Growth & Development (Handschin)
Publications
188 found
Show per page
de Smalen, Laura M. and Handschin, Christoph (2024) ‘Mitochondrial Maintenance in Skeletal Muscle’, Cold Spring Harbor Perspectives in Biology, p. Online ahead of print. Available at: https://doi.org/10.1101/cshperspect.a041514.
de Smalen, Laura M. and Handschin, Christoph (2024) ‘Mitochondrial Maintenance in Skeletal Muscle’, Cold Spring Harbor Perspectives in Biology, p. Online ahead of print. Available at: https://doi.org/10.1101/cshperspect.a041514.
Ruiz, Alexis et al. (2024) ‘Massive reduction of RyR1 in muscle spindles of mice carrying recessive Ryr1 mutations alters proprioception and causes scoliosis’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.08.09.607317.
Ruiz, Alexis et al. (2024) ‘Massive reduction of RyR1 in muscle spindles of mice carrying recessive Ryr1 mutations alters proprioception and causes scoliosis’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.08.09.607317.
Furrer, Regula and Handschin, Christoph (2024) ‘Molecular aspects of the exercise response and training adaptation in skeletal muscle’, Free Radical Biology and Medicine, 223, pp. 53–68. Available at: https://doi.org/10.1016/j.freeradbiomed.2024.07.026.
Furrer, Regula and Handschin, Christoph (2024) ‘Molecular aspects of the exercise response and training adaptation in skeletal muscle’, Free Radical Biology and Medicine, 223, pp. 53–68. Available at: https://doi.org/10.1016/j.freeradbiomed.2024.07.026.
Mansingh, Shivani et al. (2024) ‘More than the clock: distinct regulation of muscle function and metabolism by PER2 and RORα’, The Journal of Physiology. 08.06.2024, 602(23), pp. 6373–6402. Available at: https://doi.org/10.1113/jp285585.
Mansingh, Shivani et al. (2024) ‘More than the clock: distinct regulation of muscle function and metabolism by PER2 and RORα’, The Journal of Physiology. 08.06.2024, 602(23), pp. 6373–6402. Available at: https://doi.org/10.1113/jp285585.
Lenardič, Ajda et al. (2024) ‘Generation of allogenic and xenogeneic functional muscle stem cells for intramuscular transplantation’, Journal of Clinical Investigation, 134(12). Available at: https://doi.org/10.1172/jci166998.
Lenardič, Ajda et al. (2024) ‘Generation of allogenic and xenogeneic functional muscle stem cells for intramuscular transplantation’, Journal of Clinical Investigation, 134(12). Available at: https://doi.org/10.1172/jci166998.
Fröhlich, K. et al. (2024) ‘Robust, Precise, and Deep Proteome Profiling Using a Small Mass Range and Narrow Window Data-Independent-Acquisition Scheme’, Journal of Proteome Research, 23(3), pp. 1028–1038. Available at: https://doi.org/10.1021/acs.jproteome.3c00736.
Fröhlich, K. et al. (2024) ‘Robust, Precise, and Deep Proteome Profiling Using a Small Mass Range and Narrow Window Data-Independent-Acquisition Scheme’, Journal of Proteome Research, 23(3), pp. 1028–1038. Available at: https://doi.org/10.1021/acs.jproteome.3c00736.
Furrer, Regula and Handschin, Christoph (2023) ‘Complex regulatory processes control exercise adaptations of skeletal muscle’, Nature Metabolism, 5(11), pp. 1856–1857. Available at: https://doi.org/10.1038/s42255-023-00894-9.
Furrer, Regula and Handschin, Christoph (2023) ‘Complex regulatory processes control exercise adaptations of skeletal muscle’, Nature Metabolism, 5(11), pp. 1856–1857. Available at: https://doi.org/10.1038/s42255-023-00894-9.
de Smalen, Laura M. et al. (2023) ‘Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α’, Proceedings of the National Academy of Sciences (PNAS), 120(36), p. e2302360120. Available at: https://doi.org/10.1073/pnas.2302360120.
de Smalen, Laura M. et al. (2023) ‘Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α’, Proceedings of the National Academy of Sciences (PNAS), 120(36), p. e2302360120. Available at: https://doi.org/10.1073/pnas.2302360120.
Furrer, Regula, Hawley, John A. and Handschin, Christoph (2023) ‘The molecular athlete: exercise physiology from mechanisms to medals’, Physiological Reviews, 103(3), pp. 1693–1787. Available at: https://doi.org/10.1152/physrev.00017.2022.
Furrer, Regula, Hawley, John A. and Handschin, Christoph (2023) ‘The molecular athlete: exercise physiology from mechanisms to medals’, Physiological Reviews, 103(3), pp. 1693–1787. Available at: https://doi.org/10.1152/physrev.00017.2022.
Furrer, Regula et al. (2023) ‘Molecular control of endurance training adaptation in male mouse skeletal muscle.’, Nature metabolism, 5(11), pp. 2020–2035. Available at: https://doi.org/10.1038/s42255-023-00891-y.
Furrer, Regula et al. (2023) ‘Molecular control of endurance training adaptation in male mouse skeletal muscle.’, Nature metabolism, 5(11), pp. 2020–2035. Available at: https://doi.org/10.1038/s42255-023-00891-y.
Handschin, Christoph (2023) ‘Churchill was wrong - do sports!’, Swiss Medical Forum, 23(26), p. 1175. Available at: https://doi.org/10.4414/smf.2023.09452.
Handschin, Christoph (2023) ‘Churchill was wrong - do sports!’, Swiss Medical Forum, 23(26), p. 1175. Available at: https://doi.org/10.4414/smf.2023.09452.
Leuchtmann, Aurel B. et al. (2023) ‘Effects of high-resistance wheel running on hallmarks of endurance and resistance training adaptations in mice’, Physiological Reports, 11(11), p. e15701. Available at: https://doi.org/10.14814/phy2.15701.
Leuchtmann, Aurel B. et al. (2023) ‘Effects of high-resistance wheel running on hallmarks of endurance and resistance training adaptations in mice’, Physiological Reports, 11(11), p. e15701. Available at: https://doi.org/10.14814/phy2.15701.
Furrer, Regula, Hawley, John A. and Handschin, Christoph (2023) ‘The molecular bases of endurance training adaptation’, in Mujika, Iñigo (ed.), Mujika, Iñigo (tran.) Endurance Training - Science and practice. 2nd edition. Vitoria-Gasteiz, Basque Country: Iñigo Mujika S.L.U. (Endurance Training - Science and practice), pp. 149–159.
Furrer, Regula, Hawley, John A. and Handschin, Christoph (2023) ‘The molecular bases of endurance training adaptation’, in Mujika, Iñigo (ed.), Mujika, Iñigo (tran.) Endurance Training - Science and practice. 2nd edition. Vitoria-Gasteiz, Basque Country: Iñigo Mujika S.L.U. (Endurance Training - Science and practice), pp. 149–159.
Ham DJ et al. (2022) ‘Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.’, 13(1). Available at: https://doi.org/10.1038/s41467-022-30189-8.
Ham DJ et al. (2022) ‘Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.’, 13(1). Available at: https://doi.org/10.1038/s41467-022-30189-8.
Furrer, Regula and Handschin, Christoph (2022) ‘Drugs, clocks and exercise in ageing: hype and hope, fact and fiction’, Journal of Physiology, 601(11), pp. 2057–2068. Available at: https://doi.org/10.1113/jp282887.
Furrer, Regula and Handschin, Christoph (2022) ‘Drugs, clocks and exercise in ageing: hype and hope, fact and fiction’, Journal of Physiology, 601(11), pp. 2057–2068. Available at: https://doi.org/10.1113/jp282887.
Ham, Daniel J. et al. (2022) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’, Nature Communications, 13(1), p. 2025. Available at: https://doi.org/10.1038/s41467-022-29714-6.
Ham, Daniel J. et al. (2022) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’, Nature Communications, 13(1), p. 2025. Available at: https://doi.org/10.1038/s41467-022-29714-6.
Humbel, Raffael (2022) Dissecting the Role of the Subsynaptically Enriched NMJ Transcript Rps6ka1. . Translated by Handschin Christoph. Masterarbeit. Universität Basel.
Humbel, Raffael (2022) Dissecting the Role of the Subsynaptically Enriched NMJ Transcript Rps6ka1. . Translated by Handschin Christoph. Masterarbeit. Universität Basel.
Leuchtmann, Aurel (2022) Molecular transducers of exercise-training adaptations in young and aged skeletal muscle. . Translated by Handschin Christoph. Dissertation. Universität Basel.
Leuchtmann, Aurel (2022) Molecular transducers of exercise-training adaptations in young and aged skeletal muscle. . Translated by Handschin Christoph. Dissertation. Universität Basel.
Leuchtmann, Aurel B. et al. (2022) ‘Interleukin-6 potentiates endurance training adaptation and improves functional capacity in old mice’, Journal of Cachexia, Sarcopenia and Muscle, 13(2), pp. 1164–1176. Available at: https://doi.org/10.1002/jcsm.12949.
Leuchtmann, Aurel B. et al. (2022) ‘Interleukin-6 potentiates endurance training adaptation and improves functional capacity in old mice’, Journal of Cachexia, Sarcopenia and Muscle, 13(2), pp. 1164–1176. Available at: https://doi.org/10.1002/jcsm.12949.
Mansingh, Shivani and Handschin, Christoph (2022) ‘Time to Train: The Involvement of the Molecular Clock in Exercise Adaptation of Skeletal Muscle’, Frontiers in Physiology, 13, p. 902031. Available at: https://doi.org/10.3389/fphys.2022.902031.
Mansingh, Shivani and Handschin, Christoph (2022) ‘Time to Train: The Involvement of the Molecular Clock in Exercise Adaptation of Skeletal Muscle’, Frontiers in Physiology, 13, p. 902031. Available at: https://doi.org/10.3389/fphys.2022.902031.
Pérez-Schindler, Joaquín et al. (2022) ‘Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity’, Scientific Reports, 12(1), p. 11477. Available at: https://doi.org/10.1038/s41598-022-15731-4.
Pérez-Schindler, Joaquín et al. (2022) ‘Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity’, Scientific Reports, 12(1), p. 11477. Available at: https://doi.org/10.1038/s41598-022-15731-4.
Schmid, Svenia et al. (2022) ‘PGC-1β modulates catabolism and fiber atrophy in the fasting-response of specific skeletal muscle beds’, Molecular metabolism, 66, p. 101643. Available at: https://doi.org/10.1016/j.molmet.2022.101643.
Schmid, Svenia et al. (2022) ‘PGC-1β modulates catabolism and fiber atrophy in the fasting-response of specific skeletal muscle beds’, Molecular metabolism, 66, p. 101643. Available at: https://doi.org/10.1016/j.molmet.2022.101643.
Streese, Lukas et al. (2022) ‘In-vivo assessment of retinal vessel diameters and observer variability in mice: A methodological approach’, PloS one, 17(7), p. e0271815. Available at: https://doi.org/10.1371/journal.pone.0271815.
Streese, Lukas et al. (2022) ‘In-vivo assessment of retinal vessel diameters and observer variability in mice: A methodological approach’, PloS one, 17(7), p. e0271815. Available at: https://doi.org/10.1371/journal.pone.0271815.
Pérez-Schindler, Joaquín et al. (2021) ‘Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity’. bioRxiv. Available at: https://doi.org/10.1101/2021.03.24.436772.
Pérez-Schindler, Joaquín et al. (2021) ‘Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity’. bioRxiv. Available at: https://doi.org/10.1101/2021.03.24.436772.
Afifi, Yasmine (2021) Exploring the effect of resistance-wheel training on muscle mass, strength and fiber type composition. . Translated by Handschin Christoph. Masterarbeit. Universität Basel.
Afifi, Yasmine (2021) Exploring the effect of resistance-wheel training on muscle mass, strength and fiber type composition. . Translated by Handschin Christoph. Masterarbeit. Universität Basel.
Battey, Edmund et al. (2021) ‘PGC-1α regulates myonuclear accretion after moderate endurance training’, Journal of Cellular Physiology, Jul 28. Available at: https://doi.org/10.1002/jcp.30539.
Battey, Edmund et al. (2021) ‘PGC-1α regulates myonuclear accretion after moderate endurance training’, Journal of Cellular Physiology, Jul 28. Available at: https://doi.org/10.1002/jcp.30539.
Furrer, Regula et al. (2021) ‘Remodeling of metabolism and inflammation by exercise ameliorates tumor-associated anemia’, Science Advances, 7(37), p. eabi4852. Available at: https://doi.org/10.1126/sciadv.abi4852.
Furrer, Regula et al. (2021) ‘Remodeling of metabolism and inflammation by exercise ameliorates tumor-associated anemia’, Science Advances, 7(37), p. eabi4852. Available at: https://doi.org/10.1126/sciadv.abi4852.
Ham, Daniel J. et al. (2021) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’. bioRxiv. Available at: https://doi.org/10.1101/2021.05.28.446097.
Ham, Daniel J. et al. (2021) ‘Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle’. bioRxiv. Available at: https://doi.org/10.1101/2021.05.28.446097.
Leuchtmann, Aurel B. et al. (2021) ‘The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations’, Frontiers in Physiology, 12, p. 709807. Available at: https://doi.org/10.3389/fphys.2021.709807.
Leuchtmann, Aurel B. et al. (2021) ‘The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations’, Frontiers in Physiology, 12, p. 709807. Available at: https://doi.org/10.3389/fphys.2021.709807.
Maier, Geraldine et al. (2021) ‘Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle’, Journal of Physiology, Jun 18, p. epub ahead of print. Available at: https://doi.org/10.1113/jp281535.
Maier, Geraldine et al. (2021) ‘Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle’, Journal of Physiology, Jun 18, p. epub ahead of print. Available at: https://doi.org/10.1113/jp281535.
Pérez-Schindler, Joaquín et al. (2021) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’, Proceedings of the National Academy of Sciences of the United States of America, 118(36), p. e2105951118. Available at: https://doi.org/10.1073/pnas.2105951118.
Pérez-Schindler, Joaquín et al. (2021) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’, Proceedings of the National Academy of Sciences of the United States of America, 118(36), p. e2105951118. Available at: https://doi.org/10.1073/pnas.2105951118.
Sjögren, Rasmus J. O. et al. (2021) ‘Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes’, Diabetologia, 64(9), pp. 2077–2091. Available at: https://doi.org/10.1007/s00125-021-05481-9.
Sjögren, Rasmus J. O. et al. (2021) ‘Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes’, Diabetologia, 64(9), pp. 2077–2091. Available at: https://doi.org/10.1007/s00125-021-05481-9.
Maier, Geraldine et al. (2020) ‘Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and Zeitgeber activity of endurance training’. bioRxiv. Available at: https://doi.org/10.1101/2020.10.19.345686.
Maier, Geraldine et al. (2020) ‘Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and Zeitgeber activity of endurance training’. bioRxiv. Available at: https://doi.org/10.1101/2020.10.19.345686.
Pérez-Schindler, Joaquín et al. (2020) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’. bioRxiv. Available at: https://doi.org/10.1101/2020.09.23.310623.
Pérez-Schindler, Joaquín et al. (2020) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’. bioRxiv. Available at: https://doi.org/10.1101/2020.09.23.310623.
Sjögren, Rasmus J.O. et al. (2020) ‘Branched-Chain Amino Acid Metabolism is Regulated by ERRα in Primary Human Myotubes and is Further Impaired by Glucose Loading in Type 2 Diabetes’. bioRxiv. Available at: https://doi.org/10.1101/2020.07.24.218099.
Sjögren, Rasmus J.O. et al. (2020) ‘Branched-Chain Amino Acid Metabolism is Regulated by ERRα in Primary Human Myotubes and is Further Impaired by Glucose Loading in Type 2 Diabetes’. bioRxiv. Available at: https://doi.org/10.1101/2020.07.24.218099.
Battilana, Fabienne et al. (2020) ‘Exercise-linked improvement in age-associated loss of balance is associated with increased vestibular input to motor neurons’, Aging Cell, 19(12), p. e13274. Available at: https://doi.org/10.1111/acel.13274.
Battilana, Fabienne et al. (2020) ‘Exercise-linked improvement in age-associated loss of balance is associated with increased vestibular input to motor neurons’, Aging Cell, 19(12), p. e13274. Available at: https://doi.org/10.1111/acel.13274.
Brugger, Elias (2020) Skeletal Muscle ROS in Exercise Adaptation and Insulin Resistance. . Translated by Handschin Christoph. Masterarbeit. Universität Basel.
Brugger, Elias (2020) Skeletal Muscle ROS in Exercise Adaptation and Insulin Resistance. . Translated by Handschin Christoph. Masterarbeit. Universität Basel.
Delezie, Julien et al. (2020) ‘PGC-1β-expressing POMC neurons mediate the effect of leptin on thermoregulation in the mouse’, Scientific Reports, 10(1), p. 16888. Available at: https://doi.org/10.1038/s41598-020-73794-7.
Delezie, Julien et al. (2020) ‘PGC-1β-expressing POMC neurons mediate the effect of leptin on thermoregulation in the mouse’, Scientific Reports, 10(1), p. 16888. Available at: https://doi.org/10.1038/s41598-020-73794-7.
Furrer, Regula and Handschin, Christoph (2020) ‘Lifestyle vs. pharmacological interventions for healthy aging’, Aging, 12(1), pp. 5–7. Available at: https://doi.org/10.18632/aging.102741.
Furrer, Regula and Handschin, Christoph (2020) ‘Lifestyle vs. pharmacological interventions for healthy aging’, Aging, 12(1), pp. 5–7. Available at: https://doi.org/10.18632/aging.102741.
Ham, Daniel J. et al. (2020) ‘The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia’, Nature Communications, 11(1), p. 4510. Available at: https://doi.org/10.1038/s41467-020-18140-1.
Ham, Daniel J. et al. (2020) ‘The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia’, Nature Communications, 11(1), p. 4510. Available at: https://doi.org/10.1038/s41467-020-18140-1.
Krämer, Anne (2020) Genome-wide Prediction of Regulators shaping Chromatin State and Gene Expression. . Translated by van Nimwegen Erik; Handschin Christoph. Dissertation. Universität Basel.
Krämer, Anne (2020) Genome-wide Prediction of Regulators shaping Chromatin State and Gene Expression. . Translated by van Nimwegen Erik; Handschin Christoph. Dissertation. Universität Basel.
Leuchtmann, Aurel B. and Handschin, Christoph (2020) ‘Pharmacological targeting of age-related changes in skeletal muscle tissue’, Pharmacological Research, 154, p. 104191. Available at: https://doi.org/10.1016/j.phrs.2019.02.030.
Leuchtmann, Aurel B. and Handschin, Christoph (2020) ‘Pharmacological targeting of age-related changes in skeletal muscle tissue’, Pharmacological Research, 154, p. 104191. Available at: https://doi.org/10.1016/j.phrs.2019.02.030.
Maier, Geraldine (2020) Investigating the role of the circadian clock and timed exercise on mouse skeletal muscle function. . Translated by Handschin Christoph. Dissertation. Universität Basel.
Maier, Geraldine (2020) Investigating the role of the circadian clock and timed exercise on mouse skeletal muscle function. . Translated by Handschin Christoph. Dissertation. Universität Basel.
Panajatovic, Miljenko Valentin et al. (2020) ‘PGC-1α plays a pivotal role in simvastatin-induced exercise impairment in mice’, Acta physiologica (Oxford, England), 228(4), p. e13402. Available at: https://doi.org/10.1111/apha.13402.
Panajatovic, Miljenko Valentin et al. (2020) ‘PGC-1α plays a pivotal role in simvastatin-induced exercise impairment in mice’, Acta physiologica (Oxford, England), 228(4), p. e13402. Available at: https://doi.org/10.1111/apha.13402.
Rao TN et al. (2019) ‘JAK2-mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms’, Blood, 134(21), pp. 1832–1846. Available at: https://doi.org/10.1182/blood.2019000162.
Rao TN et al. (2019) ‘JAK2-mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms’, Blood, 134(21), pp. 1832–1846. Available at: https://doi.org/10.1182/blood.2019000162.
Krämer, A.I. and Handschin, C. (2019) ‘How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1<em>&alpha;</em> In the Regulation of Metabolism’. MDPI AG. Available at: https://doi.org/10.20944/preprints201910.0021.v1.
Krämer, A.I. and Handschin, C. (2019) ‘How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1<em>&alpha;</em> In the Regulation of Metabolism’. MDPI AG. Available at: https://doi.org/10.20944/preprints201910.0021.v1.
Agudelo, Leandro Z. et al. (2019) ‘Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance’, Nature communications, 10(1), p. 2767. Available at: https://doi.org/10.1038/s41467-019-10712-0.
Agudelo, Leandro Z. et al. (2019) ‘Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance’, Nature communications, 10(1), p. 2767. Available at: https://doi.org/10.1038/s41467-019-10712-0.
Brinkkoetter, Paul T. et al. (2019) ‘Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics’, Cell Reports, 27(5), pp. 1551–1566.e5. Available at: https://doi.org/10.1016/j.celrep.2019.04.012.
Brinkkoetter, Paul T. et al. (2019) ‘Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics’, Cell Reports, 27(5), pp. 1551–1566.e5. Available at: https://doi.org/10.1016/j.celrep.2019.04.012.
Buskermolen, J. et al. (2019) ‘Effects of different training modalities on phosphate homeostasis and local Vitamin D metabolism in rat bone’, PeerJ, 2019(1). Available at: https://doi.org/10.7717/peerj.6184.
Buskermolen, J. et al. (2019) ‘Effects of different training modalities on phosphate homeostasis and local Vitamin D metabolism in rat bone’, PeerJ, 2019(1). Available at: https://doi.org/10.7717/peerj.6184.
Delezie, Julien et al. (2019) ‘BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle’, Proceedings of the National Academy of Sciences (PNAS), 116(32), pp. 16111–16120. Available at: https://doi.org/10.1073/pnas.1900544116.
Delezie, Julien et al. (2019) ‘BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle’, Proceedings of the National Academy of Sciences (PNAS), 116(32), pp. 16111–16120. Available at: https://doi.org/10.1073/pnas.1900544116.
Furrer, Regula and Handschin, Christoph (2019) ‘Muscle Wasting Diseases: Novel Targets and Treatments’, Annual review of pharmacology and toxicology, 59, pp. 315–339. Available at: https://doi.org/10.1146/annurev-pharmtox-010818-021041.
Furrer, Regula and Handschin, Christoph (2019) ‘Muscle Wasting Diseases: Novel Targets and Treatments’, Annual review of pharmacology and toxicology, 59, pp. 315–339. Available at: https://doi.org/10.1146/annurev-pharmtox-010818-021041.
Gill, Jonathan F. et al. (2019) ‘Peroxisome proliferator-activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress, and cell death to mitigate skeletal muscle aging’, Aging cell, 18(5), p. e12993. Available at: https://doi.org/10.1111/acel.12993.
Gill, Jonathan F. et al. (2019) ‘Peroxisome proliferator-activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress, and cell death to mitigate skeletal muscle aging’, Aging cell, 18(5), p. e12993. Available at: https://doi.org/10.1111/acel.12993.
Krämer, Anne I. and Handschin, Christoph (2019) ‘How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1α in the Regulation of Metabolism’, International journal of molecular sciences, 20(21), p. E5449. Available at: https://doi.org/10.3390/ijms20215449.
Krämer, Anne I. and Handschin, Christoph (2019) ‘How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1α in the Regulation of Metabolism’, International journal of molecular sciences, 20(21), p. E5449. Available at: https://doi.org/10.3390/ijms20215449.
Nageswara Rao, Tata et al. (2019) ‘JAK2 mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms’, Blood, 134(21), pp. 1832–1846. Available at: https://doi.org/10.1182/blood.2019000162.
Nageswara Rao, Tata et al. (2019) ‘JAK2 mutant hematopoietic cells display metabolic alterations that can be targeted to treat myeloproliferative neoplasms’, Blood, 134(21), pp. 1832–1846. Available at: https://doi.org/10.1182/blood.2019000162.
Weihrauch, Martin (2019) Identification of Novel Synaptic Components by Transcriptome Profiling of the Murine Neuromuscular Junction. . Translated by Handschin Christoph. Dissertation. Universität Basel.
Weihrauch, Martin (2019) Identification of Novel Synaptic Components by Transcriptome Profiling of the Murine Neuromuscular Junction. . Translated by Handschin Christoph. Dissertation. Universität Basel.
Furrer, Regula and Handschin, Christoph (2019) ‘Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle’, in Hormones, Metabolism and the Benefits of Exercise. Springer (Research and Perspectives in Endocrine Interactions), pp. 57–66. Available at: https://doi.org/10.1007/978-3-319-72790-5_5.
Furrer, Regula and Handschin, Christoph (2019) ‘Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle’, in Hormones, Metabolism and the Benefits of Exercise. Springer (Research and Perspectives in Endocrine Interactions), pp. 57–66. Available at: https://doi.org/10.1007/978-3-319-72790-5_5.
Gill, Jonathan F. et al. (2018) ‘PGC-1α regulates mitochondrial calcium homeostasis, SR stress and cell death to mitigate skeletal muscle aging’. bioRxiv. Available at: https://doi.org/10.1101/451229.
Gill, Jonathan F. et al. (2018) ‘PGC-1α regulates mitochondrial calcium homeostasis, SR stress and cell death to mitigate skeletal muscle aging’. bioRxiv. Available at: https://doi.org/10.1101/451229.
Salatino S. et al. (2018) ‘Corrigendum: The genomic context and corecruitment of SP1 affect ERRα coactivation by PGC-1α in muscle cells (Endocrinology (2016) 30:7 (809-825) DOI: 10.1210/me.2016-1036)’, Endocrinology, 159(7), p. 2703. Available at: https://doi.org/10.1210/en.2018-00545.
Salatino S. et al. (2018) ‘Corrigendum: The genomic context and corecruitment of SP1 affect ERRα coactivation by PGC-1α in muscle cells (Endocrinology (2016) 30:7 (809-825) DOI: 10.1210/me.2016-1036)’, Endocrinology, 159(7), p. 2703. Available at: https://doi.org/10.1210/en.2018-00545.
Baum, Oliver et al. (2018) ‘Relation of nNOS isoforms to mitochondrial density and PGC-1alpha expression in striated muscles of mice’, Nitric Oxide: Biology and Chemistry, 77, pp. 35–43. Available at: https://doi.org/10.1016/j.niox.2018.04.005.
Baum, Oliver et al. (2018) ‘Relation of nNOS isoforms to mitochondrial density and PGC-1alpha expression in striated muscles of mice’, Nitric Oxide: Biology and Chemistry, 77, pp. 35–43. Available at: https://doi.org/10.1016/j.niox.2018.04.005.
Delezie, Julien and Handschin, Christoph (2018) ‘Endocrine Crosstalk Between Skeletal Muscle and the Brain’, Frontiers in Neurology, 9, p. 698. Available at: https://doi.org/10.3389/fneur.2018.00698.
Delezie, Julien and Handschin, Christoph (2018) ‘Endocrine Crosstalk Between Skeletal Muscle and the Brain’, Frontiers in Neurology, 9, p. 698. Available at: https://doi.org/10.3389/fneur.2018.00698.
Gill, Jonathan F. et al. (2018) ‘PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice’, Aging Cell, 17(1), p. e12697. Available at: https://doi.org/10.1111/acel.12697.
Gill, Jonathan F. et al. (2018) ‘PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice’, Aging Cell, 17(1), p. e12697. Available at: https://doi.org/10.1111/acel.12697.
Haralampieva, Deana et al. (2018) ‘Injected Human Muscle Precursor Cells Overexpressing PGC-1α. Enhance Functional Muscle Regeneration after Trauma’, Stem cells international, 2018, p. 4658503. Available at: https://doi.org/10.1155/2018/4658503.
Haralampieva, Deana et al. (2018) ‘Injected Human Muscle Precursor Cells Overexpressing PGC-1α. Enhance Functional Muscle Regeneration after Trauma’, Stem cells international, 2018, p. 4658503. Available at: https://doi.org/10.1155/2018/4658503.
Ruiz, Alexis et al. (2018) ‘Over-expression of a retinol dehydrogenase (SRP35/DHRS7C) in skeletal muscle activates mTORC2, enhances glucose metabolism and muscle performance’, Scientific Reports, 8(1), p. 636. Available at: https://doi.org/10.1038/s41598-017-18844-3.
Ruiz, Alexis et al. (2018) ‘Over-expression of a retinol dehydrogenase (SRP35/DHRS7C) in skeletal muscle activates mTORC2, enhances glucose metabolism and muscle performance’, Scientific Reports, 8(1), p. 636. Available at: https://doi.org/10.1038/s41598-017-18844-3.
Weihrauch, Martin and Handschin, Christoph (2018) ‘Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls’, Biochemical pharmacology, 147, pp. 211–220. Available at: https://doi.org/10.1016/j.bcp.2017.10.006.
Weihrauch, Martin and Handschin, Christoph (2018) ‘Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls’, Biochemical pharmacology, 147, pp. 211–220. Available at: https://doi.org/10.1016/j.bcp.2017.10.006.
Whitehead, Natasha et al. (2018) ‘Moderate Modulation of Cardiac PGC-1α Expression Partially Affects Age-Associated Transcriptional Remodeling of the Heart’, Frontiers in Physiology, 9, p. 242. Available at: https://doi.org/10.3389/fphys.2018.00242.
Whitehead, Natasha et al. (2018) ‘Moderate Modulation of Cardiac PGC-1α Expression Partially Affects Age-Associated Transcriptional Remodeling of the Heart’, Frontiers in Physiology, 9, p. 242. Available at: https://doi.org/10.3389/fphys.2018.00242.
Pérez-Schindler, Joaquín and Handschin, Christoph (2018) ‘Physiological Regulation of Skeletal Muscle Mass: Resistance Exercise- Mediated Muscle Hypertrophy’, in Walrand, Stéphane (ed.) Nutrition and Skeletal Muscle. 1st Edition. London: Academic Press (Nutrition and Skeletal Muscle), pp. 139–150. Available at: https://doi.org/10.1016/b978-0-12-810422-4.00011-7.
Pérez-Schindler, Joaquín and Handschin, Christoph (2018) ‘Physiological Regulation of Skeletal Muscle Mass: Resistance Exercise- Mediated Muscle Hypertrophy’, in Walrand, Stéphane (ed.) Nutrition and Skeletal Muscle. 1st Edition. London: Academic Press (Nutrition and Skeletal Muscle), pp. 139–150. Available at: https://doi.org/10.1016/b978-0-12-810422-4.00011-7.
Dinulovic, Ivana, Furrer, Regula and Handschin, Christoph (2017) ‘Plasticity of the Muscle Stem Cell Microenvironment’, Advances in experimental medicine and biology, 1041, pp. 141–169. Available at: https://doi.org/10.1007/978-3-319-69194-7_8.
Dinulovic, Ivana, Furrer, Regula and Handschin, Christoph (2017) ‘Plasticity of the Muscle Stem Cell Microenvironment’, Advances in experimental medicine and biology, 1041, pp. 141–169. Available at: https://doi.org/10.1007/978-3-319-69194-7_8.
Furrer, Regula et al. (2017) ‘Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP’, Scientific Reports, 7, p. 40789. Available at: https://doi.org/10.1038/srep40789.
Furrer, Regula et al. (2017) ‘Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP’, Scientific Reports, 7, p. 40789. Available at: https://doi.org/10.1038/srep40789.
Haralampieva, Deana et al. (2017) ‘Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation’, Cell Transplantation, 26(6), pp. 1103–1114. Available at: https://doi.org/10.3727/096368917x694868.
Haralampieva, Deana et al. (2017) ‘Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation’, Cell Transplantation, 26(6), pp. 1103–1114. Available at: https://doi.org/10.3727/096368917x694868.
Kupr, Barbara, Schnyder, Svenia and Handschin, Christoph (2017) ‘Role of Nuclear Receptors in Exercise-Induced Muscle Adaptations’, Cold Spring Harbor perspectives in medicine, 7(6), p. a029835. Available at: https://doi.org/10.1101/cshperspect.a029835.
Kupr, Barbara, Schnyder, Svenia and Handschin, Christoph (2017) ‘Role of Nuclear Receptors in Exercise-Induced Muscle Adaptations’, Cold Spring Harbor perspectives in medicine, 7(6), p. a029835. Available at: https://doi.org/10.1101/cshperspect.a029835.
Ross, Jacob Alexander et al. (2017) ‘Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres’, Journal of Cellular Physiology, 232(6), pp. 1270–1274. Available at: https://doi.org/10.1002/jcp.25678.
Ross, Jacob Alexander et al. (2017) ‘Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres’, Journal of Cellular Physiology, 232(6), pp. 1270–1274. Available at: https://doi.org/10.1002/jcp.25678.
Schnyder, Svenia, Kupr, Barbara and Handschin, Christoph (2017) ‘Coregulator-mediated control of skeletal muscle plasticity - A mini-review’, Biochimie, 136, pp. 49–54. Available at: https://doi.org/10.1016/j.biochi.2016.12.011.
Schnyder, Svenia, Kupr, Barbara and Handschin, Christoph (2017) ‘Coregulator-mediated control of skeletal muscle plasticity - A mini-review’, Biochimie, 136, pp. 49–54. Available at: https://doi.org/10.1016/j.biochi.2016.12.011.
Schnyder, Svenia et al. (2017) ‘Muscle PGC-1α is required for long-term systemic and local adaptations to a ketogenic diet in mice’, American Journal of Physiology. Endocrinology and Metabolism. 2017-05-15 edn., 312(5), pp. E437–E446. Available at: https://doi.org/10.1152/ajpendo.00361.2016.
Schnyder, Svenia et al. (2017) ‘Muscle PGC-1α is required for long-term systemic and local adaptations to a ketogenic diet in mice’, American Journal of Physiology. Endocrinology and Metabolism. 2017-05-15 edn., 312(5), pp. E437–E446. Available at: https://doi.org/10.1152/ajpendo.00361.2016.
Furrer, Regula and Handschin, Christoph (2017) ‘Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle’, in Spiegelman, Bruce M. (ed.) Hormones, Metabolism and the Benefits of Exercise. Cham: Springer (Research and Perspectives in Endocrine Interactions), pp. 57–66. Available at: https://doi.org/10.1007/978-3-319-72790-5_5.
Furrer, Regula and Handschin, Christoph (2017) ‘Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle’, in Spiegelman, Bruce M. (ed.) Hormones, Metabolism and the Benefits of Exercise. Cham: Springer (Research and Perspectives in Endocrine Interactions), pp. 57–66. Available at: https://doi.org/10.1007/978-3-319-72790-5_5.
Handschin, Christoph (2017) ‘Muskeln: mehr als nur ‘schön anzusehen’’, in Füglister, Kurt M.; Hicklin, Martin; Mäser, Pascal (ed.) natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel. Basel: Schwabe (natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel), pp. 85–85. Available at: http://www.ngib.ch/natura-obscura/.
Handschin, Christoph (2017) ‘Muskeln: mehr als nur ‘schön anzusehen’’, in Füglister, Kurt M.; Hicklin, Martin; Mäser, Pascal (ed.) natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel. Basel: Schwabe (natura obscura. 200 Naturforschende - 200 Naturphänomene - 200 Jahre Naturforschende Gesellschaft in Basel), pp. 85–85. Available at: http://www.ngib.ch/natura-obscura/.
Albert, Verena et al. (2016) ‘mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue’, EMBO MOLECULAR MEDICINE. WOS.SCI, 8, pp. 232–246.
Albert, Verena et al. (2016) ‘mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue’, EMBO MOLECULAR MEDICINE. WOS.SCI, 8, pp. 232–246.
Albert, V. et al. (2016) ‘mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue’, EMBO Molecular Medicine, 8(3), pp. 232–246. Available at: https://doi.org/10.15252/emmm.201505610.
Albert, V. et al. (2016) ‘mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue’, EMBO Molecular Medicine, 8(3), pp. 232–246. Available at: https://doi.org/10.15252/emmm.201505610.
Bosshard, Jeannine (2016) The Effects of Exercise and High Fat Diet on Retinal Vessel Diameters in Mice. . Translated by Handschin Christoph; Hanssen Henner. Masterarbeit. Universität Basel.
Bosshard, Jeannine (2016) The Effects of Exercise and High Fat Diet on Retinal Vessel Diameters in Mice. . Translated by Handschin Christoph; Hanssen Henner. Masterarbeit. Universität Basel.
Dinulovic, Ivana et al. (2016) ‘Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche’, Skeletal Muscle, 6(1), p. 39. Available at: https://doi.org/10.1186/s13395-016-0111-9.
Dinulovic, Ivana et al. (2016) ‘Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche’, Skeletal Muscle, 6(1), p. 39. Available at: https://doi.org/10.1186/s13395-016-0111-9.
Dinulovic, Ivana et al. (2016) ‘PGC-1α modulates necrosis, inflammatory response, and fibrotic tissue formation in injured skeletal muscle’, Skeletal muscle, 6(38), p. 38. Available at: https://doi.org/10.1186/s13395-016-0110-x.
Dinulovic, Ivana et al. (2016) ‘PGC-1α modulates necrosis, inflammatory response, and fibrotic tissue formation in injured skeletal muscle’, Skeletal muscle, 6(38), p. 38. Available at: https://doi.org/10.1186/s13395-016-0110-x.
Gill, Jonathan (2016) Neuronal control of energy balance and modulation of muscle aging by the transcriptional coactivator PGC-1alpha. . Translated by Handschin Christoph. Dissertation. Universität Basel.
Gill, Jonathan (2016) Neuronal control of energy balance and modulation of muscle aging by the transcriptional coactivator PGC-1alpha. . Translated by Handschin Christoph. Dissertation. Universität Basel.
Gill, Jonathan F et al. (2016) ‘PGC-1α expression in murine AgRP neurons regulates food intake and energy balance.’, Molecular metabolism, 5(7), pp. 580–8. Available at: https://doi.org/10.1016/j.molmet.2016.05.008.
Gill, Jonathan F et al. (2016) ‘PGC-1α expression in murine AgRP neurons regulates food intake and energy balance.’, Molecular metabolism, 5(7), pp. 580–8. Available at: https://doi.org/10.1016/j.molmet.2016.05.008.
Haralampieva, Deana et al. (2016) ‘Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering’, Journal of Nuclear Medicine, 57(9), pp. 1467–73. Available at: https://doi.org/10.2967/jnumed.115.170548.
Haralampieva, Deana et al. (2016) ‘Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering’, Journal of Nuclear Medicine, 57(9), pp. 1467–73. Available at: https://doi.org/10.2967/jnumed.115.170548.
Salatino, Silvia et al. (2016) ‘The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells’, Molecular Endocrinology, 30(7), pp. 809–825. Available at: https://doi.org/10.1210/me.2016-1036.
Salatino, Silvia et al. (2016) ‘The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells’, Molecular Endocrinology, 30(7), pp. 809–825. Available at: https://doi.org/10.1210/me.2016-1036.
Stölting, Meline N. L. et al. (2016) ‘Magnetic stimulation supports muscle and nerve regeneration after trauma in mice’, Muscle and Nerve, 53(4), pp. 598–607. Available at: https://doi.org/10.1002/mus.24780.
Stölting, Meline N. L. et al. (2016) ‘Magnetic stimulation supports muscle and nerve regeneration after trauma in mice’, Muscle and Nerve, 53(4), pp. 598–607. Available at: https://doi.org/10.1002/mus.24780.
Svensson, Kristoffer et al. (2016) ‘Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice’, FASEB Journal, 30(5), pp. 1976–86. Available at: https://doi.org/10.1096/fj.201500128.
Svensson, Kristoffer et al. (2016) ‘Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice’, FASEB Journal, 30(5), pp. 1976–86. Available at: https://doi.org/10.1096/fj.201500128.
Svensson, Kristoffer et al. (2016) ‘Loss of Renal Tubular PGC-1α Exacerbates Diet-Induced Renal Steatosis and Age-Related Urinary Sodium Excretion in Mice’, PLoS ONE, 11(7), p. e0158716. Available at: https://doi.org/10.1371/journal.pone.0158716.
Svensson, Kristoffer et al. (2016) ‘Loss of Renal Tubular PGC-1α Exacerbates Diet-Induced Renal Steatosis and Age-Related Urinary Sodium Excretion in Mice’, PLoS ONE, 11(7), p. e0158716. Available at: https://doi.org/10.1371/journal.pone.0158716.
Whitehead, Natasha (2016) The impact of PGC-1alpha modulation and exercise on cardiac ageing. . Translated by Handschin Christoph. Masterarbeit. Universität Basel.
Whitehead, Natasha (2016) The impact of PGC-1alpha modulation and exercise on cardiac ageing. . Translated by Handschin Christoph. Masterarbeit. Universität Basel.
Eisele, Petra Sabine et al. (2015) ‘The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo’, Biochemical and Biophysical Research Communications, 464(3), pp. 692–697. Available at: https://doi.org/10.1016/j.bbrc.2015.06.166.
Eisele, Petra Sabine et al. (2015) ‘The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo’, Biochemical and Biophysical Research Communications, 464(3), pp. 692–697. Available at: https://doi.org/10.1016/j.bbrc.2015.06.166.
Furrer, Regula and Handschin, Christoph (2015) ‘Exercise and PGC-1α in inflammation and chronic disease’, Deutsche Zeitschrift für Sportmedizin, 66(12), pp. 317–320. Available at: https://doi.org/10.5960/dzsm.2015.185.
Furrer, Regula and Handschin, Christoph (2015) ‘Exercise and PGC-1α in inflammation and chronic disease’, Deutsche Zeitschrift für Sportmedizin, 66(12), pp. 317–320. Available at: https://doi.org/10.5960/dzsm.2015.185.
Handschin, Christoph (2015) ‘Caloric restriction and exercise ‘mimetics″: Ready for prime time?’, Pharmacological research, 103, pp. 158–166. Available at: https://doi.org/10.1016/j.phrs.2015.11.009.
Handschin, Christoph (2015) ‘Caloric restriction and exercise ‘mimetics″: Ready for prime time?’, Pharmacological research, 103, pp. 158–166. Available at: https://doi.org/10.1016/j.phrs.2015.11.009.
Handschin, Christoph et al. (2015) ‘External physical and biochemical stimulation to enhance skeletal muscle bioengineering’, Advanced drug delivery reviews, pp. 168–75. Available at: https://doi.org/10.1016/j.addr.2014.10.021.
Handschin, Christoph et al. (2015) ‘External physical and biochemical stimulation to enhance skeletal muscle bioengineering’, Advanced drug delivery reviews, pp. 168–75. Available at: https://doi.org/10.1016/j.addr.2014.10.021.
Kupr, Barbara and Handschin, Christoph (2015) ‘Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle’, Frontiers in physiology, p. 325. Available at: https://doi.org/10.3389/fphys.2015.00325.
Kupr, Barbara and Handschin, Christoph (2015) ‘Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle’, Frontiers in physiology, p. 325. Available at: https://doi.org/10.3389/fphys.2015.00325.
Schnyder, Svenia and Handschin, Christoph (2015) ‘Skeletal muscle as an endocrine organ : PGC-1α, myokines and exercise’, Bone, 80, pp. 115–25. Available at: https://doi.org/10.1016/j.bone.2015.02.008.
Schnyder, Svenia and Handschin, Christoph (2015) ‘Skeletal muscle as an endocrine organ : PGC-1α, myokines and exercise’, Bone, 80, pp. 115–25. Available at: https://doi.org/10.1016/j.bone.2015.02.008.
Soler, Fernando et al. (2015) ‘PDE2 activity differs in right and left rat ventricular myocardium and differentially regulates β2 adrenoceptor-mediated effects’, Experimental biology and medicine, 240(9), pp. 1205–13. Available at: https://doi.org/10.1177/1535370214560969.
Soler, Fernando et al. (2015) ‘PDE2 activity differs in right and left rat ventricular myocardium and differentially regulates β2 adrenoceptor-mediated effects’, Experimental biology and medicine, 240(9), pp. 1205–13. Available at: https://doi.org/10.1177/1535370214560969.
Svensson, Kristoffer et al. (2015) ‘Resveratrol and SRT1720 elicit differential effects in metabolic organs and modulate systemic parameters independently of skeletal muscle peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α)’, Journal of biological chemistry, 290(26), pp. 16059–76. Available at: https://doi.org/10.1074/jbc.m114.590653.
Svensson, Kristoffer et al. (2015) ‘Resveratrol and SRT1720 elicit differential effects in metabolic organs and modulate systemic parameters independently of skeletal muscle peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α)’, Journal of biological chemistry, 290(26), pp. 16059–76. Available at: https://doi.org/10.1074/jbc.m114.590653.
Toebes, M.J.P. et al. (2015) ‘Associations between measures of gait stability, leg strength and fear of falling’, Gait and Posture, 41(1), pp. 76–80. Available at: https://doi.org/10.1016/j.gaitpost.2014.08.015.
Toebes, M.J.P. et al. (2015) ‘Associations between measures of gait stability, leg strength and fear of falling’, Gait and Posture, 41(1), pp. 76–80. Available at: https://doi.org/10.1016/j.gaitpost.2014.08.015.
Arnold, Anne-Sophie et al. (2014) ‘Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α’, Nature communications, 5, p. 3569. Available at: https://doi.org/10.1038/ncomms4569.
Arnold, Anne-Sophie et al. (2014) ‘Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α’, Nature communications, 5, p. 3569. Available at: https://doi.org/10.1038/ncomms4569.
Baresic, Mario et al. (2014) ‘Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program’, Molecular and cellular biology, 34(16), pp. 2996–3012. Available at: https://doi.org/10.1128/mcb.01710-13.
Baresic, Mario et al. (2014) ‘Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program’, Molecular and cellular biology, 34(16), pp. 2996–3012. Available at: https://doi.org/10.1128/mcb.01710-13.
Eisele, Petra S and Handschin, Christoph (2014) ‘Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology’, Seminars in immunopathology, 36(1), pp. 27–53. Available at: https://doi.org/10.1007/s00281-013-0406-4.
Eisele, Petra S and Handschin, Christoph (2014) ‘Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology’, Seminars in immunopathology, 36(1), pp. 27–53. Available at: https://doi.org/10.1007/s00281-013-0406-4.