Biochemistry (Hondele)
Publications
23 found
Show per page
Kuwayama, Naohiro et al. (2024) ‘Analyses of translation factors Dbp1 and Ded1 reveal the cellular response to heat stress to be separable from stress granule formation’, Cell Reports, 43(12). Available at: https://doi.org/10.1016/j.celrep.2024.115059.
Kuwayama, Naohiro et al. (2024) ‘Analyses of translation factors Dbp1 and Ded1 reveal the cellular response to heat stress to be separable from stress granule formation’, Cell Reports, 43(12). Available at: https://doi.org/10.1016/j.celrep.2024.115059.
Szentgyörgyi, Viktória et al. (2024) ‘Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis’, Journal of Cell Biology, 223(11). Available at: https://doi.org/10.1083/jcb.202401167.
Szentgyörgyi, Viktória et al. (2024) ‘Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis’, Journal of Cell Biology, 223(11). Available at: https://doi.org/10.1083/jcb.202401167.
Dörner, Kerstin et al. (2024) ‘Tag with Caution - How protein tagging influences the formation of condensates’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory ( bioRxiv). Available at: https://doi.org/10.1101/2024.10.04.616694.
Dörner, Kerstin et al. (2024) ‘Tag with Caution - How protein tagging influences the formation of condensates’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory ( bioRxiv). Available at: https://doi.org/10.1101/2024.10.04.616694.
Heinrich, Stephanie et al. (2024) ‘Glucose stress causes mRNA retention in nuclear Nab2 condensates’, Cell Reports, 43(1). Available at: https://doi.org/10.1016/j.celrep.2023.113593.
Heinrich, Stephanie et al. (2024) ‘Glucose stress causes mRNA retention in nuclear Nab2 condensates’, Cell Reports, 43(1). Available at: https://doi.org/10.1016/j.celrep.2023.113593.
Dörner, Kerstin and Hondele, Maria (2024) ‘The Story of RNA Unfolded: The Molecular Function of DEAD- and DExH-Box ATPases and Their Complex Relationship with Membraneless Organelles’, Annual Review of Biochemistry, 93(1), pp. 79–108. Available at: https://doi.org/10.1146/annurev-biochem-052521-121259.
Dörner, Kerstin and Hondele, Maria (2024) ‘The Story of RNA Unfolded: The Molecular Function of DEAD- and DExH-Box ATPases and Their Complex Relationship with Membraneless Organelles’, Annual Review of Biochemistry, 93(1), pp. 79–108. Available at: https://doi.org/10.1146/annurev-biochem-052521-121259.
Linsenmeier, Miriam et al. (2022) ‘Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity’, Nature Communications, 13(1), p. 3030. Available at: https://doi.org/10.1038/s41467-022-30521-2.
Linsenmeier, Miriam et al. (2022) ‘Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity’, Nature Communications, 13(1), p. 3030. Available at: https://doi.org/10.1038/s41467-022-30521-2.
Overwijn, Daan and Hondele, Maria (2022) ‘DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles’, Trends in Biochemical Sciences, 48(3), pp. 244–258. Available at: https://doi.org/10.1016/j.tibs.2022.10.001.
Overwijn, Daan and Hondele, Maria (2022) ‘DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles’, Trends in Biochemical Sciences, 48(3), pp. 244–258. Available at: https://doi.org/10.1016/j.tibs.2022.10.001.
Weis, Karsten and Hondele, Maria (2022) ‘The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates’, Annual Review of Biochemistry, 91, pp. 197–219. Available at: https://doi.org/10.1146/annurev-biochem-032620-105429.
Weis, Karsten and Hondele, Maria (2022) ‘The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates’, Annual Review of Biochemistry, 91, pp. 197–219. Available at: https://doi.org/10.1146/annurev-biochem-032620-105429.
Wollny, Damian et al. (2022) ‘Characterization of RNA content in individual phase-separated coacervate microdroplets’, Nature communications, 13(1), p. 2626. Available at: https://doi.org/10.1038/s41467-022-30158-1.
Wollny, Damian et al. (2022) ‘Characterization of RNA content in individual phase-separated coacervate microdroplets’, Nature communications, 13(1), p. 2626. Available at: https://doi.org/10.1038/s41467-022-30158-1.
Heinrich, Stephanie and Hondele, Maria (2022) ‘Probing Liquid-Liquid Phase Separation of RNA-Binding Proteins In Vitro and In Vivo’, in Scheiffele, Peter; Mauger, Oriane (ed.) Alternative Splicing: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 307–333. Available at: https://doi.org/10.1007/978-1-0716-2521-7_18.
Heinrich, Stephanie and Hondele, Maria (2022) ‘Probing Liquid-Liquid Phase Separation of RNA-Binding Proteins In Vitro and In Vivo’, in Scheiffele, Peter; Mauger, Oriane (ed.) Alternative Splicing: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 307–333. Available at: https://doi.org/10.1007/978-1-0716-2521-7_18.
Linsenmeier, Miriam et al. (2021) ‘Dynamic arrest and aging of biomolecular condensates are regulated by low-complexity domains, RNA and biochemical activity’. bioRxiv. Available at: https://doi.org/10.1101/2021.02.26.433003.
Linsenmeier, Miriam et al. (2021) ‘Dynamic arrest and aging of biomolecular condensates are regulated by low-complexity domains, RNA and biochemical activity’. bioRxiv. Available at: https://doi.org/10.1101/2021.02.26.433003.
Pérez-Schindler, Joaquín et al. (2021) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’, Proceedings of the National Academy of Sciences of the United States of America, 118(36), p. e2105951118. Available at: https://doi.org/10.1073/pnas.2105951118.
Pérez-Schindler, Joaquín et al. (2021) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’, Proceedings of the National Academy of Sciences of the United States of America, 118(36), p. e2105951118. Available at: https://doi.org/10.1073/pnas.2105951118.
Wollny, Damian et al. (2021) ‘Characterization of RNA content in individual phase-separated coacervate microdroplets’. bioRxiv. Available at: https://doi.org/10.1101/2021.03.08.434405.
Wollny, Damian et al. (2021) ‘Characterization of RNA content in individual phase-separated coacervate microdroplets’. bioRxiv. Available at: https://doi.org/10.1101/2021.03.08.434405.
Linsenmeier, Miriam et al. (2019) ‘Corrigendum: Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets’, Angewandte Chemie International Edition, 58(50), p. 17902. Available at: https://doi.org/10.1002/anie.201913379.
Linsenmeier, Miriam et al. (2019) ‘Corrigendum: Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets’, Angewandte Chemie International Edition, 58(50), p. 17902. Available at: https://doi.org/10.1002/anie.201913379.
Linsenmeier, Miriam et al. (2019) ‘Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets’, Angewandte Chemie International Edition, 58(41), pp. 14489–14494. Available at: https://doi.org/10.1002/anie.201907278.
Linsenmeier, Miriam et al. (2019) ‘Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets’, Angewandte Chemie International Edition, 58(41), pp. 14489–14494. Available at: https://doi.org/10.1002/anie.201907278.
Sachdev, Ruchika et al. (2019) ‘Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA’, eLife, 8, p. e41415. Available at: https://doi.org/10.7554/elife.41415.
Sachdev, Ruchika et al. (2019) ‘Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA’, eLife, 8, p. e41415. Available at: https://doi.org/10.7554/elife.41415.
Faltova, Lenka et al. (2018) ‘Multifunctional Protein Materials and Microreactors using Low Complexity Domains as Molecular Adhesives’, ACS nano, 12(10), pp. 9991–9999. Available at: https://doi.org/10.1021/acsnano.8b04304.
Faltova, Lenka et al. (2018) ‘Multifunctional Protein Materials and Microreactors using Low Complexity Domains as Molecular Adhesives’, ACS nano, 12(10), pp. 9991–9999. Available at: https://doi.org/10.1021/acsnano.8b04304.
Hondele, Maria and Ladurner, Andreas G. (2013) ‘Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing’, Nucleus, 4(6), pp. 443–9. Available at: https://doi.org/10.4161/nucl.27235.
Hondele, Maria and Ladurner, Andreas G. (2013) ‘Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing’, Nucleus, 4(6), pp. 443–9. Available at: https://doi.org/10.4161/nucl.27235.
Hondele, Maria et al. (2013) ‘Structural basis of histone H2A-H2B recognition by the essential chaperone FACT’, Nature, 499(7456), pp. 111–4. Available at: https://doi.org/10.1038/nature12242.
Hondele, Maria et al. (2013) ‘Structural basis of histone H2A-H2B recognition by the essential chaperone FACT’, Nature, 499(7456), pp. 111–4. Available at: https://doi.org/10.1038/nature12242.
Hondele, Maria and Ladurner, Andreas G. (2011) ‘The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity’, Current Opinion in Structural Biology, 21(6), pp. 698–708. Available at: https://doi.org/10.1016/j.sbi.2011.10.003.
Hondele, Maria and Ladurner, Andreas G. (2011) ‘The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity’, Current Opinion in Structural Biology, 21(6), pp. 698–708. Available at: https://doi.org/10.1016/j.sbi.2011.10.003.
Goetze, Hannah et al. (2010) ‘Alternative chromatin structures of the 35S rRNA Genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II’, Molecular and cellular biology, 30(8), pp. 2028–45. Available at: https://doi.org/10.1128/mcb.01512-09.
Goetze, Hannah et al. (2010) ‘Alternative chromatin structures of the 35S rRNA Genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II’, Molecular and cellular biology, 30(8), pp. 2028–45. Available at: https://doi.org/10.1128/mcb.01512-09.
Hondele, Maria and Ladurner, Andreas (2010) ‘A mitotic beacon reveals its nucleosome anchor’, Molecular cell, 39(6), pp. 829–830. Available at: https://doi.org/10.1016/j.molcel.2010.09.001.
Hondele, Maria and Ladurner, Andreas (2010) ‘A mitotic beacon reveals its nucleosome anchor’, Molecular cell, 39(6), pp. 829–830. Available at: https://doi.org/10.1016/j.molcel.2010.09.001.
Merz, Katharina et al. (2008) ‘Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules’, Genes & development, 22(9), pp. 1190–204. Available at: https://doi.org/10.1101/gad.466908.
Merz, Katharina et al. (2008) ‘Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules’, Genes & development, 22(9), pp. 1190–204. Available at: https://doi.org/10.1101/gad.466908.