Molecular Microbiology (Jenal)
Publications
175 found
Show per page
Träger, Lena et al. (2025) ‘Structural Basis for Cooperative ssDNA Binding by Bacteriophage Protein Filament P12’, Nucleic Acids Research, 53(5). Available at: https://doi.org/10.1093/nar/gkaf132.
Träger, Lena et al. (2025) ‘Structural Basis for Cooperative ssDNA Binding by Bacteriophage Protein Filament P12’, Nucleic Acids Research, 53(5). Available at: https://doi.org/10.1093/nar/gkaf132.
Tejada-Arranz, Alejandro et al. (2025) ‘Mechanisms of Pseudomonas aeruginosa resistance to Type VI Secretion System attacks’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.10.26.620397.
Tejada-Arranz, Alejandro et al. (2025) ‘Mechanisms of Pseudomonas aeruginosa resistance to Type VI Secretion System attacks’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.10.26.620397.
Agustoni, E. (2025) Molecular mechanisms of hybrid proteins in bacterial signal transduction.
Agustoni, E. (2025) Molecular mechanisms of hybrid proteins in bacterial signal transduction.
Maffei, Enea et al. (2024) ‘Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-023-44157-3.
Maffei, Enea et al. (2024) ‘Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-023-44157-3.
Kurmashev, Amanzhol et al. (2024) ‘Transwell-Based Microfluidic Platform for High-Resolution Imaging of Airway Tissues’, Advanced Materials Technologies, 9(20). Available at: https://doi.org/10.1002/admt.202400326.
Kurmashev, Amanzhol et al. (2024) ‘Transwell-Based Microfluidic Platform for High-Resolution Imaging of Airway Tissues’, Advanced Materials Technologies, 9(20). Available at: https://doi.org/10.1002/admt.202400326.
Santi, Isabella et al. (2024) ‘Toxin-mediated depletion of NAD and NADP drives persister formation in a human pathogen’, The EMBO Journal, 43(21), pp. 5211–5236. Available at: https://doi.org/10.1038/s44318-024-00248-5.
Santi, Isabella et al. (2024) ‘Toxin-mediated depletion of NAD and NADP drives persister formation in a human pathogen’, The EMBO Journal, 43(21), pp. 5211–5236. Available at: https://doi.org/10.1038/s44318-024-00248-5.
Leoni Swart, A. et al. (2024) ‘Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model’, Nature Microbiology. 10.06.2024, 9(7), pp. 1725–1737. Available at: https://doi.org/10.1038/s41564-024-01718-6.
Leoni Swart, A. et al. (2024) ‘Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model’, Nature Microbiology. 10.06.2024, 9(7), pp. 1725–1737. Available at: https://doi.org/10.1038/s41564-024-01718-6.
Maffei, Enea et al. (2024) ‘Complete genome sequence of Pseudomonas aeruginosa phage Knedl’, Microbiology Resource Announcements, 13(4). Available at: https://doi.org/10.1128/mra.01174-23.
Maffei, Enea et al. (2024) ‘Complete genome sequence of Pseudomonas aeruginosa phage Knedl’, Microbiology Resource Announcements, 13(4). Available at: https://doi.org/10.1128/mra.01174-23.
Pérez-Burgos, María et al. (2024) ‘A deterministic, c-di-GMP-dependent genetic program ensures the generation of phenotypically similar, symmetric daughter cells during cytokinesis’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.02.06.579105.
Pérez-Burgos, María et al. (2024) ‘A deterministic, c-di-GMP-dependent genetic program ensures the generation of phenotypically similar, symmetric daughter cells during cytokinesis’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.02.06.579105.
Sollier, Julie et al. (2024) ‘Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions’, Nature Microbiology, 9(1), pp. 1–3. Available at: https://doi.org/10.1038/s41564-023-01566-w.
Sollier, Julie et al. (2024) ‘Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions’, Nature Microbiology, 9(1), pp. 1–3. Available at: https://doi.org/10.1038/s41564-023-01566-w.
Wicki, B. (2024) The landscape and molecular underpinnings of mycobacterial drug interactions.
Wicki, B. (2024) The landscape and molecular underpinnings of mycobacterial drug interactions.
Kurmashev, Amanzhol et al. (2023) ‘Transwell-based microphysiological platform for high-resolution imaging of airway tissues’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2023.11.22.567838.
Kurmashev, Amanzhol et al. (2023) ‘Transwell-based microphysiological platform for high-resolution imaging of airway tissues’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2023.11.22.567838.
Swart, A. Leoni et al. (2023) ‘Goblet cell invasion promotes breaching of respiratory epithelia by an opportunistic human pathogen’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2023.08.13.553119.
Swart, A. Leoni et al. (2023) ‘Goblet cell invasion promotes breaching of respiratory epithelia by an opportunistic human pathogen’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2023.08.13.553119.
Klotz, Alexander, Kaczmarczyk, Andreas and Jenal, Urs (2023) ‘A Synthetic Cumate-Inducible Promoter for Graded and Homogenous Gene Expression in Pseudomonas aeruginosa’, Applied and Environmental Microbiology, 89(6). Available at: https://doi.org/10.1128/aem.00211-23.
Klotz, Alexander, Kaczmarczyk, Andreas and Jenal, Urs (2023) ‘A Synthetic Cumate-Inducible Promoter for Graded and Homogenous Gene Expression in Pseudomonas aeruginosa’, Applied and Environmental Microbiology, 89(6). Available at: https://doi.org/10.1128/aem.00211-23.
Bruderer, M. (2023) Cyclic-di-GMP effectors regulate type IV pili-mediated adherence and dissemination in Pseudomonas aeruginosa.
Bruderer, M. (2023) Cyclic-di-GMP effectors regulate type IV pili-mediated adherence and dissemination in Pseudomonas aeruginosa.
Dubey, Badri Nath et al. (2023) ‘Mutant structure of metabolic switch protein in complex with monomeric c-di-GMP reveals a potential mechanism of protein-mediated ligand dimerization’, Scientific reports, 13(1), p. 2727. Available at: https://doi.org/10.1038/s41598-023-29110-0.
Dubey, Badri Nath et al. (2023) ‘Mutant structure of metabolic switch protein in complex with monomeric c-di-GMP reveals a potential mechanism of protein-mediated ligand dimerization’, Scientific reports, 13(1), p. 2727. Available at: https://doi.org/10.1038/s41598-023-29110-0.
Manner, C.M. (2023) Stochastic expression of the hecRE module
controls Pseudomonas aeruginosa
surface colonization and phage sensitivity.
Manner, C.M. (2023) Stochastic expression of the hecRE module
controls Pseudomonas aeruginosa
surface colonization and phage sensitivity.
Sellner, B. (2023) Bimodality and local signaling in the c-di-GMP network of E. coli.
Sellner, B. (2023) Bimodality and local signaling in the c-di-GMP network of E. coli.
Tripathi, V. (2023) Characterizing staphylococcus aureus properties in patient biopsies to test current concepts of antibiotic persistence.
Tripathi, V. (2023) Characterizing staphylococcus aureus properties in patient biopsies to test current concepts of antibiotic persistence.
Kaczmarczyk, Andreas et al. (2022) ‘A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution’. bioRxiv. Available at: https://doi.org/10.1101/2022.10.18.512705.
Kaczmarczyk, Andreas et al. (2022) ‘A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution’. bioRxiv. Available at: https://doi.org/10.1101/2022.10.18.512705.
Dubey, Badri Nath et al. (2022) ‘High-resolution crystal structure of a metabolic switch protein in a complex with monomeric c-di-GMP reveals a potential mechanism for c-di-GMP dimerization’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2022.07.30.502141.
Dubey, Badri Nath et al. (2022) ‘High-resolution crystal structure of a metabolic switch protein in a complex with monomeric c-di-GMP reveals a potential mechanism for c-di-GMP dimerization’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2022.07.30.502141.
Povolo, Vanessa R et al. (2022) ‘Extracellular appendages govern spatial dynamics and growth of Caulobacter crescentus on a prevalent biopolymer’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2022.06.13.495907.
Povolo, Vanessa R et al. (2022) ‘Extracellular appendages govern spatial dynamics and growth of Caulobacter crescentus on a prevalent biopolymer’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2022.06.13.495907.
Anglada-Girotto, Miquel et al. (2022) ‘Combining CRISPRi and metabolomics for functional annotation of compound libraries’, Nature Chemical Biology, 18(5), pp. 482–491. Available at: https://doi.org/10.1038/s41589-022-00970-3.
Anglada-Girotto, Miquel et al. (2022) ‘Combining CRISPRi and metabolomics for functional annotation of compound libraries’, Nature Chemical Biology, 18(5), pp. 482–491. Available at: https://doi.org/10.1038/s41589-022-00970-3.
Anglada-Girotto, Miquel et al. (2022) ‘Author Correction: Combining CRISPRi and metabolomics for functional annotation of compound libraries’, Nature Chemical Biology, 18(5), p. 575. Available at: https://doi.org/10.1038/s41589-022-01028-0.
Anglada-Girotto, Miquel et al. (2022) ‘Author Correction: Combining CRISPRi and metabolomics for functional annotation of compound libraries’, Nature Chemical Biology, 18(5), p. 575. Available at: https://doi.org/10.1038/s41589-022-01028-0.
Haas, Thomas M. et al. (2022) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, Angewandte Chemie International Edition, 61(22), p. e202201731. Available at: https://doi.org/10.1002/anie.202201731.
Haas, Thomas M. et al. (2022) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, Angewandte Chemie International Edition, 61(22), p. e202201731. Available at: https://doi.org/10.1002/anie.202201731.
Jenal, Urs (2022) ‘Killing the messenger to evade bacterial defences’, Nature, 605(7910), pp. 431–432. Available at: https://doi.org/10.1038/d41586-022-01127-x.
Jenal, Urs (2022) ‘Killing the messenger to evade bacterial defences’, Nature, 605(7910), pp. 431–432. Available at: https://doi.org/10.1038/d41586-022-01127-x.
Maffei, E.E. (2022) Guided by nature learning from bacteriophages
to uncover new biology.
Maffei, E.E. (2022) Guided by nature learning from bacteriophages
to uncover new biology.
Sauter, Nora et al. (2022) ‘Bacteria-on-a-bead: probing the hydrodynamic interplay of dynamic cell appendages during cell separation’, Communications biology, 5(1), p. 1093. Available at: https://doi.org/10.1038/s42003-022-04026-z.
Sauter, Nora et al. (2022) ‘Bacteria-on-a-bead: probing the hydrodynamic interplay of dynamic cell appendages during cell separation’, Communications biology, 5(1), p. 1093. Available at: https://doi.org/10.1038/s42003-022-04026-z.
Shaidullina, Aisylu and Harms, Alexander (2022) ‘Toothpicks, logic, and next-generation sequencing: systematic investigation of bacteriophage-host interactions’, Current Opinion in Microbiology, 70, p. 102225. Available at: https://doi.org/10.1016/j.mib.2022.102225.
Shaidullina, Aisylu and Harms, Alexander (2022) ‘Toothpicks, logic, and next-generation sequencing: systematic investigation of bacteriophage-host interactions’, Current Opinion in Microbiology, 70, p. 102225. Available at: https://doi.org/10.1016/j.mib.2022.102225.
Shaidullina, Aisylu and Harms, Alexander (2022) ‘Antiviral death punch by ADP-ribosylating bacterial toxins’, Trends in Microbiology, 30(10), pp. 920–921. Available at: https://doi.org/10.1016/j.tim.2022.08.009.
Shaidullina, Aisylu and Harms, Alexander (2022) ‘Antiviral death punch by ADP-ribosylating bacterial toxins’, Trends in Microbiology, 30(10), pp. 920–921. Available at: https://doi.org/10.1016/j.tim.2022.08.009.
Steiner, Elisabeth et al. (2022) ‘The BDSF quorum sensing receptor RpfR regulates Bep exopolysaccharide synthesis in Burkholderia cenocepacia via interaction with the transcriptional regulator BerB’, NPJ biofilms and microbiomes, 8(1), p. 93. Available at: https://doi.org/10.1038/s41522-022-00356-2.
Steiner, Elisabeth et al. (2022) ‘The BDSF quorum sensing receptor RpfR regulates Bep exopolysaccharide synthesis in Burkholderia cenocepacia via interaction with the transcriptional regulator BerB’, NPJ biofilms and microbiomes, 8(1), p. 93. Available at: https://doi.org/10.1038/s41522-022-00356-2.
Haas, Thomas M. et al. (2021) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2021.12.15.472736.
Haas, Thomas M. et al. (2021) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2021.12.15.472736.
Sellner, B. et al. (2021) ‘A New Sugar for an Old Phage: A c-di-GMP-Dependent Polysaccharide Pathway Sensitizes Escherichia coli for Bacteriophage Infection’, mBio, 12(6). Available at: https://doi.org/10.1128/mbio.03246-21.
Sellner, B. et al. (2021) ‘A New Sugar for an Old Phage: A c-di-GMP-Dependent Polysaccharide Pathway Sensitizes Escherichia coli for Bacteriophage Infection’, mBio, 12(6). Available at: https://doi.org/10.1128/mbio.03246-21.
Fuentes, Diego Antonio Fernandez et al. (2021) ‘Pareto optimality between growth-rate and lag-time couples metabolic noise to phenotypic heterogeneity in Escherichia coli’, Nature Communications, 12(1), p. 3204. Available at: https://doi.org/10.1038/s41467-021-23522-0.
Fuentes, Diego Antonio Fernandez et al. (2021) ‘Pareto optimality between growth-rate and lag-time couples metabolic noise to phenotypic heterogeneity in Escherichia coli’, Nature Communications, 12(1), p. 3204. Available at: https://doi.org/10.1038/s41467-021-23522-0.
Maffei, Enea and Harms, Alexander (2021) ‘Messages from the dead protect bacteria from viral attack’, The EMBO Journal, 41(3), p. e110382. Available at: https://doi.org/10.15252/embj.2021110382.
Maffei, Enea and Harms, Alexander (2021) ‘Messages from the dead protect bacteria from viral attack’, The EMBO Journal, 41(3), p. e110382. Available at: https://doi.org/10.15252/embj.2021110382.
Reinders, Alberto et al. (2021) ‘Digital control of c-di-GMP in E. coli balances population-wide developmental transitions and phage sensitivity’. bioRxiv. Available at: https://doi.org/10.1101/2021.10.01.462762.
Reinders, Alberto et al. (2021) ‘Digital control of c-di-GMP in E. coli balances population-wide developmental transitions and phage sensitivity’. bioRxiv. Available at: https://doi.org/10.1101/2021.10.01.462762.
Santi, Isabella, Manfredi, Pablo and Jenal, Urs (2021) ‘The Use of Experimental Evolution to Study the Response of Pseudomonas aeruginosa to Single or Double Antibiotic Treatment’, Methods in Molecular Biology, 2357, pp. 177–194. Available at: https://doi.org/10.1007/978-1-0716-1621-5_12.
Santi, Isabella, Manfredi, Pablo and Jenal, Urs (2021) ‘The Use of Experimental Evolution to Study the Response of Pseudomonas aeruginosa to Single or Double Antibiotic Treatment’, Methods in Molecular Biology, 2357, pp. 177–194. Available at: https://doi.org/10.1007/978-1-0716-1621-5_12.
Santi, Isabella et al. (2021) ‘Evolution of Antibiotic Tolerance Shapes Resistance Development in Chronic Pseudomonas aeruginosa Infections’, mBio, 12(1), pp. e03482–20. Available at: https://doi.org/10.1128/mbio.03482-20.
Santi, Isabella et al. (2021) ‘Evolution of Antibiotic Tolerance Shapes Resistance Development in Chronic Pseudomonas aeruginosa Infections’, mBio, 12(1), pp. e03482–20. Available at: https://doi.org/10.1128/mbio.03482-20.
Sellner, Benjamin et al. (2021) ‘A new sugar for an old phage: A c-di-GMP dependent polysaccharide pathway sensitizes E. coli for bacteriophage infection’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.09.27.461960.
Sellner, Benjamin et al. (2021) ‘A new sugar for an old phage: A c-di-GMP dependent polysaccharide pathway sensitizes E. coli for bacteriophage infection’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.09.27.461960.
Shyp, Viktoriya et al. (2021) ‘Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus’, Nature Microbiology, 6(1), pp. 59–72. Available at: https://doi.org/10.1038/s41564-020-00809-4.
Shyp, Viktoriya et al. (2021) ‘Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus’, Nature Microbiology, 6(1), pp. 59–72. Available at: https://doi.org/10.1038/s41564-020-00809-4.
van Berkum, M.C. (2021) Coupling stochastic behavior to metabolism: How a switch protein generates binary signaling programs in Escherichia coli
.
van Berkum, M.C. (2021) Coupling stochastic behavior to metabolism: How a switch protein generates binary signaling programs in Escherichia coli
.
Manfredi, Pablo et al. (2021) ‘Defining Proteomic Signatures to Predict Multidrug Persistence in Pseudomonas aeruginosa’, in Verstraeten, Natalie; Michiels, Jan (ed.) Bacterial Persistence: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 161–175. Available at: https://doi.org/10.1007/978-1-0716-1621-5_11.
Manfredi, Pablo et al. (2021) ‘Defining Proteomic Signatures to Predict Multidrug Persistence in Pseudomonas aeruginosa’, in Verstraeten, Natalie; Michiels, Jan (ed.) Bacterial Persistence: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 161–175. Available at: https://doi.org/10.1007/978-1-0716-1621-5_11.
Coppine, Jérôme et al. (2020) ‘Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases’, Journal of Bacteriology, 202(17), pp. e00345–20. Available at: https://doi.org/10.1128/jb.00345-20.
Coppine, Jérôme et al. (2020) ‘Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases’, Journal of Bacteriology, 202(17), pp. e00345–20. Available at: https://doi.org/10.1128/jb.00345-20.
Fino, Cinzia et al. (2020) ‘PasT of Escherichia coli sustains antibiotic tolerance and aerobic respiration as a bacterial homolog of mitochondrial Coq10’, MicrobiologyOpen, 9(8), p. e1064. Available at: https://doi.org/10.1002/mbo3.1064.
Fino, Cinzia et al. (2020) ‘PasT of Escherichia coli sustains antibiotic tolerance and aerobic respiration as a bacterial homolog of mitochondrial Coq10’, MicrobiologyOpen, 9(8), p. e1064. Available at: https://doi.org/10.1002/mbo3.1064.
Hartl, Johannes et al. (2020) ‘Untargeted metabolomics links glutathione to bacterial cell cycle progression’, Nature metabolism, 2(2), pp. 153–166. Available at: https://doi.org/10.1038/s42255-019-0166-0.
Hartl, Johannes et al. (2020) ‘Untargeted metabolomics links glutathione to bacterial cell cycle progression’, Nature metabolism, 2(2), pp. 153–166. Available at: https://doi.org/10.1038/s42255-019-0166-0.
Hee, Chee-Seng et al. (2020) ‘Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP’, Proceedings of the National Academy of Sciences of the United States of America, 117(29), pp. 17211–17220. Available at: https://doi.org/10.1073/pnas.2001232117.
Hee, Chee-Seng et al. (2020) ‘Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP’, Proceedings of the National Academy of Sciences of the United States of America, 117(29), pp. 17211–17220. Available at: https://doi.org/10.1073/pnas.2001232117.
Kaczmarczyk, Andreas et al. (2020) ‘Precise Timing of Transcription by c-di-GMP Coordinates Cell Cycle and Morphogenesis in Caulobacter’, Nature Communications, 11(1), p. 816. Available at: https://doi.org/10.1038/s41467-020-14585-6.
Kaczmarczyk, Andreas et al. (2020) ‘Precise Timing of Transcription by c-di-GMP Coordinates Cell Cycle and Morphogenesis in Caulobacter’, Nature Communications, 11(1), p. 816. Available at: https://doi.org/10.1038/s41467-020-14585-6.
Laventie, Benoît-Joseph and Jenal, Urs (2020) ‘Surface Sensing and Adaptation in Bacteria’, Annual review of microbiology, 74, pp. 735–760. Available at: https://doi.org/10.1146/annurev-micro-012120-063427.
Laventie, Benoît-Joseph and Jenal, Urs (2020) ‘Surface Sensing and Adaptation in Bacteria’, Annual review of microbiology, 74, pp. 735–760. Available at: https://doi.org/10.1146/annurev-micro-012120-063427.
Ozaki, Shogo, Jenal, Urs and Katayama, Tsutomu (2020) ‘Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus’, mBio, 11(2), pp. e00487–20. Available at: https://doi.org/10.1128/mbio.00487-20.
Ozaki, Shogo, Jenal, Urs and Katayama, Tsutomu (2020) ‘Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus’, mBio, 11(2), pp. e00487–20. Available at: https://doi.org/10.1128/mbio.00487-20.
Rossmann, Florian M. et al. (2020) ‘In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog’, Molecular microbiology, 114(3), pp. 443–453. Available at: https://doi.org/10.1111/mmi.14525.
Rossmann, Florian M. et al. (2020) ‘In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog’, Molecular microbiology, 114(3), pp. 443–453. Available at: https://doi.org/10.1111/mmi.14525.
Sangermani, Matteo et al. (2019) ‘Tad pili play a dynamic role in caulobacter crescentus surface colonization’, mBio. 18.06.2019, 10(3). Available at: https://doi.org/10.1128/mBio.01237-19.
Sangermani, Matteo et al. (2019) ‘Tad pili play a dynamic role in caulobacter crescentus surface colonization’, mBio. 18.06.2019, 10(3). Available at: https://doi.org/10.1128/mBio.01237-19.
Dubey, Badri N. et al. (2019) ‘Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/675454.
Dubey, Badri N. et al. (2019) ‘Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/675454.
Kaczmarczyk, Andreas et al. (2019) ‘Precise transcription timing by a second-messenger drives a bacterial G1/S cell cycle transition’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/675330.
Kaczmarczyk, Andreas et al. (2019) ‘Precise transcription timing by a second-messenger drives a bacterial G1/S cell cycle transition’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/675330.
Jenal, Urs et al. (2019) ‘Tad pili play a dynamic role in Caulobacter crescentus surface colonization’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/526160.
Jenal, Urs et al. (2019) ‘Tad pili play a dynamic role in Caulobacter crescentus surface colonization’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/526160.
Laventie, Benoît-Joseph et al. (2019) ‘A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa’, Cell host & microbe, 25(1), p. 140–+. Available at: https://doi.org/10.1016/j.chom.2018.11.008.
Laventie, Benoît-Joseph et al. (2019) ‘A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa’, Cell host & microbe, 25(1), p. 140–+. Available at: https://doi.org/10.1016/j.chom.2018.11.008.
Lori, C. et al. (2018) ‘A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria’, mBio, 9(3), pp. e00809–18. Available at: https://doi.org/10.1128/mbio.00809-18.
Lori, C. et al. (2018) ‘A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria’, mBio, 9(3), pp. e00809–18. Available at: https://doi.org/10.1128/mbio.00809-18.
Lori, C. et al. (2018) ‘Erratum for Lori et al., ‘A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria’’, mBio, 9(5), pp. e01534–18. Available at: https://doi.org/10.1128/mbio.01534-18.
Lori, C. et al. (2018) ‘Erratum for Lori et al., ‘A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria’’, mBio, 9(5), pp. e01534–18. Available at: https://doi.org/10.1128/mbio.01534-18.
Sangermani, M. (2018) Pili: the microbes” Swiss army knifes. Available at: https://doi.org/10.5451/unibas-006839405.
Sangermani, M. (2018) Pili: the microbes” Swiss army knifes. Available at: https://doi.org/10.5451/unibas-006839405.
Sauter, N. (2018) Dynamics and force generation of flagellum and pili in Caulobacter crescentus. Available at: https://doi.org/10.5451/unibas-007085291.
Sauter, N. (2018) Dynamics and force generation of flagellum and pili in Caulobacter crescentus. Available at: https://doi.org/10.5451/unibas-007085291.
Wennemers, Helma et al. (2018) ‘Functionalized Proline-Rich Peptides Bind the Bacterial Second Messenger c-di-GMP’, Angewandte Chemie (International ed. in English), 57(26), pp. 7729–7733. Available at: https://doi.org/10.1002/anie.201801845.
Wennemers, Helma et al. (2018) ‘Functionalized Proline-Rich Peptides Bind the Bacterial Second Messenger c-di-GMP’, Angewandte Chemie (International ed. in English), 57(26), pp. 7729–7733. Available at: https://doi.org/10.1002/anie.201801845.
Arx, C.<. (2017) Cyclic di-GMP controls a bacterial cell cycle phosphorylation network. Available at: https://doi.org/10.5451/unibas-006781005.
Arx, C.<. (2017) Cyclic di-GMP controls a bacterial cell cycle phosphorylation network. Available at: https://doi.org/10.5451/unibas-006781005.
Hug, Isabelle et al. (2017) ‘Second messenger-mediated tactile response by a bacterial rotary motor’, Science, 358(6362), pp. 531–534. Available at: https://doi.org/10.1126/science.aan5353.
Hug, Isabelle et al. (2017) ‘Second messenger-mediated tactile response by a bacterial rotary motor’, Science, 358(6362), pp. 531–534. Available at: https://doi.org/10.1126/science.aan5353.
Jenal, Urs, Reinders, Alberto and Lori, Christian (2017) ‘Cyclic di-GMP: second messenger extraordinaire’, Nature Reviews Microbiology, 15(5), pp. 271–284. Available at: https://doi.org/10.1038/nrmicro.2016.190.
Jenal, Urs, Reinders, Alberto and Lori, Christian (2017) ‘Cyclic di-GMP: second messenger extraordinaire’, Nature Reviews Microbiology, 15(5), pp. 271–284. Available at: https://doi.org/10.1038/nrmicro.2016.190.
Laventie, Benoît-Joseph, Glatter, Timo and Jenal, Urs (2017) ‘Pull-Down with a c-di-GMP-Specific Capture Compound Coupled to Mass Spectrometry as a Powerful Tool to Identify Novel Effector Proteins’, Methods in Molecular Biology, 1657, pp. 361–376. Available at: https://doi.org/10.1007/978-1-4939-7240-1_28.
Laventie, Benoît-Joseph, Glatter, Timo and Jenal, Urs (2017) ‘Pull-Down with a c-di-GMP-Specific Capture Compound Coupled to Mass Spectrometry as a Powerful Tool to Identify Novel Effector Proteins’, Methods in Molecular Biology, 1657, pp. 361–376. Available at: https://doi.org/10.1007/978-1-4939-7240-1_28.
Moreira, Ricardo N. et al. (2017) ‘BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation’, mBio, 8(5), p. 17. Available at: https://doi.org/10.1128/mbio.00443-17.
Moreira, Ricardo N. et al. (2017) ‘BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation’, mBio, 8(5), p. 17. Available at: https://doi.org/10.1128/mbio.00443-17.
Schmid, Nadine et al. (2017) ‘High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111’, Microbiology, 163(5), pp. 754–764. Available at: https://doi.org/10.1099/mic.0.000452.
Schmid, Nadine et al. (2017) ‘High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111’, Microbiology, 163(5), pp. 754–764. Available at: https://doi.org/10.1099/mic.0.000452.
Sedlmayer, Ferdinand et al. (2017) ‘Quorum-Quenching Human Designer Cells for Closed-Loop Control of Pseudomonas aeruginosa Biofilms’, Nano Letters, 17(8), pp. 5043–5050. Available at: https://doi.org/10.1021/acs.nanolett.7b02270.
Sedlmayer, Ferdinand et al. (2017) ‘Quorum-Quenching Human Designer Cells for Closed-Loop Control of Pseudomonas aeruginosa Biofilms’, Nano Letters, 17(8), pp. 5043–5050. Available at: https://doi.org/10.1021/acs.nanolett.7b02270.
Sprecher, K. (2017) Cohesive properties of the caulobacter crescentus holdfast adhesin are regulated by a novel c-di-GMP effector protein. Available at: https://doi.org/10.5451/unibas-006740701.
Sprecher, K. (2017) Cohesive properties of the caulobacter crescentus holdfast adhesin are regulated by a novel c-di-GMP effector protein. Available at: https://doi.org/10.5451/unibas-006740701.
Sprecher, Kathrin S. et al. (2017) ‘Cohesive Properties of the Caulobacter crescentus Holdfast Adhesin Are Regulated by a Novel c-di-GMP Effector Protein’, mBio, 8(2), pp. e00294–17. Available at: https://doi.org/10.1128/mbio.00294-17.
Sprecher, Kathrin S. et al. (2017) ‘Cohesive Properties of the Caulobacter crescentus Holdfast Adhesin Are Regulated by a Novel c-di-GMP Effector Protein’, mBio, 8(2), pp. e00294–17. Available at: https://doi.org/10.1128/mbio.00294-17.
Valentini, M. et al. (2016) ‘Erratum: The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility (PLoS Genet (2016) 12:10 (e1006354) DOI: 10.1371/journal.pgen.1006354)’, PLoS Genetics, 12(11). Available at: https://doi.org/10.1371/JOURNAL.PGEN.1006473.
Valentini, M. et al. (2016) ‘Erratum: The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility (PLoS Genet (2016) 12:10 (e1006354) DOI: 10.1371/journal.pgen.1006354)’, PLoS Genetics, 12(11). Available at: https://doi.org/10.1371/JOURNAL.PGEN.1006473.
Broder, Ursula N., Jaeger, Tina and Jenal, Urs (2016) ‘LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa’, Nature Microbiology, 2, p. 16184. Available at: https://doi.org/10.1038/nmicrobiol.2016.184.
Broder, Ursula N., Jaeger, Tina and Jenal, Urs (2016) ‘LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa’, Nature Microbiology, 2, p. 16184. Available at: https://doi.org/10.1038/nmicrobiol.2016.184.
Dubey, Badri N. et al. (2016) ‘Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking’, Science Advances, 2(9), p. e1600823. Available at: https://doi.org/10.1126/sciadv.1600823.
Dubey, Badri N. et al. (2016) ‘Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking’, Science Advances, 2(9), p. e1600823. Available at: https://doi.org/10.1126/sciadv.1600823.
Hengge, Regine et al. (2016) ‘Systematic nomenclature for GGDEF and EAL domain-containing Cyclic di-GMP turnover proteins of Escherichia coli’, Journal of bacteriology, 198(1), pp. 7–11. Available at: https://doi.org/10.1128/jb.00424-15.
Hengge, Regine et al. (2016) ‘Systematic nomenclature for GGDEF and EAL domain-containing Cyclic di-GMP turnover proteins of Escherichia coli’, Journal of bacteriology, 198(1), pp. 7–11. Available at: https://doi.org/10.1128/jb.00424-15.
Hengge, Regine et al. (2016) ‘Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers’, Journal of bacteriology, 198(1), pp. 15–26. Available at: https://doi.org/10.1128/jb.00331-15.
Hengge, Regine et al. (2016) ‘Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers’, Journal of bacteriology, 198(1), pp. 15–26. Available at: https://doi.org/10.1128/jb.00331-15.
Lori, C. (2016) C-di-GMP acts as a cell cycle oscillator to drive chromosome replication. Available at: https://doi.org/10.5451/unibas-006624115.
Lori, C. (2016) C-di-GMP acts as a cell cycle oscillator to drive chromosome replication. Available at: https://doi.org/10.5451/unibas-006624115.
Reinders, Alberto et al. (2016) ‘Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli’, Journal of Bacteriology, 198(3), pp. 448–62. Available at: https://doi.org/10.1128/jb.00604-15.
Reinders, Alberto et al. (2016) ‘Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli’, Journal of Bacteriology, 198(3), pp. 448–62. Available at: https://doi.org/10.1128/jb.00604-15.
Rotem, Or et al. (2016) ‘An extended cyclic di-GMP network in the predatory bacterium Bdellovibrio bacteriovorus’, Journal of bacteriology, 198(1), pp. 127–137. Available at: https://doi.org/10.1128/jb.00422-15.
Rotem, Or et al. (2016) ‘An extended cyclic di-GMP network in the predatory bacterium Bdellovibrio bacteriovorus’, Journal of bacteriology, 198(1), pp. 127–137. Available at: https://doi.org/10.1128/jb.00422-15.
Trebosc, Vincent et al. (2016) ‘A novel genome editing platform for drug resistant Acinetobacter baumannii revealed an AdeR-unrelated tigecycline resistance mechanism’, Antimicrobial Agents and Chemotherapy, 60(12), pp. 7263–7271. Available at: https://doi.org/10.1128/aac.01275-16.
Trebosc, Vincent et al. (2016) ‘A novel genome editing platform for drug resistant Acinetobacter baumannii revealed an AdeR-unrelated tigecycline resistance mechanism’, Antimicrobial Agents and Chemotherapy, 60(12), pp. 7263–7271. Available at: https://doi.org/10.1128/aac.01275-16.
Valentini, Martina et al. (2016) ‘The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility’, PLoS genetics, 12(10), p. e1006354. Available at: https://doi.org/10.1371/journal.pgen.1006354.
Valentini, Martina et al. (2016) ‘The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility’, PLoS genetics, 12(10), p. e1006354. Available at: https://doi.org/10.1371/journal.pgen.1006354.
Broder, U. (2015) A calcium-responsive kinase induces the acute-to-chronic lifestyle switch in ‘Pseudomonas aeruginosa’. Available at: https://doi.org/10.5451/unibas-006503313.
Broder, U. (2015) A calcium-responsive kinase induces the acute-to-chronic lifestyle switch in ‘Pseudomonas aeruginosa’. Available at: https://doi.org/10.5451/unibas-006503313.
Laventie, Benoît-Joseph et al. (2015) ‘Capture compound mass spectrometry - a powerful tool to identify novel c-di-GMP effector proteins’, Journal of visualized experiments, 97 , e51404(97), p. e51404. Available at: https://doi.org/10.3791/51404.
Laventie, Benoît-Joseph et al. (2015) ‘Capture compound mass spectrometry - a powerful tool to identify novel c-di-GMP effector proteins’, Journal of visualized experiments, 97 , e51404(97), p. e51404. Available at: https://doi.org/10.3791/51404.
Lori, Christian et al. (2015) ‘Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication’, Nature, 523(7559), pp. 236–9. Available at: https://doi.org/10.1038/nature14473.
Lori, Christian et al. (2015) ‘Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication’, Nature, 523(7559), pp. 236–9. Available at: https://doi.org/10.1038/nature14473.
Manfredi, Pablo and Jenal, Urs (2015) ‘Bacteria in the CF Lung: Isolation Drives Diversity’, Cell host & microbe, 18(3), pp. 268–9. Available at: https://doi.org/10.1016/j.chom.2015.08.013.
Manfredi, Pablo and Jenal, Urs (2015) ‘Bacteria in the CF Lung: Isolation Drives Diversity’, Cell host & microbe, 18(3), pp. 268–9. Available at: https://doi.org/10.1016/j.chom.2015.08.013.
Nowakowska, J. (2015) Different treatment approaches to infectious diseases : from novel antimicrobials to T-cell therapy. Available at: https://doi.org/10.5451/unibas-006422136.
Nowakowska, J. (2015) Different treatment approaches to infectious diseases : from novel antimicrobials to T-cell therapy. Available at: https://doi.org/10.5451/unibas-006422136.
Reinders, A. (2015) A moonlighting enzyme imposes second messenger bistability to drive lifestyle decisions in E. coli. Available at: https://doi.org/10.5451/unibas-006812280.
Reinders, A. (2015) A moonlighting enzyme imposes second messenger bistability to drive lifestyle decisions in E. coli. Available at: https://doi.org/10.5451/unibas-006812280.
Cohen, Y. (2014) Second messenger-mediated flagellum assembly during the ‘Caulobacter Crescentus’ cell cycle. Available at: https://doi.org/10.5451/unibas-006336652.
Cohen, Y. (2014) Second messenger-mediated flagellum assembly during the ‘Caulobacter Crescentus’ cell cycle. Available at: https://doi.org/10.5451/unibas-006336652.
Fei, Na et al. (2014) ‘Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides.’, Chemical Communications, 50(62), pp. 8499–502. Available at: https://doi.org/10.1039/c4cc01919a.
Fei, Na et al. (2014) ‘Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides.’, Chemical Communications, 50(62), pp. 8499–502. Available at: https://doi.org/10.1039/c4cc01919a.
Fumeaux, Coralie et al. (2014) ‘Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators’, Nature Communications, 5, p. 4081. Available at: https://doi.org/10.1038/ncomms5081.
Fumeaux, Coralie et al. (2014) ‘Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators’, Nature Communications, 5, p. 4081. Available at: https://doi.org/10.1038/ncomms5081.
Moscoso, Joana A. et al. (2014) ‘The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa’, Journal of Bacteriology, 196(23), pp. 4081–4088. Available at: https://doi.org/10.1128/jb.01850-14.
Moscoso, Joana A. et al. (2014) ‘The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa’, Journal of Bacteriology, 196(23), pp. 4081–4088. Available at: https://doi.org/10.1128/jb.01850-14.
Ozaki, Shogo et al. (2014) ‘Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control’, Molecular Microbiology, 94(3), pp. 580–94. Available at: https://doi.org/10.1111/mmi.12777.
Ozaki, Shogo et al. (2014) ‘Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control’, Molecular Microbiology, 94(3), pp. 580–94. Available at: https://doi.org/10.1111/mmi.12777.
Sundriyal, Amit et al. (2014) ‘Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger c-di-GMP’, Journal of Biological Chemistry, 289(10), pp. 6978–90. Available at: https://doi.org/10.1074/jbc.m113.516195.
Sundriyal, Amit et al. (2014) ‘Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger c-di-GMP’, Journal of Biological Chemistry, 289(10), pp. 6978–90. Available at: https://doi.org/10.1074/jbc.m113.516195.
Boos, W. et al. (2013) ‘Alexander Böhm (1971-2012)’, Molecular Microbiology, 88(2), pp. 219–221. Available at: https://doi.org/10.1111/mmi.12198.
Boos, W. et al. (2013) ‘Alexander Böhm (1971-2012)’, Molecular Microbiology, 88(2), pp. 219–221. Available at: https://doi.org/10.1111/mmi.12198.
Abel, Sören et al. (2013) ‘Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the caulobacter cell cycle’, PLoS genetics, 9(9), p. e1003744. Available at: https://doi.org/10.1371/journal.pgen.1003744.
Abel, Sören et al. (2013) ‘Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the caulobacter cell cycle’, PLoS genetics, 9(9), p. e1003744. Available at: https://doi.org/10.1371/journal.pgen.1003744.
Davis, N. J. et al. (2013) ‘De- and repolarization mechanism of flagellar morphogenesis during a bacterial cell cycle’, Genes and Development, 27(18), pp. 2049–62. Available at: https://doi.org/10.1101/gad.222679.113.
Davis, N. J. et al. (2013) ‘De- and repolarization mechanism of flagellar morphogenesis during a bacterial cell cycle’, Genes and Development, 27(18), pp. 2049–62. Available at: https://doi.org/10.1101/gad.222679.113.
Friedrich, E. (2013) Analysis of cyclic di-GMP signaling components in ‘caulobacter crescentus’ behavior and cell cycle control. Available at: https://doi.org/10.5451/unibas-006202963.
Friedrich, E. (2013) Analysis of cyclic di-GMP signaling components in ‘caulobacter crescentus’ behavior and cell cycle control. Available at: https://doi.org/10.5451/unibas-006202963.
Hosch, L. (2013) Regulation of poly-GlcNAc expression and fimbriation in uropathogenic ‘E. coli’. Available at: https://doi.org/10.5451/unibas-006119304.
Hosch, L. (2013) Regulation of poly-GlcNAc expression and fimbriation in uropathogenic ‘E. coli’. Available at: https://doi.org/10.5451/unibas-006119304.
Jenal, Urs (2013) ‘Think globally, act locally: how bacteria integrate local decisions with their global cellular programme’, The EMBO Journal, 32(14), pp. 1972–4. Available at: https://doi.org/10.1038/emboj.2013.140.
Jenal, Urs (2013) ‘Think globally, act locally: how bacteria integrate local decisions with their global cellular programme’, The EMBO Journal, 32(14), pp. 1972–4. Available at: https://doi.org/10.1038/emboj.2013.140.
Renggli, Sabine et al. (2013) ‘The role of auto-fluorescence in flow-cytometric analysis of Escherichia coli treated with bactericidal antibiotics’, Journal of bacteriology, 195(18), pp. 4067–4073. Available at: https://doi.org/10.1128/jb.00393-13.
Renggli, Sabine et al. (2013) ‘The role of auto-fluorescence in flow-cytometric analysis of Escherichia coli treated with bactericidal antibiotics’, Journal of bacteriology, 195(18), pp. 4067–4073. Available at: https://doi.org/10.1128/jb.00393-13.
Steiner, S. et al. (2013) ‘Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction’, The EMBO journal, 32(3), pp. 354–68. Available at: https://doi.org/10.1038/emboj.2012.315.
Steiner, S. et al. (2013) ‘Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction’, The EMBO journal, 32(3), pp. 354–68. Available at: https://doi.org/10.1038/emboj.2012.315.
Wegrzyn, Katarzyna et al. (2013) ‘RK2 plasmid dynamics in Caulobacter crescentus cells - two modes of DNA replication initiation’, Microbiology, 159(Pt 6), pp. 1010–22. Available at: https://doi.org/10.1099/mic.0.065490-0.
Wegrzyn, Katarzyna et al. (2013) ‘RK2 plasmid dynamics in Caulobacter crescentus cells - two modes of DNA replication initiation’, Microbiology, 159(Pt 6), pp. 1010–22. Available at: https://doi.org/10.1099/mic.0.065490-0.