UNIverse - Public Research Portal

Biochemistry (Hall)

Publications

278 found
Show per page

Battaglioni, Stefania et al. (2024) ‘mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR’, Proceedings of the National Academy of Sciences, 121(34). Available at: https://doi.org/10.1073/pnas.2405959121.

URLs
URLs

Borenäs, Marcus et al. (2024) ‘ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition’, Proceedings of the National Academy of Sciences of the United States of America, 121(1). Available at: https://doi.org/10.1073/pnas.2315242121.

URLs
URLs

Mossmann, Dirk et al. (2023) ‘Arginine reprograms metabolism in liver cancer via RBM39’, Cell, 186(23), pp. 5068–5083.e23. Available at: https://doi.org/10.1016/j.cell.2023.09.011.

URLs
URLs

Cortada, Maurizio et al. (2023) ‘mTORC2 regulates auditory hair cell structure and function’, iScience, 26(9), p. 107687. Available at: https://doi.org/10.1016/j.isci.2023.107687.

URLs
URLs

Frei, Irina C. et al. (2023) ‘Hepatic mTORC2 compensates for loss of adipose mTORC2 in mediating energy storage and glucose homeostasis’, American Journal of Physiology. Endocrinology and Metabolism, 324(6), pp. E589–E598. Available at: https://doi.org/10.1152/ajpendo.00338.2022.

URLs
URLs

Linder, Markus et al. (2023) ‘Colitis Is Associated with Loss of the Histidine Phosphatase LHPP and Upregulation of Histidine Phosphorylation in Intestinal Epithelial Cells’, Biomedicine, 11(2158), pp. 1–8. Available at: https://doi.org/10.3390/biomedicines11082158.

URLs
URLs

Shetty, Sunil et al. (2023) ‘TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes’, The EMBO Journal, 42(5), p. e112344. Available at: https://doi.org/10.15252/embj.2022112344.

URLs
URLs

Shimobayashi, Mitsugu et al. (2023) ‘Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia’, eLife, 12, p. e85103. Available at: https://doi.org/10.7554/elife.85103.

URLs
URLs

Battaglioni, Stefania et al. (2022) ‘mTOR substrate phosphorylation in growth control’, Cell, 185(11), pp. 1814–1836. Available at: https://doi.org/10.1016/j.cell.2022.04.013.

URLs
URLs

Benjamin, Don and Hall, Michael N. (2022) ‘Combining metformin with lactate transport inhibitors as a treatment modality for cancer-recommendation proposal’, Frontiers in Oncology, 12, p. 1034397. Available at: https://doi.org/10.3389/fonc.2022.1034397.

URLs
URLs

Blandino-Rosano, Manuel et al. (2022) ‘Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling’, American Journal of Physiology, Endocrinology and Metabolism, 323(2), pp. E133–E144. Available at: https://doi.org/10.1152/ajpendo.00076.2022.

URLs
URLs

Frei, Irina C. et al. (2022) ‘Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis’, Molecular metabolism, 65, p. 101580. Available at: https://doi.org/10.1016/j.molmet.2022.101580.

URLs
URLs

Mossmann, Dirk et al. (2022) ‘Elevated arginine levels in liver tumors promote metabolic reprogramming and tumor growth’. bioRxiv. Available at: https://doi.org/10.1101/2022.04.26.489545.

URLs
URLs

Ng, Charlotte K. Y. et al. (2022) ‘Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages’, Nature Communications, 13(1), p. 2436. Available at: https://doi.org/10.1038/s41467-022-29960-8.

URLs
URLs

Park, Sujin et al. (2022) ‘Transcription factors TEAD2 and E2A globally repress acetyl-CoA synthesis to promote tumorigenesis’, Molecular Cell, 82(22), pp. 4246–4261.e11. Available at: https://doi.org/10.1016/j.molcel.2022.10.027.

URLs
URLs

Suter, Polina et al. (2022) ‘Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model’, PLoS computational biology, 18(9), p. e1009767. Available at: https://doi.org/10.1371/journal.pcbi.1009767.

URLs
URLs

Böhm, Raphael et al. (2021) ‘The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1’, Molecular Cell, 81(11), pp. 2403–2416.e5. Available at: https://doi.org/10.1016/j.molcel.2021.03.031.

URLs
URLs

Dimitrakopoulos, Christos et al. (2021) ‘Multi-omics data integration reveals novel drug targets in hepatocellular carcinoma’, BMC genomics, 22(1), p. 592. Available at: https://doi.org/10.1186/s12864-021-07876-9.

URLs
URLs

Gao, Ruize et al. (2021) ‘USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis’, Oncogenesis, 10(7), p. 52. Available at: https://doi.org/10.1038/s41389-021-00338-7.

URLs
URLs

Muralidharan, Sneha et al. (2021) ‘A reference map of sphingolipids in murine tissues’, Cell Reports, 35(11), p. 109250. Available at: https://doi.org/10.1016/j.celrep.2021.109250.

URLs
URLs

Shetty, Sunil and Hall, Michael N. (2021) ‘More writing: mTORC1 promotes m; 6; A mRNA methylation’, Molecular Cell, 81(10), pp. 2057–2058. Available at: https://doi.org/10.1016/j.molcel.2021.04.020.

URLs
URLs

Teufel, Claudia et al. (2021) ‘mTOR signaling mediates ILC3-driven immunopathology’, Mucosal Immunology, 14(6), pp. 1323–1334. Available at: https://doi.org/10.1038/s41385-021-00432-4.

URLs
URLs

Wälchli, Matthias et al. (2021) ‘Regulation of human mTOR complexes by DEPTOR’, eLife, 10, p. e70871. Available at: https://doi.org/10.7554/elife.70871.

URLs
URLs

Ding, Xiaolei et al. (2020) ‘Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation’, Journal of Allergy and Clinical Immunology, 145(1), pp. 283–300.e8. Available at: https://doi.org/10.1016/j.jaci.2019.07.033.

URLs
URLs

Fu, Wenxiang and Hall, Michael N. (2020) ‘Regulation of mTORC2 Signaling’, Genes, 11(9), p. 1045. Available at: https://doi.org/10.3390/genes11091045.

URLs
URLs

González, Asier et al. (2020) ‘AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control’, Cell metabolism, 31(3), pp. 472–492. Available at: https://doi.org/10.1016/j.cmet.2020.01.015.

URLs
URLs

Liko, Dritan et al. (2020) ‘Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs’, Proceedings of the National Academy of Sciences, 117(3), pp. 1524–1532. Available at: https://doi.org/10.1073/pnas.1918931117.

URLs
URLs

Linder, Markus et al. (2020) ‘Colitis is associated with loss of LHPP and up-regulation of histidine phosphorylation in intestinal epithelial cells’. bioRxiv. Available at: https://doi.org/10.1101/2020.10.11.334334.

URLs
URLs

Scaiola, Alain et al. (2020) ‘The 3.2-Å resolution structure of human mTORC2’, Science advances, 6(45), p. eabc1251. Available at: https://doi.org/10.1126/sciadv.abc1251.

URLs
URLs

Shimobayashi, Mitsugu et al. (2020) ‘Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia’. bioRxiv. Available at: https://doi.org/10.1101/2019.12.28.887794.

URLs
URLs

Benjamin, Don et al. (2019) ‘mTOR dependent transformed human cells have a distinct set of essential genes from bcr-abl transformed cells’, bioRxiv, pp. 1–24. Available at: https://doi.org/10.1101/737817.

URLs
URLs

Benjamin, Don and Hall, Michael N. (2019) ‘Lactate jump-starts mTORC1 in cancer cells’, EMBO Reports, 20(6), p. e48302. Available at: https://doi.org/10.15252/embr.201948302.

URLs
URLs

Kessi-Pérez, Eduardo I. et al. (2019) ‘KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae’, Frontiers in Microbiology, 10, p. 1686. Available at: https://doi.org/10.3389/fmicb.2019.01686.

URLs
URLs

Kessi-Pérez, E. I. et al. (2019) ‘Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains’, Yeast, 36(1), pp. 65–74. Available at: https://doi.org/10.1002/yea.3351.

URLs
URLs

Li, Jing et al. (2019) ‘Shared molecular targets confer resistance over short and long evolutionary timescales’, Molecular biology and evolution, 36(4), pp. 691–708. Available at: https://doi.org/10.1093/molbev/msz006.

URLs
URLs

Suda, Kazuki et al. (2019) ‘TORC1 regulates autophagy induction in response to proteotoxic stress in yeast and human cells’, Biochemical and Biophysical Research Communications, 511(2), pp. 434–439. Available at: https://doi.org/10.1016/j.bbrc.2019.02.077.

URLs
URLs

Tang, Fengyuan et al. (2019) ‘LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function’, Nature Communications, 10(1), p. 5755. Available at: https://doi.org/10.1038/s41467-019-13591-7.

URLs
URLs

Trinh, Beckey et al. (2019) ‘Treatment of Primary Aldosteronism with mTORC1 Inhibitors’, The Journal of Clinical Endocrinology and Metabolism, 104(10), pp. 4703–4714. Available at: https://doi.org/10.1210/jc.2019-00563.

URLs
URLs

Bantug, G. R. et al. (2018) ‘Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells’, Immunity, 48(3), pp. 542–555.e6. Available at: https://doi.org/10.1016/j.immuni.2018.02.012.

URLs
URLs

Benjamin, Don et al. (2018) ‘Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with Metformin due to NAD+ Depletion in Cancer Cells’, Cell Reports, 25(11), pp. 3047–3058.e4. Available at: https://doi.org/10.1016/j.celrep.2018.11.043.

URLs
URLs

Dimitrakopoulos, C. et al. (2018) ‘Network-based integration of multi-omics data for prioritizing cancer genes’, Bioinformatics, 34(14), pp. 2441–2448. Available at: https://doi.org/10.1093/bioinformatics/bty148.

URLs
URLs

Hindupur, Sravanth K. et al. (2018) ‘The protein histidine phosphatase LHPP is a tumour suppressor’, Nature, 555(7698), p. 678–+. Available at: https://doi.org/10.1038/nature26140.

URLs
URLs

Martin, Sally K. et al. (2018) ‘mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis’, Scientific Reports, 8(1), p. 14501. Available at: https://doi.org/10.1038/s41598-018-32858-5.

URLs
URLs

Mossmann, Dirk, Park, Sujin and Hall, Michael N. (2018) ‘mTOR signalling and cellular metabolism are mutual determinants in cancer’, Nature Reviews. Cancer, 18(12), pp. 744–757. Available at: https://doi.org/10.1038/s41568-018-0074-8.

URLs
URLs

Mostofa, M. G. et al. (2018) ‘CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy’, Journal of Cell Biology, 217(8), pp. 2675–2690. Available at: https://doi.org/10.1083/jcb.201706164.

URLs
URLs

Shimobayashi, M. et al. (2018) ‘Insulin resistance causes inflammation in adipose tissue’, Journal of Clinical Investigation, 128(4), pp. 1538–1550. Available at: https://doi.org/10.1172/jci96139.

URLs
URLs

Singer, Jochen et al. (2018) ‘NGS-pipe: a flexible, easily extendable, and highly configurable framework for NGS analysis’, Bioinformatics, 34(1), pp. 107–108. Available at: https://doi.org/10.1093/bioinformatics/btx540.

URLs
URLs

Swierczynska, Marta M. et al. (2018) ‘Proteomic Landscape of Aldosterone-Producing Adenoma’, Hypertension (Dallas, Tex. : 1979), 73(2), pp. 469–480. Available at: https://doi.org/10.1161/hypertensionaha.118.11733.

URLs
URLs

Benjamin, D. and Hall, M. N. (2017) ‘mTORC1 Controls Synthesis of Its Activator GTP’, Cell Reports, 19(13), pp. 2643–2644. Available at: https://doi.org/10.1016/j.celrep.2017.06.032.

URLs
URLs

Blandino-Rosano, M. et al. (2017) ‘Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing’, Nature Communications, 8, p. 16014. Available at: https://doi.org/10.1038/ncomms16014.

URLs
URLs

Bozadjieva, Nadejda et al. (2017) ‘Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion’, The Journal of Clinical Investigation, 127(12), pp. 4379–4393. Available at: https://doi.org/10.1172/jci90004.

URLs
URLs

Fitter, Stephen et al. (2017) ‘mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation’, Molecular and Cellular Biology, 37(7), pp. e00668–16. Available at: https://doi.org/10.1128/mcb.00668-16.

URLs
URLs

González, A. and Hall, M. N. (2017) ‘Nutrient sensing and TOR signaling in yeast and mammals’, The EMBO Journal, 36(4), pp. 397–408. Available at: https://doi.org/10.15252/embj.201696010.

URLs
URLs

Guri, Y. et al. (2017) ‘mTORC2 Promotes Tumorigenesis via Lipid Synthesis’, Cancer Cell, 32(6), pp. 807–823.e12. Available at: https://doi.org/10.1016/j.ccell.2017.11.011.

URLs
URLs

Hall, M. N. (2017) ‘An Amazing Turn of Events’, Cell, 171(1), pp. 19–22. Available at: https://doi.org/10.1016/j.cell.2017.08.021.

URLs
URLs

Tang, F. et al. (2017) ‘A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice’, eLife, 6, p. e32497. Available at: https://doi.org/10.7554/elife.32497.

URLs
URLs

Albert, V. et al. (2016) ‘mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue’, EMBO Molecular Medicine, 8(3), pp. 232–246. Available at: https://doi.org/10.15252/emmm.201505610.

URLs
URLs

Benjamin, D. et al. (2016) ‘Syrosingopine sensitizes cancer cells to killing by metformin’, Science Advances, 2(12), p. e1601756. Available at: https://doi.org/10.1126/sciadv.1601756.

URLs
URLs

Dazert, E. et al. (2016) ‘Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient’, Proceedings of the National Academy of Sciences of the United States of America, 113(5), pp. 1381–1386. Available at: https://doi.org/10.1073/pnas.1523434113.

URLs
URLs

Ding, X. et al. (2016) ‘mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation’, Nature Communications, 7, p. 13226. Available at: https://doi.org/10.1038/ncomms13226.

URLs
URLs

Drägert, K. et al. (2016) ‘Basal mTORC2 activity and expression of its components display diurnal variation in mouse perivascular adipose tissue’, Biochemical and Biophysical Research Communications, 473(1), pp. 317–322. Available at: https://doi.org/10.1016/j.bbrc.2016.03.102.

URLs
URLs

Driscoll, D. R. et al. (2016) ‘mTORC2 signaling drives the development and progression of pancreatic cancer’, Cancer Research, 76(23), pp. 6911–6923. Available at: https://doi.org/10.1158/0008-5472.can-16-0810.

URLs
URLs

Grahammer, F. et al. (2016) ‘mTORC2 critically regulates renal potassium handling’, Journal of Clinical Investigation, 126(5), pp. 1773–1782. Available at: https://doi.org/10.1172/jci80304.

URLs
URLs

Guri, Yakir and Hall, Michael N. (2016) ‘mTOR Signaling Confers Resistance to Targeted Cancer Drugs’, Trends in Cancer, 2(11), pp. 688–697. Available at: https://doi.org/10.1016/j.trecan.2016.10.006.

URLs
URLs

Hall, M. N. (2016) ‘TOR and paradigm change: cell growth is controlled’, Molecular Biology of the Cell, 27(18), pp. 2804–2806. Available at: https://doi.org/10.1091/mbc.e15-05-0311.

URLs
URLs

Herkert, B. et al. (2016) ‘Maximizing the Efficacy of MAPK-Targeted Treatment in PTENLOF/BRAFMUT Melanoma through PI3K and IGF1R Inhibition’, Cancer Research, 76(2), pp. 390–402. Available at: https://doi.org/10.1158/0008-5472.can-14-3358.

URLs
URLs

Shende, P. et al. (2016) ‘Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy’, Cardiovascular Research, 109(1), pp. 103–114. Available at: https://doi.org/10.1093/cvr/cvv252.

URLs
URLs

Shimobayashi, M. and Hall, M. N. (2016) ‘Multiple amino acid sensing inputs to mTORC1’, Cell Research, 26(1), pp. 7–20. Available at: https://doi.org/10.1038/cr.2015.146.

URLs
URLs

Swierczynska, M. M. and Hall, M. N. (2016) ‘eIF4A moonlights as an off switch for TORC1’, The EMBO Journal, 35(10), pp. 1013–1014. Available at: https://doi.org/10.15252/embj.201694326.

URLs
URLs

Zhang, L. et al. (2016) ‘Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner’, Cell Reports, 14(5), pp. 1206–1217. Available at: https://doi.org/10.1016/j.celrep.2015.12.095.

URLs
URLs

Fonseca, B. D. et al. (2016) ‘Evolution of TOR and Translation Control’, in Hernández, G.; Jagus, R. (ed.) Evolution of the Protein Synthesis Machinery and Its Regulation. 1 edn. Cham: Springer (Evolution of the Protein Synthesis Machinery and Its Regulation), pp. 327–412. Available at: https://doi.org/10.1007/978-3-319-39468-8.

URLs
URLs

Swierczynska, M. M. and Hall, M. N. (2016) ‘mTOR in Metabolic and Endocrine Disorders’, in Maiese, K. (ed.) Molecules to Medicine with mTOR. Translating Critical Pathways into Novel Therapeutic Strategies. 1st edn. London: Academic Press (Molecules to Medicine with mTOR. Translating Critical Pathways into Novel Therapeutic Strategies), pp. 347–364. Available at: https://doi.org/10.1016/b978-0-12-802733-2.00008-6.

URLs
URLs

Aimi, F. et al. (2015) ‘Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult’, Scientific Reports, 5, p. 17705. Available at: https://doi.org/10.1038/srep17705.

URLs
URLs

Albert, V., Cornu, M. and Hall, M. N. (2015) ‘mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior’, Biochemical and Biophysical Research Communications, 464(2), pp. 480–486. Available at: https://doi.org/10.1016/j.bbrc.2015.06.161.

URLs
URLs

Albert, V. and Hall, M. N. (2015) ‘mTOR signaling in cellular and organismal energetics’, Current Opinion in Cell Biology, pp. 55–66. Available at: https://doi.org/10.1016/j.ceb.2014.12.001.

URLs
URLs

Carr, T. D. et al. (2015) ‘Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors’, Carcinogenesis, 36(4), pp. 487–497. Available at: https://doi.org/10.1093/carcin/bgv012.

URLs
URLs

Drägert, K. et al. (2015) ‘Deletion of Rictor in Brain and Fat Alters Peripheral Clock Gene Expression and Increases Blood Pressure’, Hypertension, 66(2), pp. 332–339. Available at: https://doi.org/10.1161/hypertensionaha.115.05398.

URLs
URLs

Faller, W. J. et al. (2015) ‘mTORC1-mediated translational elongation limits intestinal tumour initiation and growth’, Nature, 517(7535), pp. 497–500. Available at: https://doi.org/10.1038/nature13896.

URLs
URLs

González, A. et al. (2015) ‘TORC1 Promotes Phosphorylation of Ribosomal Protein S6 via the AGC Kinase Ypk3 in Saccharomyces cerevisiae’, PLoS ONE, 10(3), p. e0120250. Available at: https://doi.org/10.1371/journal.pone.0120250.

URLs
URLs

Hall, M. N. (2015) ‘Reduced C/EBPβ-LIP translation improves metabolic health’, EMBO Reports, 16(8), pp. 881–882. Available at: https://doi.org/10.15252/embr.201540757.

URLs
URLs

Liko, D. and Hall, M. N. (2015) ‘mTOR in health and in sickness’, Journal of Molecular Medicine, 93(10), pp. 1061–1073. Available at: https://doi.org/10.1007/s00109-015-1326-7.

URLs
URLs

Lopez, R. J. et al. (2015) ‘Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex’, Biochemical Journal, 466(1), pp. 123–135. Available at: https://doi.org/10.1042/bj20140935.

URLs
URLs

Martin, Sally K. et al. (2015) ‘Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation’, Stem Cells, 33(4), pp. 1359–65. Available at: https://doi.org/10.1002/stem.1931.

URLs
URLs

Ma, S. et al. (2015) ‘Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival’, Experimental Eye Research, 135, pp. 1–13. Available at: https://doi.org/10.1016/j.exer.2015.04.006.

URLs
URLs

Oliveira, A. P. et al. (2015) ‘Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome’, Molecular Systems Biology, 11(4), p. 802. Available at: https://doi.org/10.15252/msb.20145475.

URLs
URLs

Venkatesh, A. et al. (2015) ‘Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice’, Journal of Clinical Investigation, 125(4), pp. 1446–1458. Available at: https://doi.org/10.1172/jci79766.

URLs
URLs

Cornu, M., de Caudron de Coquereaumont, G. and Hall, M. N. (2015) ‘mTOR signaling in liver disease’, in Dufour, J.-F.; Clavien, P.-A. (ed.) Signaling Pathways in Liver Diseases. 3rd edn. Oxford UK: John Wiley (Signaling Pathways in Liver Diseases), pp. 314–325. Available at: https://doi.org/10.1002/9781118663387.ch22.

URLs
URLs

Hindupur, Sravanth K., González, Asier and Hall, Michael N. (2015) ‘The Opposing Actions of Target of Rapamycin and AMP-Activated Protein Kinase in Cell Growth Control’, in Heald, Rebecca; Hariharan, Iswar K.; Wake, David B. (ed.) Size Control in Biology: From Organelles to Organisms. New York: Cold Spring Harbor Laboratory Press (Cold Spring Harbor perspectives in biology), pp. 221–240. Available at: https://doi.org/10.1101/cshperspect.a019141.

URLs
URLs

Benjamin, D. and Hall, M. N. (2014) ‘mTORC1: Turning Off Is Just as Important as Turning On’, Cell, 156(4), pp. 627–628. Available at: https://doi.org/10.1016/j.cell.2014.01.057.

URLs
URLs

Chen, J. et al. (2014) ‘WNT7B promotes bone formation in part through mTORC1’, PLoS Genetics, 10(1), p. e1004145. Available at: https://doi.org/10.1371/journal.pgen.1004145.

URLs
URLs

Chou, Po-Chien et al. (2014) ‘Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development’, Journal of Immunology, 193(3), pp. 1162–70. Available at: https://doi.org/10.4049/jimmunol.1303162.

URLs
URLs

Cornu, M. et al. (2014) ‘Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21’, Proceedings of the National Academy of Sciences of the United States of America, 111(32), pp. 11592–11599. Available at: https://doi.org/10.1073/pnas.1412047111.

URLs
URLs

de Cabo, R. et al. (2014) ‘The Search for Antiaging Interventions : From Elixirs to Fasting Regimens’, Cell, pp. 1515–1526. Available at: https://doi.org/10.1016/j.cell.2014.05.031.

URLs
URLs

Grahammer, F. et al. (2014) ‘mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. E2817–26. Available at: https://doi.org/10.1073/pnas.1402352111.

URLs
URLs

Lebrun-Julien, F. et al. (2014) ‘Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination’, Journal of Neuroscience, 34(25), pp. 8432–8448. Available at: https://doi.org/10.1523/jneurosci.1105-14.2014.

URLs
URLs

Norrmén, C. et al. (2014) ‘mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells’, Cell Reports, 9(2), pp. 646–660. Available at: https://doi.org/10.1016/j.celrep.2014.09.001.

URLs
URLs

Shimobayashi, M. and Hall, M. N. (2014) ‘Making new contacts : the mTOR network in metabolism and signalling crosstalk’, Nature Reviews. Molecular Cell Biology, 15(3), pp. 155–162. Available at: https://doi.org/10.1038/nrm3757.

URLs
URLs

Siamer, S. et al. (2014) ‘Expression of the Bacterial Type III Effector DspA/E in Saccharomyces cerevisiae Down-regulates the Sphingolipid Biosynthetic Pathway Leading to Growth Arrest’, Journal of Biological Chemistry, 289(26), pp. 18466–18477. Available at: https://doi.org/10.1074/jbc.m114.562769.

URLs
URLs

Stracka, D. et al. (2014) ‘Nitrogen Source Activates TOR (Target of Rapamycin) Complex 1 via Glutamine and Independently of Gtr/Rag Proteins’, Journal of Biological Chemistry, 289(36), pp. 25010–25020. Available at: https://doi.org/10.1074/jbc.m114.574335.

URLs
URLs

Umemura, A. et al. (2014) ‘Liver damage, inflammation, and enhanced tumorigenesis after persistent mTORC1 inhibition’, Cell Metabolism, 20(1), pp. 133–144. Available at: https://doi.org/10.1016/j.cmet.2014.05.001.

URLs
URLs