and expression of its components display diurnal variation in mouse perivascular adipose tissue’, Biochemical and Biophysical Research Communications, 473(1), pp. 317–322. Available at: https://doi.org/10.1016/j.bbrc.2016.03.102.
Driscoll, D. R. et al. (2016) ‘mTORC2 signaling drives the development and progression of pancreatic cancer’, Cancer Research, 76(23), pp. 6911–6923. Available at: https://doi.org/10.1158/0008-5472.can-16-0810.
Driscoll, D. R. et al. (2016) ‘mTORC2 signaling drives the development and progression of pancreatic cancer’, Cancer Research, 76(23), pp. 6911–6923. Available at: https://doi.org/10.1158/0008-5472.can-16-0810.
Grahammer, F. et al. (2016) ‘mTORC2 critically regulates renal potassium handling’, Journal of Clinical Investigation, 126(5), pp. 1773–1782. Available at: https://doi.org/10.1172/jci80304.
Grahammer, F. et al. (2016) ‘mTORC2 critically regulates renal potassium handling’, Journal of Clinical Investigation, 126(5), pp. 1773–1782. Available at: https://doi.org/10.1172/jci80304.
Guri, Yakir and Hall, Michael N. (2016) ‘mTOR Signaling Confers Resistance to Targeted Cancer Drugs’, Trends in Cancer, 2(11), pp. 688–697. Available at: https://doi.org/10.1016/j.trecan.2016.10.006.
Guri, Yakir and Hall, Michael N. (2016) ‘mTOR Signaling Confers Resistance to Targeted Cancer Drugs’, Trends in Cancer, 2(11), pp. 688–697. Available at: https://doi.org/10.1016/j.trecan.2016.10.006.
Hall, M. N. (2016) ‘TOR and paradigm change: cell growth is controlled’, Molecular Biology of the Cell, 27(18), pp. 2804–2806. Available at: https://doi.org/10.1091/mbc.e15-05-0311.
Hall, M. N. (2016) ‘TOR and paradigm change: cell growth is controlled’, Molecular Biology of the Cell, 27(18), pp. 2804–2806. Available at: https://doi.org/10.1091/mbc.e15-05-0311.
Herkert, B. et al. (2016) ‘Maximizing the Efficacy of MAPK-Targeted Treatment in PTENLOF/BRAFMUT Melanoma through PI3K and IGF1R Inhibition’, Cancer Research, 76(2), pp. 390–402. Available at: https://doi.org/10.1158/0008-5472.can-14-3358.
Herkert, B. et al. (2016) ‘Maximizing the Efficacy of MAPK-Targeted Treatment in PTENLOF/BRAFMUT Melanoma through PI3K and IGF1R Inhibition’, Cancer Research, 76(2), pp. 390–402. Available at: https://doi.org/10.1158/0008-5472.can-14-3358.
Shende, P. et al. (2016) ‘Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy’, Cardiovascular Research, 109(1), pp. 103–114. Available at: https://doi.org/10.1093/cvr/cvv252.
Shende, P. et al. (2016) ‘Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy’, Cardiovascular Research, 109(1), pp. 103–114. Available at: https://doi.org/10.1093/cvr/cvv252.
Shimobayashi, M. and Hall, M. N. (2016) ‘Multiple amino acid sensing inputs to mTORC1’, Cell Research, 26(1), pp. 7–20. Available at: https://doi.org/10.1038/cr.2015.146.
Shimobayashi, M. and Hall, M. N. (2016) ‘Multiple amino acid sensing inputs to mTORC1’, Cell Research, 26(1), pp. 7–20. Available at: https://doi.org/10.1038/cr.2015.146.
Swierczynska, M. M. and Hall, M. N. (2016) ‘eIF4A moonlights as an off switch for TORC1’, The EMBO Journal, 35(10), pp. 1013–1014. Available at: https://doi.org/10.15252/embj.201694326.
Swierczynska, M. M. and Hall, M. N. (2016) ‘eIF4A moonlights as an off switch for TORC1’, The EMBO Journal, 35(10), pp. 1013–1014. Available at: https://doi.org/10.15252/embj.201694326.
Zhang, L. et al. (2016) ‘Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner’, Cell Reports, 14(5), pp. 1206–1217. Available at: https://doi.org/10.1016/j.celrep.2015.12.095.
Zhang, L. et al. (2016) ‘Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner’, Cell Reports, 14(5), pp. 1206–1217. Available at: https://doi.org/10.1016/j.celrep.2015.12.095.
Fonseca, B. D. et al. (2016) ‘Evolution of TOR and Translation Control’, in Hernández, G.; Jagus, R. (ed.) Evolution of the Protein Synthesis Machinery and Its Regulation. 1 edn. Cham: Springer (Evolution of the Protein Synthesis Machinery and Its Regulation), pp. 327–412. Available at: https://doi.org/10.1007/978-3-319-39468-8.
Fonseca, B. D. et al. (2016) ‘Evolution of TOR and Translation Control’, in Hernández, G.; Jagus, R. (ed.) Evolution of the Protein Synthesis Machinery and Its Regulation. 1 edn. Cham: Springer (Evolution of the Protein Synthesis Machinery and Its Regulation), pp. 327–412. Available at: https://doi.org/10.1007/978-3-319-39468-8.
Swierczynska, M. M. and Hall, M. N. (2016) ‘mTOR in Metabolic and Endocrine Disorders’, in Maiese, K. (ed.) Molecules to Medicine with mTOR. Translating Critical Pathways into Novel Therapeutic Strategies. 1st edn. London: Academic Press (Molecules to Medicine with mTOR. Translating Critical Pathways into Novel Therapeutic Strategies), pp. 347–364. Available at: https://doi.org/10.1016/b978-0-12-802733-2.00008-6.
Swierczynska, M. M. and Hall, M. N. (2016) ‘mTOR in Metabolic and Endocrine Disorders’, in Maiese, K. (ed.) Molecules to Medicine with mTOR. Translating Critical Pathways into Novel Therapeutic Strategies. 1st edn. London: Academic Press (Molecules to Medicine with mTOR. Translating Critical Pathways into Novel Therapeutic Strategies), pp. 347–364. Available at: https://doi.org/10.1016/b978-0-12-802733-2.00008-6.
Aimi, F. et al. (2015) ‘Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult’, Scientific Reports, 5, p. 17705. Available at: https://doi.org/10.1038/srep17705.
Aimi, F. et al. (2015) ‘Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult’, Scientific Reports, 5, p. 17705. Available at: https://doi.org/10.1038/srep17705.
Albert, V., Cornu, M. and Hall, M. N. (2015) ‘mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior’, Biochemical and Biophysical Research Communications, 464(2), pp. 480–486. Available at: https://doi.org/10.1016/j.bbrc.2015.06.161.
Albert, V., Cornu, M. and Hall, M. N. (2015) ‘mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior’, Biochemical and Biophysical Research Communications, 464(2), pp. 480–486. Available at: https://doi.org/10.1016/j.bbrc.2015.06.161.
Albert, V. and Hall, M. N. (2015) ‘mTOR signaling in cellular and organismal energetics’, Current Opinion in Cell Biology, pp. 55–66. Available at: https://doi.org/10.1016/j.ceb.2014.12.001.
Albert, V. and Hall, M. N. (2015) ‘mTOR signaling in cellular and organismal energetics’, Current Opinion in Cell Biology, pp. 55–66. Available at: https://doi.org/10.1016/j.ceb.2014.12.001.
Carr, T. D. et al. (2015) ‘Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors’, Carcinogenesis, 36(4), pp. 487–497. Available at: https://doi.org/10.1093/carcin/bgv012.
Carr, T. D. et al. (2015) ‘Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors’, Carcinogenesis, 36(4), pp. 487–497. Available at: https://doi.org/10.1093/carcin/bgv012.
Drägert, K. et al. (2015) ‘Deletion of Rictor in Brain and Fat Alters Peripheral Clock Gene Expression and Increases Blood Pressure’, Hypertension, 66(2), pp. 332–339. Available at: https://doi.org/10.1161/hypertensionaha.115.05398.
Drägert, K. et al. (2015) ‘Deletion of Rictor in Brain and Fat Alters Peripheral Clock Gene Expression and Increases Blood Pressure’, Hypertension, 66(2), pp. 332–339. Available at: https://doi.org/10.1161/hypertensionaha.115.05398.
Faller, W. J. et al. (2015) ‘mTORC1-mediated translational elongation limits intestinal tumour initiation and growth’, Nature, 517(7535), pp. 497–500. Available at: https://doi.org/10.1038/nature13896.
Faller, W. J. et al. (2015) ‘mTORC1-mediated translational elongation limits intestinal tumour initiation and growth’, Nature, 517(7535), pp. 497–500. Available at: https://doi.org/10.1038/nature13896.
González, A. et al. (2015) ‘TORC1 Promotes Phosphorylation of Ribosomal Protein S6 via the AGC Kinase Ypk3 in Saccharomyces cerevisiae’, PLoS ONE, 10(3), p. e0120250. Available at: https://doi.org/10.1371/journal.pone.0120250.
González, A. et al. (2015) ‘TORC1 Promotes Phosphorylation of Ribosomal Protein S6 via the AGC Kinase Ypk3 in Saccharomyces cerevisiae’, PLoS ONE, 10(3), p. e0120250. Available at: https://doi.org/10.1371/journal.pone.0120250.
Hall, M. N. (2015) ‘Reduced C/EBPβ-LIP translation improves metabolic health’, EMBO Reports, 16(8), pp. 881–882. Available at: https://doi.org/10.15252/embr.201540757.
Hall, M. N. (2015) ‘Reduced C/EBPβ-LIP translation improves metabolic health’, EMBO Reports, 16(8), pp. 881–882. Available at: https://doi.org/10.15252/embr.201540757.
Liko, D. and Hall, M. N. (2015) ‘mTOR in health and in sickness’, Journal of Molecular Medicine, 93(10), pp. 1061–1073. Available at: https://doi.org/10.1007/s00109-015-1326-7.
Liko, D. and Hall, M. N. (2015) ‘mTOR in health and in sickness’, Journal of Molecular Medicine, 93(10), pp. 1061–1073. Available at: https://doi.org/10.1007/s00109-015-1326-7.
Lopez, R. J. et al. (2015) ‘Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex’, Biochemical Journal, 466(1), pp. 123–135. Available at: https://doi.org/10.1042/bj20140935.
Lopez, R. J. et al. (2015) ‘Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex’, Biochemical Journal, 466(1), pp. 123–135. Available at: https://doi.org/10.1042/bj20140935.
Martin, Sally K. et al. (2015) ‘Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation’, Stem Cells, 33(4), pp. 1359–65. Available at: https://doi.org/10.1002/stem.1931.
Martin, Sally K. et al. (2015) ‘Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation’, Stem Cells, 33(4), pp. 1359–65. Available at: https://doi.org/10.1002/stem.1931.
Ma, S. et al. (2015) ‘Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival’, Experimental Eye Research, 135, pp. 1–13. Available at: https://doi.org/10.1016/j.exer.2015.04.006.
Ma, S. et al. (2015) ‘Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival’, Experimental Eye Research, 135, pp. 1–13. Available at: https://doi.org/10.1016/j.exer.2015.04.006.
Oliveira, A. P. et al. (2015) ‘Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome’, Molecular Systems Biology, 11(4), p. 802. Available at: https://doi.org/10.15252/msb.20145475.
Oliveira, A. P. et al. (2015) ‘Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome’, Molecular Systems Biology, 11(4), p. 802. Available at: https://doi.org/10.15252/msb.20145475.
Venkatesh, A. et al. (2015) ‘Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice’, Journal of Clinical Investigation, 125(4), pp. 1446–1458. Available at: https://doi.org/10.1172/jci79766.
Venkatesh, A. et al. (2015) ‘Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice’, Journal of Clinical Investigation, 125(4), pp. 1446–1458. Available at: https://doi.org/10.1172/jci79766.
Cornu, M., de Caudron de Coquereaumont, G. and Hall, M. N. (2015) ‘mTOR signaling in liver disease’, in Dufour, J.-F.; Clavien, P.-A. (ed.) Signaling Pathways in Liver Diseases. 3rd edn. Oxford UK: John Wiley (Signaling Pathways in Liver Diseases), pp. 314–325. Available at: https://doi.org/10.1002/9781118663387.ch22.
Cornu, M., de Caudron de Coquereaumont, G. and Hall, M. N. (2015) ‘mTOR signaling in liver disease’, in Dufour, J.-F.; Clavien, P.-A. (ed.) Signaling Pathways in Liver Diseases. 3rd edn. Oxford UK: John Wiley (Signaling Pathways in Liver Diseases), pp. 314–325. Available at: https://doi.org/10.1002/9781118663387.ch22.
Hindupur, Sravanth K., González, Asier and Hall, Michael N. (2015) ‘The Opposing Actions of Target of Rapamycin and AMP-Activated Protein Kinase in Cell Growth Control’, in Heald, Rebecca; Hariharan, Iswar K.; Wake, David B. (ed.) Size Control in Biology: From Organelles to Organisms. New York: Cold Spring Harbor Laboratory Press (Cold Spring Harbor perspectives in biology), pp. 221–240. Available at: https://doi.org/10.1101/cshperspect.a019141.
Hindupur, Sravanth K., González, Asier and Hall, Michael N. (2015) ‘The Opposing Actions of Target of Rapamycin and AMP-Activated Protein Kinase in Cell Growth Control’, in Heald, Rebecca; Hariharan, Iswar K.; Wake, David B. (ed.) Size Control in Biology: From Organelles to Organisms. New York: Cold Spring Harbor Laboratory Press (Cold Spring Harbor perspectives in biology), pp. 221–240. Available at: https://doi.org/10.1101/cshperspect.a019141.
Benjamin, D. and Hall, M. N. (2014) ‘mTORC1: Turning Off Is Just as Important as Turning On’, Cell, 156(4), pp. 627–628. Available at: https://doi.org/10.1016/j.cell.2014.01.057.
Benjamin, D. and Hall, M. N. (2014) ‘mTORC1: Turning Off Is Just as Important as Turning On’, Cell, 156(4), pp. 627–628. Available at: https://doi.org/10.1016/j.cell.2014.01.057.
Chen, J. et al. (2014) ‘WNT7B promotes bone formation in part through mTORC1’, PLoS Genetics, 10(1), p. e1004145. Available at: https://doi.org/10.1371/journal.pgen.1004145.
Chen, J. et al. (2014) ‘WNT7B promotes bone formation in part through mTORC1’, PLoS Genetics, 10(1), p. e1004145. Available at: https://doi.org/10.1371/journal.pgen.1004145.
Chou, Po-Chien et al. (2014) ‘Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development’, Journal of Immunology, 193(3), pp. 1162–70. Available at: https://doi.org/10.4049/jimmunol.1303162.
Chou, Po-Chien et al. (2014) ‘Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development’, Journal of Immunology, 193(3), pp. 1162–70. Available at: https://doi.org/10.4049/jimmunol.1303162.
Cornu, M. et al. (2014) ‘Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21’, Proceedings of the National Academy of Sciences of the United States of America, 111(32), pp. 11592–11599. Available at: https://doi.org/10.1073/pnas.1412047111.
Cornu, M. et al. (2014) ‘Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21’, Proceedings of the National Academy of Sciences of the United States of America, 111(32), pp. 11592–11599. Available at: https://doi.org/10.1073/pnas.1412047111.
de Cabo, R. et al. (2014) ‘The Search for Antiaging Interventions : From Elixirs to Fasting Regimens’, Cell, pp. 1515–1526. Available at: https://doi.org/10.1016/j.cell.2014.05.031.
de Cabo, R. et al. (2014) ‘The Search for Antiaging Interventions : From Elixirs to Fasting Regimens’, Cell, pp. 1515–1526. Available at: https://doi.org/10.1016/j.cell.2014.05.031.
Grahammer, F. et al. (2014) ‘mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. E2817–26. Available at: https://doi.org/10.1073/pnas.1402352111.
Grahammer, F. et al. (2014) ‘mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. E2817–26. Available at: https://doi.org/10.1073/pnas.1402352111.
Lebrun-Julien, F. et al. (2014) ‘Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination’, Journal of Neuroscience, 34(25), pp. 8432–8448. Available at: https://doi.org/10.1523/jneurosci.1105-14.2014.
Lebrun-Julien, F. et al. (2014) ‘Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination’, Journal of Neuroscience, 34(25), pp. 8432–8448. Available at: https://doi.org/10.1523/jneurosci.1105-14.2014.
Norrmén, C. et al. (2014) ‘mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells’, Cell Reports, 9(2), pp. 646–660. Available at: https://doi.org/10.1016/j.celrep.2014.09.001.
Norrmén, C. et al. (2014) ‘mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells’, Cell Reports, 9(2), pp. 646–660. Available at: https://doi.org/10.1016/j.celrep.2014.09.001.
Shimobayashi, M. and Hall, M. N. (2014) ‘Making new contacts : the mTOR network in metabolism and signalling crosstalk’, Nature Reviews. Molecular Cell Biology, 15(3), pp. 155–162. Available at: https://doi.org/10.1038/nrm3757.
Shimobayashi, M. and Hall, M. N. (2014) ‘Making new contacts : the mTOR network in metabolism and signalling crosstalk’, Nature Reviews. Molecular Cell Biology, 15(3), pp. 155–162. Available at: https://doi.org/10.1038/nrm3757.
Siamer, S. et al. (2014) ‘Expression of the Bacterial Type III Effector DspA/E in Saccharomyces cerevisiae Down-regulates the Sphingolipid Biosynthetic Pathway Leading to Growth Arrest’, Journal of Biological Chemistry, 289(26), pp. 18466–18477. Available at: https://doi.org/10.1074/jbc.m114.562769.
Siamer, S. et al. (2014) ‘Expression of the Bacterial Type III Effector DspA/E in Saccharomyces cerevisiae Down-regulates the Sphingolipid Biosynthetic Pathway Leading to Growth Arrest’, Journal of Biological Chemistry, 289(26), pp. 18466–18477. Available at: https://doi.org/10.1074/jbc.m114.562769.
Stracka, D. et al. (2014) ‘Nitrogen Source Activates TOR (Target of Rapamycin) Complex 1 via Glutamine and Independently of Gtr/Rag Proteins’, Journal of Biological Chemistry, 289(36), pp. 25010–25020. Available at: https://doi.org/10.1074/jbc.m114.574335.
Stracka, D. et al. (2014) ‘Nitrogen Source Activates TOR (Target of Rapamycin) Complex 1 via Glutamine and Independently of Gtr/Rag Proteins’, Journal of Biological Chemistry, 289(36), pp. 25010–25020. Available at: https://doi.org/10.1074/jbc.m114.574335.
Umemura, A. et al. (2014) ‘Liver damage, inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition’, Cell Metabolism, 20(1), pp. 133–144. Available at: https://doi.org/10.1016/j.cmet.2014.05.001.
Umemura, A. et al. (2014) ‘Liver damage, inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition’, Cell Metabolism, 20(1), pp. 133–144. Available at: https://doi.org/10.1016/j.cmet.2014.05.001.