Biochemistry (Hondele)
Publications
23 found
Show per page
Dörner, Kerstin et al. (2024) ‘Tag with Caution - How protein tagging influences the formation of condensates’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.10.04.616694.
Dörner, Kerstin et al. (2024) ‘Tag with Caution - How protein tagging influences the formation of condensates’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.10.04.616694.
Szentgyörgyi, Viktória et al. (2024) ‘Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis’, Journal of cell biology, 223(11). Available at: https://doi.org/10.1083/jcb.202401167.
Szentgyörgyi, Viktória et al. (2024) ‘Arf1-dependent LRBA recruitment to Rab4 endosomes is required for endolysosome homeostasis’, Journal of cell biology, 223(11). Available at: https://doi.org/10.1083/jcb.202401167.
Linsenmeier, Miriam et al. (2022) ‘Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity’, Nature Communications, 13(1), p. 3030. Available at: https://doi.org/10.1038/s41467-022-30521-2.
Linsenmeier, Miriam et al. (2022) ‘Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity’, Nature Communications, 13(1), p. 3030. Available at: https://doi.org/10.1038/s41467-022-30521-2.
Overwijn, Daan and Hondele, Maria (2022) ‘DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles’, Trends in Biochemical Sciences, 48(3), pp. 244–258. Available at: https://doi.org/10.1016/j.tibs.2022.10.001.
Overwijn, Daan and Hondele, Maria (2022) ‘DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles’, Trends in Biochemical Sciences, 48(3), pp. 244–258. Available at: https://doi.org/10.1016/j.tibs.2022.10.001.
Weis, Karsten and Hondele, Maria (2022) ‘The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates’, Annual Review of Biochemistry, 91, pp. 197–219. Available at: https://doi.org/10.1146/annurev-biochem-032620-105429.
Weis, Karsten and Hondele, Maria (2022) ‘The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates’, Annual Review of Biochemistry, 91, pp. 197–219. Available at: https://doi.org/10.1146/annurev-biochem-032620-105429.
Wollny, Damian et al. (2022) ‘Characterization of RNA content in individual phase-separated coacervate microdroplets’, Nature communications, 13(1), p. 2626. Available at: https://doi.org/10.1038/s41467-022-30158-1.
Wollny, Damian et al. (2022) ‘Characterization of RNA content in individual phase-separated coacervate microdroplets’, Nature communications, 13(1), p. 2626. Available at: https://doi.org/10.1038/s41467-022-30158-1.
Heinrich, Stephanie and Hondele, Maria (2022) ‘Probing Liquid-Liquid Phase Separation of RNA-Binding Proteins In Vitro and In Vivo’, in Scheiffele, Peter; Mauger, Oriane (ed.) Alternative Splicing: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 307–333. Available at: https://doi.org/10.1007/978-1-0716-2521-7_18.
Heinrich, Stephanie and Hondele, Maria (2022) ‘Probing Liquid-Liquid Phase Separation of RNA-Binding Proteins In Vitro and In Vivo’, in Scheiffele, Peter; Mauger, Oriane (ed.) Alternative Splicing: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 307–333. Available at: https://doi.org/10.1007/978-1-0716-2521-7_18.
Linsenmeier, Miriam et al. (2021) ‘Dynamic arrest and aging of biomolecular condensates are regulated by low-complexity domains, RNA and biochemical activity’. bioRxiv. Available at: https://doi.org/10.1101/2021.02.26.433003.
Linsenmeier, Miriam et al. (2021) ‘Dynamic arrest and aging of biomolecular condensates are regulated by low-complexity domains, RNA and biochemical activity’. bioRxiv. Available at: https://doi.org/10.1101/2021.02.26.433003.
Pérez-Schindler, Joaquín et al. (2021) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’, Proceedings of the National Academy of Sciences of the United States of America, 118(36), p. e2105951118. Available at: https://doi.org/10.1073/pnas.2105951118.
Pérez-Schindler, Joaquín et al. (2021) ‘RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates’, Proceedings of the National Academy of Sciences of the United States of America, 118(36), p. e2105951118. Available at: https://doi.org/10.1073/pnas.2105951118.
Wollny, Damian et al. (2021) ‘Characterization of RNA content in individual phase-separated coacervate microdroplets’. bioRxiv. Available at: https://doi.org/10.1101/2021.03.08.434405.
Wollny, Damian et al. (2021) ‘Characterization of RNA content in individual phase-separated coacervate microdroplets’. bioRxiv. Available at: https://doi.org/10.1101/2021.03.08.434405.
Hondele, Maria et al. (2020) ‘Membraneless organelles: phasing out of equilibrium’, Emerging topics in life sciences, 4(3), pp. 331–342. Available at: https://doi.org/10.1042/etls20190190.
Hondele, Maria et al. (2020) ‘Membraneless organelles: phasing out of equilibrium’, Emerging topics in life sciences, 4(3), pp. 331–342. Available at: https://doi.org/10.1042/etls20190190.
Hondele, Maria et al. (2019) ‘DEAD-box ATPases are global regulators of phase-separated organelles’, Nature, 573(7772), pp. 144–148. Available at: https://doi.org/10.1038/s41586-019-1502-y.
Hondele, Maria et al. (2019) ‘DEAD-box ATPases are global regulators of phase-separated organelles’, Nature, 573(7772), pp. 144–148. Available at: https://doi.org/10.1038/s41586-019-1502-y.
Linsenmeier, Miriam et al. (2019) ‘Corrigendum: Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets’, Angewandte Chemie International Edition, 58(50), p. 17902. Available at: https://doi.org/10.1002/anie.201913379.
Linsenmeier, Miriam et al. (2019) ‘Corrigendum: Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets’, Angewandte Chemie International Edition, 58(50), p. 17902. Available at: https://doi.org/10.1002/anie.201913379.
Linsenmeier, Miriam et al. (2019) ‘Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets’, Angewandte Chemie International Edition, 58(41), pp. 14489–14494. Available at: https://doi.org/10.1002/anie.201907278.
Linsenmeier, Miriam et al. (2019) ‘Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets’, Angewandte Chemie International Edition, 58(41), pp. 14489–14494. Available at: https://doi.org/10.1002/anie.201907278.
Sachdev, Ruchika et al. (2019) ‘Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA’, eLife, 8, p. e41415. Available at: https://doi.org/10.7554/elife.41415.
Sachdev, Ruchika et al. (2019) ‘Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA’, eLife, 8, p. e41415. Available at: https://doi.org/10.7554/elife.41415.
Faltova, Lenka et al. (2018) ‘Multifunctional Protein Materials and Microreactors using Low Complexity Domains as Molecular Adhesives’, ACS nano, 12(10), pp. 9991–9999. Available at: https://doi.org/10.1021/acsnano.8b04304.
Faltova, Lenka et al. (2018) ‘Multifunctional Protein Materials and Microreactors using Low Complexity Domains as Molecular Adhesives’, ACS nano, 12(10), pp. 9991–9999. Available at: https://doi.org/10.1021/acsnano.8b04304.
Mugler, Christopher Frederick et al. (2016) ‘ATPase activity of the DEAD-box protein Dhh1 controls processing body formation’, eLife, 5, p. e18746. Available at: https://doi.org/10.7554/elife.18746.
Mugler, Christopher Frederick et al. (2016) ‘ATPase activity of the DEAD-box protein Dhh1 controls processing body formation’, eLife, 5, p. e18746. Available at: https://doi.org/10.7554/elife.18746.
Hondele, Maria and Ladurner, Andreas G. (2013) ‘Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing’, Nucleus, 4(6), pp. 443–9. Available at: https://doi.org/10.4161/nucl.27235.
Hondele, Maria and Ladurner, Andreas G. (2013) ‘Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing’, Nucleus, 4(6), pp. 443–9. Available at: https://doi.org/10.4161/nucl.27235.
Hondele, Maria et al. (2013) ‘Structural basis of histone H2A-H2B recognition by the essential chaperone FACT’, Nature, 499(7456), pp. 111–4. Available at: https://doi.org/10.1038/nature12242.
Hondele, Maria et al. (2013) ‘Structural basis of histone H2A-H2B recognition by the essential chaperone FACT’, Nature, 499(7456), pp. 111–4. Available at: https://doi.org/10.1038/nature12242.
Hondele, Maria and Ladurner, Andreas G. (2011) ‘The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity’, Current Opinion in Structural Biology, 21(6), pp. 698–708. Available at: https://doi.org/10.1016/j.sbi.2011.10.003.
Hondele, Maria and Ladurner, Andreas G. (2011) ‘The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity’, Current Opinion in Structural Biology, 21(6), pp. 698–708. Available at: https://doi.org/10.1016/j.sbi.2011.10.003.
Goetze, Hannah et al. (2010) ‘Alternative chromatin structures of the 35S rRNA Genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II’, Molecular and cellular biology, 30(8), pp. 2028–45. Available at: https://doi.org/10.1128/mcb.01512-09.
Goetze, Hannah et al. (2010) ‘Alternative chromatin structures of the 35S rRNA Genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II’, Molecular and cellular biology, 30(8), pp. 2028–45. Available at: https://doi.org/10.1128/mcb.01512-09.
Hondele, Maria and Ladurner, Andreas (2010) ‘A mitotic beacon reveals its nucleosome anchor’, Molecular cell, 39(6), pp. 829–830. Available at: https://doi.org/10.1016/j.molcel.2010.09.001.
Hondele, Maria and Ladurner, Andreas (2010) ‘A mitotic beacon reveals its nucleosome anchor’, Molecular cell, 39(6), pp. 829–830. Available at: https://doi.org/10.1016/j.molcel.2010.09.001.
Merz, Katharina et al. (2008) ‘Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules’, Genes & development, 22(9), pp. 1190–204. Available at: https://doi.org/10.1101/gad.466908.
Merz, Katharina et al. (2008) ‘Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules’, Genes & development, 22(9), pp. 1190–204. Available at: https://doi.org/10.1101/gad.466908.