Molecular Microbiology (Jenal)
Publications
147 found
Show per page
Santi, Isabella et al. (2024) ‘Toxin-mediated depletion of NAD and NADP drives persister formation in a human pathogen’, The EMBO Journal, 43(21), pp. 5211–5236. Available at: https://doi.org/10.1038/s44318-024-00248-5.
Santi, Isabella et al. (2024) ‘Toxin-mediated depletion of NAD and NADP drives persister formation in a human pathogen’, The EMBO Journal, 43(21), pp. 5211–5236. Available at: https://doi.org/10.1038/s44318-024-00248-5.
Leoni Swart, A. et al. (2024) ‘Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model’, Nature Microbiology, 9(7), pp. 1725–1737. Available at: https://doi.org/10.1038/s41564-024-01718-6.
Leoni Swart, A. et al. (2024) ‘Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model’, Nature Microbiology, 9(7), pp. 1725–1737. Available at: https://doi.org/10.1038/s41564-024-01718-6.
Maffei, Enea et al. (2024) ‘Complete genome sequence of Pseudomonas aeruginosa phage Knedl’, Microbiology Resource Announcements, 13(4). Available at: https://doi.org/10.1128/mra.01174-23.
Maffei, Enea et al. (2024) ‘Complete genome sequence of Pseudomonas aeruginosa phage Knedl’, Microbiology Resource Announcements, 13(4). Available at: https://doi.org/10.1128/mra.01174-23.
Pérez-Burgos, María et al. (2024) ‘A deterministic, c-di-GMP-dependent genetic program ensures the generation of phenotypically similar, symmetric daughter cells during cytokinesis’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.02.06.579105.
Pérez-Burgos, María et al. (2024) ‘A deterministic, c-di-GMP-dependent genetic program ensures the generation of phenotypically similar, symmetric daughter cells during cytokinesis’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.02.06.579105.
Kurmashev, Amanzhol et al. (2024) ‘Transwell-Based Microfluidic Platform for High-Resolution Imaging of Airway Tissues’, Advanced Materials Technologies [Preprint]. Available at: https://doi.org/10.1002/admt.202400326.
Kurmashev, Amanzhol et al. (2024) ‘Transwell-Based Microfluidic Platform for High-Resolution Imaging of Airway Tissues’, Advanced Materials Technologies [Preprint]. Available at: https://doi.org/10.1002/admt.202400326.
Maffei, Enea et al. (2024) ‘Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication’, Nature Communications, 15. Available at: https://doi.org/10.1038/s41467-023-44157-3.
Maffei, Enea et al. (2024) ‘Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication’, Nature Communications, 15. Available at: https://doi.org/10.1038/s41467-023-44157-3.
Rima, Luca et al. (2024) ‘Single and few cell analysis for correlative light microscopy, metabolomics, and targeted proteomics’, Lab on a Chip. 08.08.2024, 24(18), p. 4321–4332 . Available at: https://doi.org/10.1039/d4lc00269e.
Rima, Luca et al. (2024) ‘Single and few cell analysis for correlative light microscopy, metabolomics, and targeted proteomics’, Lab on a Chip. 08.08.2024, 24(18), p. 4321–4332 . Available at: https://doi.org/10.1039/d4lc00269e.
Sollier, Julie et al. (2024) ‘Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions’, Nature Microbiology, 9(1), pp. 1–3. Available at: https://doi.org/10.1038/s41564-023-01566-w.
Sollier, Julie et al. (2024) ‘Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions’, Nature Microbiology, 9(1), pp. 1–3. Available at: https://doi.org/10.1038/s41564-023-01566-w.
Kurmashev, Amanzhol et al. (2023) ‘Transwell-based microphysiological platform for high-resolution imaging of airway tissues’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.22.567838.
Kurmashev, Amanzhol et al. (2023) ‘Transwell-based microphysiological platform for high-resolution imaging of airway tissues’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.22.567838.
Swart, A. Leoni et al. (2023) ‘Goblet cell invasion promotes breaching of respiratory epithelia by an opportunistic human pathogen’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.13.553119.
Swart, A. Leoni et al. (2023) ‘Goblet cell invasion promotes breaching of respiratory epithelia by an opportunistic human pathogen’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.13.553119.
Dubey, Badri Nath et al. (2023) ‘Mutant structure of metabolic switch protein in complex with monomeric c-di-GMP reveals a potential mechanism of protein-mediated ligand dimerization’, Scientific reports, 13(1), p. 2727. Available at: https://doi.org/10.1038/s41598-023-29110-0.
Dubey, Badri Nath et al. (2023) ‘Mutant structure of metabolic switch protein in complex with monomeric c-di-GMP reveals a potential mechanism of protein-mediated ligand dimerization’, Scientific reports, 13(1), p. 2727. Available at: https://doi.org/10.1038/s41598-023-29110-0.
Klotz, Alexander, Kaczmarczyk, Andreas and Jenal, Urs (2023) ‘A Synthetic Cumate-Inducible Promoter for Graded and Homogenous Gene Expression in Pseudomonas aeruginosa’, Applied and Environmental Microbiology, 89. Available at: https://doi.org/10.1128/aem.00211-23.
Klotz, Alexander, Kaczmarczyk, Andreas and Jenal, Urs (2023) ‘A Synthetic Cumate-Inducible Promoter for Graded and Homogenous Gene Expression in Pseudomonas aeruginosa’, Applied and Environmental Microbiology, 89. Available at: https://doi.org/10.1128/aem.00211-23.
Kaczmarczyk, Andreas et al. (2022) ‘A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution’. bioRxiv. Available at: https://doi.org/10.1101/2022.10.18.512705.
Kaczmarczyk, Andreas et al. (2022) ‘A Novel Biosensor Reveals Dynamic Changes of C-di-GMP in Differentiating Cells with Ultra-High Temporal Resolution’. bioRxiv. Available at: https://doi.org/10.1101/2022.10.18.512705.
Dubey, Badri Nath et al. (2022) ‘High-resolution crystal structure of a metabolic switch protein in a complex with monomeric c-di-GMP reveals a potential mechanism for c-di-GMP dimerization’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.07.30.502141.
Dubey, Badri Nath et al. (2022) ‘High-resolution crystal structure of a metabolic switch protein in a complex with monomeric c-di-GMP reveals a potential mechanism for c-di-GMP dimerization’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.07.30.502141.
Povolo, Vanessa R et al. (2022) ‘Extracellular appendages govern spatial dynamics and growth of Caulobacter crescentus on a prevalent biopolymer’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.06.13.495907.
Povolo, Vanessa R et al. (2022) ‘Extracellular appendages govern spatial dynamics and growth of Caulobacter crescentus on a prevalent biopolymer’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.06.13.495907.
Anglada-Girotto, Miquel et al. (2022) ‘Combining CRISPRi and metabolomics for functional annotation of compound libraries’, Nature Chemical Biology, 18(5), pp. 482–491. Available at: https://doi.org/10.1038/s41589-022-00970-3.
Anglada-Girotto, Miquel et al. (2022) ‘Combining CRISPRi and metabolomics for functional annotation of compound libraries’, Nature Chemical Biology, 18(5), pp. 482–491. Available at: https://doi.org/10.1038/s41589-022-00970-3.
Anglada-Girotto, Miquel et al. (2022) ‘Author Correction: Combining CRISPRi and metabolomics for functional annotation of compound libraries’, Nature Chemical Biology, 18(5), p. 575. Available at: https://doi.org/10.1038/s41589-022-01028-0.
Anglada-Girotto, Miquel et al. (2022) ‘Author Correction: Combining CRISPRi and metabolomics for functional annotation of compound libraries’, Nature Chemical Biology, 18(5), p. 575. Available at: https://doi.org/10.1038/s41589-022-01028-0.
Haas, Thomas M. et al. (2022) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, Angewandte Chemie International Edition, 61(22), p. e202201731. Available at: https://doi.org/10.1002/anie.202201731.
Haas, Thomas M. et al. (2022) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, Angewandte Chemie International Edition, 61(22), p. e202201731. Available at: https://doi.org/10.1002/anie.202201731.
Jenal, Urs (2022) ‘Killing the messenger to evade bacterial defences’, Nature, 605(7910), pp. 431–432. Available at: https://doi.org/10.1038/d41586-022-01127-x.
Jenal, Urs (2022) ‘Killing the messenger to evade bacterial defences’, Nature, 605(7910), pp. 431–432. Available at: https://doi.org/10.1038/d41586-022-01127-x.
Sauter, Nora et al. (2022) ‘Bacteria-on-a-bead: probing the hydrodynamic interplay of dynamic cell appendages during cell separation’, Communications biology, 5(1), p. 1093. Available at: https://doi.org/10.1038/s42003-022-04026-z.
Sauter, Nora et al. (2022) ‘Bacteria-on-a-bead: probing the hydrodynamic interplay of dynamic cell appendages during cell separation’, Communications biology, 5(1), p. 1093. Available at: https://doi.org/10.1038/s42003-022-04026-z.
Shaidullina, Aisylu and Harms, Alexander (2022) ‘Toothpicks, logic, and next-generation sequencing: systematic investigation of bacteriophage-host interactions’, Current Opinion in Microbiology, 70, p. 102225. Available at: https://doi.org/10.1016/j.mib.2022.102225.
Shaidullina, Aisylu and Harms, Alexander (2022) ‘Toothpicks, logic, and next-generation sequencing: systematic investigation of bacteriophage-host interactions’, Current Opinion in Microbiology, 70, p. 102225. Available at: https://doi.org/10.1016/j.mib.2022.102225.
Shaidullina, Aisylu and Harms, Alexander (2022) ‘Antiviral death punch by ADP-ribosylating bacterial toxins’, Trends in Microbiology, 30(10), pp. 920–921. Available at: https://doi.org/10.1016/j.tim.2022.08.009.
Shaidullina, Aisylu and Harms, Alexander (2022) ‘Antiviral death punch by ADP-ribosylating bacterial toxins’, Trends in Microbiology, 30(10), pp. 920–921. Available at: https://doi.org/10.1016/j.tim.2022.08.009.
Steiner, Elisabeth et al. (2022) ‘The BDSF quorum sensing receptor RpfR regulates Bep exopolysaccharide synthesis in Burkholderia cenocepacia via interaction with the transcriptional regulator BerB’, NPJ biofilms and microbiomes, 8(1), p. 93. Available at: https://doi.org/10.1038/s41522-022-00356-2.
Steiner, Elisabeth et al. (2022) ‘The BDSF quorum sensing receptor RpfR regulates Bep exopolysaccharide synthesis in Burkholderia cenocepacia via interaction with the transcriptional regulator BerB’, NPJ biofilms and microbiomes, 8(1), p. 93. Available at: https://doi.org/10.1038/s41522-022-00356-2.
Haas, Thomas M. et al. (2021) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.12.15.472736.
Haas, Thomas M. et al. (2021) ‘Photoaffinity capture compounds to profile the Magic Spot Nucleotide interactomes’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.12.15.472736.
Sellner, B. et al. (2021) ‘A New Sugar for an Old Phage: A c-di-GMP-Dependent Polysaccharide Pathway Sensitizes Escherichia coli for Bacteriophage Infection’, mBio, 12(6). Available at: https://doi.org/10.1128/mbio.03246-21.
Sellner, B. et al. (2021) ‘A New Sugar for an Old Phage: A c-di-GMP-Dependent Polysaccharide Pathway Sensitizes Escherichia coli for Bacteriophage Infection’, mBio, 12(6). Available at: https://doi.org/10.1128/mbio.03246-21.
Fuentes, Diego Antonio Fernandez et al. (2021) ‘Pareto optimality between growth-rate and lag-time couples metabolic noise to phenotypic heterogeneity in Escherichia coli’, Nature Communications, 12(1), p. 3204. Available at: https://doi.org/10.1038/s41467-021-23522-0.
Fuentes, Diego Antonio Fernandez et al. (2021) ‘Pareto optimality between growth-rate and lag-time couples metabolic noise to phenotypic heterogeneity in Escherichia coli’, Nature Communications, 12(1), p. 3204. Available at: https://doi.org/10.1038/s41467-021-23522-0.
Maffei, Enea and Harms, Alexander (2021) ‘Messages from the dead protect bacteria from viral attack’, The EMBO Journal, 41(3), p. e110382. Available at: https://doi.org/10.15252/embj.2021110382.
Maffei, Enea and Harms, Alexander (2021) ‘Messages from the dead protect bacteria from viral attack’, The EMBO Journal, 41(3), p. e110382. Available at: https://doi.org/10.15252/embj.2021110382.
Reinders, Alberto et al. (2021) ‘Digital control of c-di-GMP in E. coli balances population-wide developmental transitions and phage sensitivity’. bioRxiv. Available at: https://doi.org/10.1101/2021.10.01.462762.
Reinders, Alberto et al. (2021) ‘Digital control of c-di-GMP in E. coli balances population-wide developmental transitions and phage sensitivity’. bioRxiv. Available at: https://doi.org/10.1101/2021.10.01.462762.
Santi, Isabella, Manfredi, Pablo and Jenal, Urs (2021) ‘The Use of Experimental Evolution to Study the Response of Pseudomonas aeruginosa to Single or Double Antibiotic Treatment’, Methods in Molecular Biology, 2357, pp. 177–194. Available at: https://doi.org/10.1007/978-1-0716-1621-5_12.
Santi, Isabella, Manfredi, Pablo and Jenal, Urs (2021) ‘The Use of Experimental Evolution to Study the Response of Pseudomonas aeruginosa to Single or Double Antibiotic Treatment’, Methods in Molecular Biology, 2357, pp. 177–194. Available at: https://doi.org/10.1007/978-1-0716-1621-5_12.
Santi, Isabella et al. (2021) ‘Evolution of Antibiotic Tolerance Shapes Resistance Development in Chronic Pseudomonas aeruginosa Infections’, mBio, 12(1), pp. e03482–20. Available at: https://doi.org/10.1128/mbio.03482-20.
Santi, Isabella et al. (2021) ‘Evolution of Antibiotic Tolerance Shapes Resistance Development in Chronic Pseudomonas aeruginosa Infections’, mBio, 12(1), pp. e03482–20. Available at: https://doi.org/10.1128/mbio.03482-20.
Sellner, Benjamin et al. (2021) ‘A new sugar for an old phage: A c-di-GMP dependent polysaccharide pathway sensitizes E. coli for bacteriophage infection’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.09.27.461960.
Sellner, Benjamin et al. (2021) ‘A new sugar for an old phage: A c-di-GMP dependent polysaccharide pathway sensitizes E. coli for bacteriophage infection’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.09.27.461960.
Shyp, Viktoriya et al. (2021) ‘Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus’, Nature Microbiology, 6(1), pp. 59–72. Available at: https://doi.org/10.1038/s41564-020-00809-4.
Shyp, Viktoriya et al. (2021) ‘Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus’, Nature Microbiology, 6(1), pp. 59–72. Available at: https://doi.org/10.1038/s41564-020-00809-4.
Manfredi, Pablo et al. (2021) ‘Defining Proteomic Signatures to Predict Multidrug Persistence in Pseudomonas aeruginosa’, in Verstraeten, Natalie; Michiels, Jan (ed.) Bacterial Persistence: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 161–175. Available at: https://doi.org/10.1007/978-1-0716-1621-5_11.
Manfredi, Pablo et al. (2021) ‘Defining Proteomic Signatures to Predict Multidrug Persistence in Pseudomonas aeruginosa’, in Verstraeten, Natalie; Michiels, Jan (ed.) Bacterial Persistence: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 161–175. Available at: https://doi.org/10.1007/978-1-0716-1621-5_11.
Coppine, Jérôme et al. (2020) ‘Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases’, Journal of Bacteriology, 202(17), pp. e00345–20. Available at: https://doi.org/10.1128/jb.00345-20.
Coppine, Jérôme et al. (2020) ‘Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases’, Journal of Bacteriology, 202(17), pp. e00345–20. Available at: https://doi.org/10.1128/jb.00345-20.
Fino, Cinzia et al. (2020) ‘PasT of Escherichia coli sustains antibiotic tolerance and aerobic respiration as a bacterial homolog of mitochondrial Coq10’, MicrobiologyOpen, 9(8), p. e1064. Available at: https://doi.org/10.1002/mbo3.1064.
Fino, Cinzia et al. (2020) ‘PasT of Escherichia coli sustains antibiotic tolerance and aerobic respiration as a bacterial homolog of mitochondrial Coq10’, MicrobiologyOpen, 9(8), p. e1064. Available at: https://doi.org/10.1002/mbo3.1064.
Hartl, Johannes et al. (2020) ‘Untargeted metabolomics links glutathione to bacterial cell cycle progression’, Nature metabolism, 2(2), pp. 153–166. Available at: https://doi.org/10.1038/s42255-019-0166-0.
Hartl, Johannes et al. (2020) ‘Untargeted metabolomics links glutathione to bacterial cell cycle progression’, Nature metabolism, 2(2), pp. 153–166. Available at: https://doi.org/10.1038/s42255-019-0166-0.
Hee, Chee-Seng et al. (2020) ‘Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP’, Proceedings of the National Academy of Sciences of the United States of America, 117(29), pp. 17211–17220. Available at: https://doi.org/10.1073/pnas.2001232117.
Hee, Chee-Seng et al. (2020) ‘Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP’, Proceedings of the National Academy of Sciences of the United States of America, 117(29), pp. 17211–17220. Available at: https://doi.org/10.1073/pnas.2001232117.
Kaczmarczyk, Andreas et al. (2020) ‘Precise Timing of Transcription by c-di-GMP Coordinates Cell Cycle and Morphogenesis in Caulobacter’, Nature Communications, 11(1), p. 816. Available at: https://doi.org/10.1038/s41467-020-14585-6.
Kaczmarczyk, Andreas et al. (2020) ‘Precise Timing of Transcription by c-di-GMP Coordinates Cell Cycle and Morphogenesis in Caulobacter’, Nature Communications, 11(1), p. 816. Available at: https://doi.org/10.1038/s41467-020-14585-6.
Laventie, Benoît-Joseph and Jenal, Urs (2020) ‘Surface Sensing and Adaptation in Bacteria’, Annual review of microbiology, 74, pp. 735–760. Available at: https://doi.org/10.1146/annurev-micro-012120-063427.
Laventie, Benoît-Joseph and Jenal, Urs (2020) ‘Surface Sensing and Adaptation in Bacteria’, Annual review of microbiology, 74, pp. 735–760. Available at: https://doi.org/10.1146/annurev-micro-012120-063427.
Ozaki, Shogo, Jenal, Urs and Katayama, Tsutomu (2020) ‘Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus’, mBio, 11(2), pp. e00487–20. Available at: https://doi.org/10.1128/mbio.00487-20.
Ozaki, Shogo, Jenal, Urs and Katayama, Tsutomu (2020) ‘Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus’, mBio, 11(2), pp. e00487–20. Available at: https://doi.org/10.1128/mbio.00487-20.
Rossmann, Florian M. et al. (2020) ‘In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog’, Molecular microbiology, 114(3), pp. 443–453. Available at: https://doi.org/10.1111/mmi.14525.
Rossmann, Florian M. et al. (2020) ‘In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog’, Molecular microbiology, 114(3), pp. 443–453. Available at: https://doi.org/10.1111/mmi.14525.
Balaban, N.Q. et al. (2019) ‘Publisher Correction: Definitions and guidelines for research on antibiotic persistence (Nature Reviews Microbiology, (2019), 17, 7, (441-448), 10.1038/s41579-019-0196-3)’, Nature Reviews Microbiology, 17(7). Available at: https://doi.org/10.1038/s41579-019-0207-4.
Balaban, N.Q. et al. (2019) ‘Publisher Correction: Definitions and guidelines for research on antibiotic persistence (Nature Reviews Microbiology, (2019), 17, 7, (441-448), 10.1038/s41579-019-0196-3)’, Nature Reviews Microbiology, 17(7). Available at: https://doi.org/10.1038/s41579-019-0207-4.
Dubey, Badri N. et al. (2019) ‘Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/675454.
Dubey, Badri N. et al. (2019) ‘Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/675454.
Kaczmarczyk, Andreas et al. (2019) ‘Precise transcription timing by a second-messenger drives a bacterial G1/S cell cycle transition’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/675330.
Kaczmarczyk, Andreas et al. (2019) ‘Precise transcription timing by a second-messenger drives a bacterial G1/S cell cycle transition’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/675330.
Jenal, Urs et al. (2019) ‘Tad pili play a dynamic role in Caulobacter crescentus surface colonization’, bioRxiv, p. 1. Available at: https://doi.org/10.1101/526160.
Jenal, Urs et al. (2019) ‘Tad pili play a dynamic role in Caulobacter crescentus surface colonization’, bioRxiv, p. 1. Available at: https://doi.org/10.1101/526160.
Laventie, Benoît-Joseph et al. (2019) ‘A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa’, Cell host & microbe, 25(1), p. 140–+. Available at: https://doi.org/10.1016/j.chom.2018.11.008.
Laventie, Benoît-Joseph et al. (2019) ‘A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa’, Cell host & microbe, 25(1), p. 140–+. Available at: https://doi.org/10.1016/j.chom.2018.11.008.
Lori, C. et al. (2018) ‘A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria’, mBio, 9(3), pp. e00809–18. Available at: https://doi.org/10.1128/mbio.00809-18.
Lori, C. et al. (2018) ‘A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria’, mBio, 9(3), pp. e00809–18. Available at: https://doi.org/10.1128/mbio.00809-18.
Lori, C. et al. (2018) ‘Erratum for Lori et al., ‘A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria’’, mBio, 9(5), pp. e01534–18. Available at: https://doi.org/10.1128/mbio.01534-18.
Lori, C. et al. (2018) ‘Erratum for Lori et al., ‘A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria’’, mBio, 9(5), pp. e01534–18. Available at: https://doi.org/10.1128/mbio.01534-18.
Wennemers, Helma et al. (2018) ‘Functionalized Proline-Rich Peptides Bind the Bacterial Second Messenger c-di-GMP’, Angewandte Chemie (International ed. in English), 57(26), pp. 7729–7733. Available at: https://doi.org/10.1002/anie.201801845.
Wennemers, Helma et al. (2018) ‘Functionalized Proline-Rich Peptides Bind the Bacterial Second Messenger c-di-GMP’, Angewandte Chemie (International ed. in English), 57(26), pp. 7729–7733. Available at: https://doi.org/10.1002/anie.201801845.
Hug, Isabelle et al. (2017) ‘Second messenger-mediated tactile response by a bacterial rotary motor’, Science, 358(6362), pp. 531–534. Available at: https://doi.org/10.1126/science.aan5353.
Hug, Isabelle et al. (2017) ‘Second messenger-mediated tactile response by a bacterial rotary motor’, Science, 358(6362), pp. 531–534. Available at: https://doi.org/10.1126/science.aan5353.
Jenal, Urs, Reinders, Alberto and Lori, Christian (2017) ‘Cyclic di-GMP: second messenger extraordinaire’, Nature Reviews Microbiology, 15(5), pp. 271–284. Available at: https://doi.org/10.1038/nrmicro.2016.190.
Jenal, Urs, Reinders, Alberto and Lori, Christian (2017) ‘Cyclic di-GMP: second messenger extraordinaire’, Nature Reviews Microbiology, 15(5), pp. 271–284. Available at: https://doi.org/10.1038/nrmicro.2016.190.
Laventie, Benoît-Joseph, Glatter, Timo and Jenal, Urs (2017) ‘Pull-Down with a c-di-GMP-Specific Capture Compound Coupled to Mass Spectrometry as a Powerful Tool to Identify Novel Effector Proteins’, Methods in Molecular Biology, 1657, pp. 361–376. Available at: https://doi.org/10.1007/978-1-4939-7240-1_28.
Laventie, Benoît-Joseph, Glatter, Timo and Jenal, Urs (2017) ‘Pull-Down with a c-di-GMP-Specific Capture Compound Coupled to Mass Spectrometry as a Powerful Tool to Identify Novel Effector Proteins’, Methods in Molecular Biology, 1657, pp. 361–376. Available at: https://doi.org/10.1007/978-1-4939-7240-1_28.
Moreira, Ricardo N. et al. (2017) ‘BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation’, mBio, 8(5), p. 17. Available at: https://doi.org/10.1128/mbio.00443-17.
Moreira, Ricardo N. et al. (2017) ‘BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation’, mBio, 8(5), p. 17. Available at: https://doi.org/10.1128/mbio.00443-17.
Schmid, Nadine et al. (2017) ‘High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111’, Microbiology, 163(5), pp. 754–764. Available at: https://doi.org/10.1099/mic.0.000452.
Schmid, Nadine et al. (2017) ‘High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111’, Microbiology, 163(5), pp. 754–764. Available at: https://doi.org/10.1099/mic.0.000452.
Sedlmayer, Ferdinand et al. (2017) ‘Quorum-Quenching Human Designer Cells for Closed-Loop Control of Pseudomonas aeruginosa Biofilms’, Nano Letters, 17(8), pp. 5043–5050. Available at: https://doi.org/10.1021/acs.nanolett.7b02270.
Sedlmayer, Ferdinand et al. (2017) ‘Quorum-Quenching Human Designer Cells for Closed-Loop Control of Pseudomonas aeruginosa Biofilms’, Nano Letters, 17(8), pp. 5043–5050. Available at: https://doi.org/10.1021/acs.nanolett.7b02270.
Sprecher, Kathrin S. et al. (2017) ‘Cohesive Properties of the Caulobacter crescentus Holdfast Adhesin Are Regulated by a Novel c-di-GMP Effector Protein’, mBio, 8(2), pp. e00294–17. Available at: https://doi.org/10.1128/mbio.00294-17.
Sprecher, Kathrin S. et al. (2017) ‘Cohesive Properties of the Caulobacter crescentus Holdfast Adhesin Are Regulated by a Novel c-di-GMP Effector Protein’, mBio, 8(2), pp. e00294–17. Available at: https://doi.org/10.1128/mbio.00294-17.
Valentini, M. et al. (2016) ‘Erratum: The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility (PLoS Genet (2016) 12:10 (e1006354) DOI: 10.1371/journal.pgen.1006354)’, PLoS Genetics, 12(11). Available at: https://doi.org/10.1371/JOURNAL.PGEN.1006473.
Valentini, M. et al. (2016) ‘Erratum: The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility (PLoS Genet (2016) 12:10 (e1006354) DOI: 10.1371/journal.pgen.1006354)’, PLoS Genetics, 12(11). Available at: https://doi.org/10.1371/JOURNAL.PGEN.1006473.
Broder, Ursula N., Jaeger, Tina and Jenal, Urs (2016) ‘LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa’, Nature Microbiology, 2, p. 16184. Available at: https://doi.org/10.1038/nmicrobiol.2016.184.
Broder, Ursula N., Jaeger, Tina and Jenal, Urs (2016) ‘LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa’, Nature Microbiology, 2, p. 16184. Available at: https://doi.org/10.1038/nmicrobiol.2016.184.
Dubey, Badri N. et al. (2016) ‘Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking’, Science Advances, 2(9), p. e1600823. Available at: https://doi.org/10.1126/sciadv.1600823.
Dubey, Badri N. et al. (2016) ‘Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking’, Science Advances, 2(9), p. e1600823. Available at: https://doi.org/10.1126/sciadv.1600823.
Hengge, Regine et al. (2016) ‘Systematic nomenclature for GGDEF and EAL domain-containing Cyclic di-GMP turnover proteins of Escherichia coli’, Journal of bacteriology, 198(1), pp. 7–11. Available at: https://doi.org/10.1128/jb.00424-15.
Hengge, Regine et al. (2016) ‘Systematic nomenclature for GGDEF and EAL domain-containing Cyclic di-GMP turnover proteins of Escherichia coli’, Journal of bacteriology, 198(1), pp. 7–11. Available at: https://doi.org/10.1128/jb.00424-15.
Hengge, Regine et al. (2016) ‘Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers’, Journal of bacteriology, 198(1), pp. 15–26. Available at: https://doi.org/10.1128/jb.00331-15.
Hengge, Regine et al. (2016) ‘Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers’, Journal of bacteriology, 198(1), pp. 15–26. Available at: https://doi.org/10.1128/jb.00331-15.
Reinders, Alberto et al. (2016) ‘Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli’, Journal of Bacteriology, 198(3), pp. 448–62. Available at: https://doi.org/10.1128/jb.00604-15.
Reinders, Alberto et al. (2016) ‘Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli’, Journal of Bacteriology, 198(3), pp. 448–62. Available at: https://doi.org/10.1128/jb.00604-15.
Rotem, Or et al. (2016) ‘An extended cyclic di-GMP network in the predatory bacterium Bdellovibrio bacteriovorus’, Journal of bacteriology, 198(1), pp. 127–137. Available at: https://doi.org/10.1128/jb.00422-15.
Rotem, Or et al. (2016) ‘An extended cyclic di-GMP network in the predatory bacterium Bdellovibrio bacteriovorus’, Journal of bacteriology, 198(1), pp. 127–137. Available at: https://doi.org/10.1128/jb.00422-15.
Trebosc, Vincent et al. (2016) ‘A novel genome editing platform for drug resistant Acinetobacter baumannii revealed an AdeR-unrelated tigecycline resistance mechanism’, Antimicrobial Agents and Chemotherapy, 60(12), pp. 7263–7271. Available at: https://doi.org/10.1128/aac.01275-16.
Trebosc, Vincent et al. (2016) ‘A novel genome editing platform for drug resistant Acinetobacter baumannii revealed an AdeR-unrelated tigecycline resistance mechanism’, Antimicrobial Agents and Chemotherapy, 60(12), pp. 7263–7271. Available at: https://doi.org/10.1128/aac.01275-16.
Valentini, Martina et al. (2016) ‘The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility’, PLoS genetics, 12(10), p. e1006354. Available at: https://doi.org/10.1371/journal.pgen.1006354.
Valentini, Martina et al. (2016) ‘The Diguanylate Cyclase HsbD Intersects with the HptB Regulatory Cascade to Control Pseudomonas aeruginosa Biofilm and Motility’, PLoS genetics, 12(10), p. e1006354. Available at: https://doi.org/10.1371/journal.pgen.1006354.
Laventie, Benoît-Joseph et al. (2015) ‘Capture compound mass spectrometry - a powerful tool to identify novel c-di-GMP effector proteins’, Journal of visualized experiments, 97 , e51404(97), p. e51404. Available at: https://doi.org/10.3791/51404.
Laventie, Benoît-Joseph et al. (2015) ‘Capture compound mass spectrometry - a powerful tool to identify novel c-di-GMP effector proteins’, Journal of visualized experiments, 97 , e51404(97), p. e51404. Available at: https://doi.org/10.3791/51404.
Lori, Christian et al. (2015) ‘Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication’, Nature, 523(7559), pp. 236–9. Available at: https://doi.org/10.1038/nature14473.
Lori, Christian et al. (2015) ‘Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication’, Nature, 523(7559), pp. 236–9. Available at: https://doi.org/10.1038/nature14473.
Manfredi, Pablo and Jenal, Urs (2015) ‘Bacteria in the CF Lung: Isolation Drives Diversity’, Cell host & microbe, 18(3), pp. 268–9. Available at: https://doi.org/10.1016/j.chom.2015.08.013.
Manfredi, Pablo and Jenal, Urs (2015) ‘Bacteria in the CF Lung: Isolation Drives Diversity’, Cell host & microbe, 18(3), pp. 268–9. Available at: https://doi.org/10.1016/j.chom.2015.08.013.
Fei, Na et al. (2014) ‘Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides.’, Chemical Communications, 50(62), pp. 8499–502. Available at: https://doi.org/10.1039/c4cc01919a.
Fei, Na et al. (2014) ‘Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides.’, Chemical Communications, 50(62), pp. 8499–502. Available at: https://doi.org/10.1039/c4cc01919a.
Fumeaux, Coralie et al. (2014) ‘Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators’, Nature Communications, 5, p. 4081. Available at: https://doi.org/10.1038/ncomms5081.
Fumeaux, Coralie et al. (2014) ‘Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators’, Nature Communications, 5, p. 4081. Available at: https://doi.org/10.1038/ncomms5081.
Moscoso, Joana A. et al. (2014) ‘The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa’, Journal of Bacteriology, 196(23), pp. 4081–4088. Available at: https://doi.org/10.1128/jb.01850-14.
Moscoso, Joana A. et al. (2014) ‘The Diguanylate Cyclase SadC Is a Central Player in Gac/Rsm-Mediated Biofilm Formation in Pseudomonas aeruginosa’, Journal of Bacteriology, 196(23), pp. 4081–4088. Available at: https://doi.org/10.1128/jb.01850-14.
Ozaki, Shogo et al. (2014) ‘Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control’, Molecular Microbiology, 94(3), pp. 580–94. Available at: https://doi.org/10.1111/mmi.12777.
Ozaki, Shogo et al. (2014) ‘Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control’, Molecular Microbiology, 94(3), pp. 580–94. Available at: https://doi.org/10.1111/mmi.12777.
Sundriyal, Amit et al. (2014) ‘Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger c-di-GMP’, Journal of Biological Chemistry, 289(10), pp. 6978–90. Available at: https://doi.org/10.1074/jbc.m113.516195.
Sundriyal, Amit et al. (2014) ‘Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger c-di-GMP’, Journal of Biological Chemistry, 289(10), pp. 6978–90. Available at: https://doi.org/10.1074/jbc.m113.516195.
Boos, W. et al. (2013) ‘Alexander Böhm (1971-2012)’, Molecular Microbiology, 88(2), pp. 219–221. Available at: https://doi.org/10.1111/mmi.12198.
Boos, W. et al. (2013) ‘Alexander Böhm (1971-2012)’, Molecular Microbiology, 88(2), pp. 219–221. Available at: https://doi.org/10.1111/mmi.12198.
Abel, Sören et al. (2013) ‘Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the caulobacter cell cycle’, PLoS genetics, 9(9), p. e1003744. Available at: https://doi.org/10.1371/journal.pgen.1003744.
Abel, Sören et al. (2013) ‘Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the caulobacter cell cycle’, PLoS genetics, 9(9), p. e1003744. Available at: https://doi.org/10.1371/journal.pgen.1003744.
Davis, N. J. et al. (2013) ‘De- and repolarization mechanism of flagellar morphogenesis during a bacterial cell cycle’, Genes and Development, 27(18), pp. 2049–62. Available at: https://doi.org/10.1101/gad.222679.113.
Davis, N. J. et al. (2013) ‘De- and repolarization mechanism of flagellar morphogenesis during a bacterial cell cycle’, Genes and Development, 27(18), pp. 2049–62. Available at: https://doi.org/10.1101/gad.222679.113.
Jenal, Urs (2013) ‘Think globally, act locally: how bacteria integrate local decisions with their global cellular programme’, The EMBO Journal, 32(14), pp. 1972–4. Available at: https://doi.org/10.1038/emboj.2013.140.
Jenal, Urs (2013) ‘Think globally, act locally: how bacteria integrate local decisions with their global cellular programme’, The EMBO Journal, 32(14), pp. 1972–4. Available at: https://doi.org/10.1038/emboj.2013.140.
Renggli, Sabine et al. (2013) ‘The role of auto-fluorescence in flow-cytometric analysis of Escherichia coli treated with bactericidal antibiotics’, Journal of bacteriology, 195(18), pp. 4067–4073. Available at: https://doi.org/10.1128/jb.00393-13.
Renggli, Sabine et al. (2013) ‘The role of auto-fluorescence in flow-cytometric analysis of Escherichia coli treated with bactericidal antibiotics’, Journal of bacteriology, 195(18), pp. 4067–4073. Available at: https://doi.org/10.1128/jb.00393-13.
Steiner, S. et al. (2013) ‘Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction’, The EMBO journal, 32(3), pp. 354–68. Available at: https://doi.org/10.1038/emboj.2012.315.
Steiner, S. et al. (2013) ‘Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction’, The EMBO journal, 32(3), pp. 354–68. Available at: https://doi.org/10.1038/emboj.2012.315.
Wegrzyn, Katarzyna et al. (2013) ‘RK2 plasmid dynamics in Caulobacter crescentus cells - two modes of DNA replication initiation’, Microbiology, 159(Pt 6), pp. 1010–22. Available at: https://doi.org/10.1099/mic.0.065490-0.
Wegrzyn, Katarzyna et al. (2013) ‘RK2 plasmid dynamics in Caulobacter crescentus cells - two modes of DNA replication initiation’, Microbiology, 159(Pt 6), pp. 1010–22. Available at: https://doi.org/10.1099/mic.0.065490-0.
Zähringer, Franziska et al. (2013) ‘Structure and signaling mechanism of a zinc-sensory diguanylate cyclase’, Structure: with folding and design, 21(7), pp. 1149–57. Available at: https://doi.org/10.1016/j.str.2013.04.026.
Zähringer, Franziska et al. (2013) ‘Structure and signaling mechanism of a zinc-sensory diguanylate cyclase’, Structure: with folding and design, 21(7), pp. 1149–57. Available at: https://doi.org/10.1016/j.str.2013.04.026.
Hardwick, S. W. et al. (2012) ‘Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly’, Biology Open, 2(4), p. 120028. Available at: https://doi.org/10.1098/rsob.120028.
Hardwick, S. W. et al. (2012) ‘Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly’, Biology Open, 2(4), p. 120028. Available at: https://doi.org/10.1098/rsob.120028.
Nesper, J. et al. (2012) ‘A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins’, Journal of Proteomics, 75(15), pp. 4874–4878. Available at: https://doi.org/10.1016/j.jprot.2012.05.033.
Nesper, J. et al. (2012) ‘A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins’, Journal of Proteomics, 75(15), pp. 4874–4878. Available at: https://doi.org/10.1016/j.jprot.2012.05.033.
Petters, Tobias et al. (2012) ‘The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus’, Molecular microbiology, 84(1), pp. 147–165. Available at: https://doi.org/10.1111/j.1365-2958.2012.08015.x.
Petters, Tobias et al. (2012) ‘The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus’, Molecular microbiology, 84(1), pp. 147–165. Available at: https://doi.org/10.1111/j.1365-2958.2012.08015.x.
Abel, Sören et al. (2011) ‘Regulatory Cohesion of Cell Cycle and Cell Differentiation through Interlinked Phosphorylation and Second Messenger Networks’, Molecular cell, 43(4), pp. 550–60. Available at: https://doi.org/10.1016/j.molcel.2011.07.018.
Abel, Sören et al. (2011) ‘Regulatory Cohesion of Cell Cycle and Cell Differentiation through Interlinked Phosphorylation and Second Messenger Networks’, Molecular cell, 43(4), pp. 550–60. Available at: https://doi.org/10.1016/j.molcel.2011.07.018.
Habazettl, Judith et al. (2011) ‘Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout’, Journal of biological chemistry, 286(16), pp. 14304–14. Available at: https://doi.org/10.1074/jbc.m110.209007.
Habazettl, Judith et al. (2011) ‘Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout’, Journal of biological chemistry, 286(16), pp. 14304–14. Available at: https://doi.org/10.1074/jbc.m110.209007.
Levi, A. et al. (2011) ‘Cyclic Diguanylate Signaling Proteins Control Intracellular Growth of Legionella pneumophila’, mBio, 2(1), pp. e00316–10. Available at: https://doi.org/10.1128/mbio.00316-10.
Levi, A. et al. (2011) ‘Cyclic Diguanylate Signaling Proteins Control Intracellular Growth of Legionella pneumophila’, mBio, 2(1), pp. e00316–10. Available at: https://doi.org/10.1128/mbio.00316-10.
Abgottspon, Daniela et al. (2010) ‘Development of an aggregation assay to screen FimH antagonists’, Journal of Microbiological Methods, 82(3), pp. 249–55. Available at: https://doi.org/10.1016/j.mimet.2010.06.015.
Abgottspon, Daniela et al. (2010) ‘Development of an aggregation assay to screen FimH antagonists’, Journal of Microbiological Methods, 82(3), pp. 249–55. Available at: https://doi.org/10.1016/j.mimet.2010.06.015.
Boehm, Alex et al. (2010) ‘Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity’, Cell, 141(1), pp. 107–16. Available at: https://doi.org/10.1016/j.cell.2010.01.018.
Boehm, Alex et al. (2010) ‘Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity’, Cell, 141(1), pp. 107–16. Available at: https://doi.org/10.1016/j.cell.2010.01.018.
Diepold, A. et al. (2010) ‘Deciphering the assembly of the Yersinia type III secretion injectisome’, The EMBO journal, 29(11), pp. 1928–40. Available at: https://doi.org/10.1038/emboj.2010.84.
Diepold, A. et al. (2010) ‘Deciphering the assembly of the Yersinia type III secretion injectisome’, The EMBO journal, 29(11), pp. 1928–40. Available at: https://doi.org/10.1038/emboj.2010.84.
Malone, J. G. et al. (2010) ‘YfiBNR Mediates Cyclic di-GMP Dependent Small Colony Variant Formation and Persistence in Pseudomonas aeruginosa’, PLoS Pathogens, 6(3), p. e1000804. Available at: https://doi.org/10.1371/journal.ppat.1000804.
Malone, J. G. et al. (2010) ‘YfiBNR Mediates Cyclic di-GMP Dependent Small Colony Variant Formation and Persistence in Pseudomonas aeruginosa’, PLoS Pathogens, 6(3), p. e1000804. Available at: https://doi.org/10.1371/journal.ppat.1000804.
Spangler, Christian et al. (2010) ‘A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate’, Journal of Microbiological Methods, 81(3), pp. 226–31. Available at: https://doi.org/10.1016/j.mimet.2010.03.020.
Spangler, Christian et al. (2010) ‘A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate’, Journal of Microbiological Methods, 81(3), pp. 226–31. Available at: https://doi.org/10.1016/j.mimet.2010.03.020.
Abel, Sören and Jenal, Urs (2010) ‘Role of cyclic di-GMP in Caulobacter crescentus development and cell cycle control’, in Second messenger cyclic Di-GMP. Washington DC: ASM Press (Second messenger cyclic Di-GMP), pp. 120–136. Available at: https://doi.org/10.1128/9781555816667.ch9.
Abel, Sören and Jenal, Urs (2010) ‘Role of cyclic di-GMP in Caulobacter crescentus development and cell cycle control’, in Second messenger cyclic Di-GMP. Washington DC: ASM Press (Second messenger cyclic Di-GMP), pp. 120–136. Available at: https://doi.org/10.1128/9781555816667.ch9.
Jenal, U. (2009) ‘The role of proteolysis in the Caulobacter crescentus cell cycle and development’, Research in Microbiology, 160(9), pp. 687–695. Available at: https://doi.org/10.1016/j.resmic.2009.09.006.
Jenal, U. (2009) ‘The role of proteolysis in the Caulobacter crescentus cell cycle and development’, Research in Microbiology, 160(9), pp. 687–695. Available at: https://doi.org/10.1016/j.resmic.2009.09.006.
Boehm, Alex et al. (2009) ‘Second messenger signaling governs Escherichia coli biofilm induction upon ribosomal stress’, Molecular microbiology, 72(6), pp. 1500–1516. Available at: https://doi.org/10.1111/j.1365-2958.2009.06739.x.
Boehm, Alex et al. (2009) ‘Second messenger signaling governs Escherichia coli biofilm induction upon ribosomal stress’, Molecular microbiology, 72(6), pp. 1500–1516. Available at: https://doi.org/10.1111/j.1365-2958.2009.06739.x.
Duerig, Anna et al. (2009) ‘Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression’, Genes & development, 23(1), pp. 93–104. Available at: https://doi.org/10.1101/gad.502409.
Duerig, Anna et al. (2009) ‘Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression’, Genes & development, 23(1), pp. 93–104. Available at: https://doi.org/10.1101/gad.502409.
Jenal, U. and Dorman, C. J. (2009) ‘Small molecule signaling’, Current Opinion in Microbiology, Vol. 12, H. 2, p. S. 125–128. Available at: https://doi.org/10.1016/j.mib.2009.02.002.
Jenal, U. and Dorman, C. J. (2009) ‘Small molecule signaling’, Current Opinion in Microbiology, Vol. 12, H. 2, p. S. 125–128. Available at: https://doi.org/10.1016/j.mib.2009.02.002.
Jenal, U. and Galperin, M. Y. (2009) ‘Single domain response regulators : molecular switches with emerging roles in cell organization and dynamics’, Current Opinion in Microbiology, 12(2), pp. 152–60. Available at: https://doi.org/10.1016/j.mib.2009.01.010.
Jenal, U. and Galperin, M. Y. (2009) ‘Single domain response regulators : molecular switches with emerging roles in cell organization and dynamics’, Current Opinion in Microbiology, 12(2), pp. 152–60. Available at: https://doi.org/10.1016/j.mib.2009.01.010.
Paul, R. et al. (2008) ‘Allosteric Regulation of Histidine Kinases by Their Cognate Response Regulator Determines Cell Fate (DOI:10.1016/j.cell.2008.02.045)’, Cell, 133(5). Available at: https://doi.org/10.1016/j.cell.2008.05.018.
Paul, R. et al. (2008) ‘Allosteric Regulation of Histidine Kinases by Their Cognate Response Regulator Determines Cell Fate (DOI:10.1016/j.cell.2008.02.045)’, Cell, 133(5). Available at: https://doi.org/10.1016/j.cell.2008.05.018.
Paul, Ralf et al. (2008) ‘Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate’, Cell, 133(3), pp. 452–61. Available at: https://doi.org/10.1016/j.cell.2008.02.045.
Paul, Ralf et al. (2008) ‘Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate’, Cell, 133(3), pp. 452–61. Available at: https://doi.org/10.1016/j.cell.2008.02.045.