[FG] Zaugg Judith
Publications
45 found
Show per page
Sigalova, O.M. et al. (2025) ‘Integrating genetic variation with deep learning provides context for variants impacting transcription factor binding during embryogenesis’, Genome Research [Preprint]. Available at: https://doi.org/10.1101/gr.279652.124.
Sigalova, O.M. et al. (2025) ‘Integrating genetic variation with deep learning provides context for variants impacting transcription factor binding during embryogenesis’, Genome Research [Preprint]. Available at: https://doi.org/10.1101/gr.279652.124.
Barzaghi, G., Krebs, A.R. and Zaugg, J.B. (2025) ‘FootprintCharter: unsupervised detection and quantification of footprints in single molecule footprinting data’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.31.646464.
Barzaghi, G., Krebs, A.R. and Zaugg, J.B. (2025) ‘FootprintCharter: unsupervised detection and quantification of footprints in single molecule footprinting data’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.31.646464.
Baderna, V. et al. (2025) ‘Cumulative TF binding and H3K27 Acetylation drive enhancer activation frequency’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.26.645413.
Baderna, V. et al. (2025) ‘Cumulative TF binding and H3K27 Acetylation drive enhancer activation frequency’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.26.645413.
Sigalova, O.M. et al. (2024) ‘Contextualising transcription factor binding during embryogenesis using natural sequence variation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.10.24.619975.
Sigalova, O.M. et al. (2024) ‘Contextualising transcription factor binding during embryogenesis using natural sequence variation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.10.24.619975.
Lim, B. et al. (2024) ‘Active repression of cell fate plasticity by PROX1 safeguards hepatocyte identity and prevents liver tumourigenesis’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.09.10.612045.
Lim, B. et al. (2024) ‘Active repression of cell fate plasticity by PROX1 safeguards hepatocyte identity and prevents liver tumourigenesis’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.09.10.612045.
Sabath, K. et al. (2024) ‘Basis of gene-specific transcription regulation by the Integrator complex’, Molecular Cell, 84(13), pp. 2525–2541.e12. Available at: https://doi.org/10.1016/j.molcel.2024.05.027.
Sabath, K. et al. (2024) ‘Basis of gene-specific transcription regulation by the Integrator complex’, Molecular Cell, 84(13), pp. 2525–2541.e12. Available at: https://doi.org/10.1016/j.molcel.2024.05.027.
Costea, J. et al. (2024) ‘Role of Stem-Like Cells in Chemotherapy Resistance and Relapse in pediatric T Cell Acute Lymphoblastic Leukemia’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.06.24.600391.
Costea, J. et al. (2024) ‘Role of Stem-Like Cells in Chemotherapy Resistance and Relapse in pediatric T Cell Acute Lymphoblastic Leukemia’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.06.24.600391.
Lindenhofer, D. et al. (2024) ‘Functional phenotyping of genomic variants using multiomic scDNA-scRNA-seq’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.05.31.596895.
Lindenhofer, D. et al. (2024) ‘Functional phenotyping of genomic variants using multiomic scDNA-scRNA-seq’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.05.31.596895.
Lorenzo, J.P. et al. (2024) ‘APOBEC2 safeguards skeletal muscle cell fate through binding chromatin and regulating transcription of non-muscle genes during myoblast differentiation’, Proceedings of the National Academy of Sciences of the United States of America, 121(17). Available at: https://doi.org/10.1073/pnas.2312330121.
Lorenzo, J.P. et al. (2024) ‘APOBEC2 safeguards skeletal muscle cell fate through binding chromatin and regulating transcription of non-muscle genes during myoblast differentiation’, Proceedings of the National Academy of Sciences of the United States of America, 121(17). Available at: https://doi.org/10.1073/pnas.2312330121.
Mathioudaki, A. et al. (2024) ‘The remission status of AML patients after allo-HCT is associated with a distinct single-cell bone marrow T-cell signature’, Blood, 143(13), pp. 1269–1281. Available at: https://doi.org/10.1182/blood.2023021815.
Mathioudaki, A. et al. (2024) ‘The remission status of AML patients after allo-HCT is associated with a distinct single-cell bone marrow T-cell signature’, Blood, 143(13), pp. 1269–1281. Available at: https://doi.org/10.1182/blood.2023021815.
Hauth, A. et al. (2024) ‘Escape from X inactivation is directly modulated by levels of Xist non-coding RNA’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.02.22.581559.
Hauth, A. et al. (2024) ‘Escape from X inactivation is directly modulated by levels of Xist non-coding RNA’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.02.22.581559.
Daga, N. et al. (2024) ‘Integration of genetic and epigenetic data pinpoints autoimmune specific remodelling of enhancer landscape in CD4+ T cells’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.01.11.575022.
Daga, N. et al. (2024) ‘Integration of genetic and epigenetic data pinpoints autoimmune specific remodelling of enhancer landscape in CD4+ T cells’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.01.11.575022.
Türk, L. et al. (2024) ‘Cytotoxic CD8+ Temra cells show loss of chromatin accessibility at genes associated with T cell activation’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1285798.
Türk, L. et al. (2024) ‘Cytotoxic CD8+ Temra cells show loss of chromatin accessibility at genes associated with T cell activation’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1285798.
Lobato-Moreno, S. et al. (2023) ‘Scalable ultra-high-throughput single-cell chromatin and RNA sequencing reveals gene regulatory dynamics linking macrophage polarization to autoimmune disease’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.12.26.573253.
Lobato-Moreno, S. et al. (2023) ‘Scalable ultra-high-throughput single-cell chromatin and RNA sequencing reveals gene regulatory dynamics linking macrophage polarization to autoimmune disease’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.12.26.573253.
Fitzgerald, D. et al. (2023) ‘A single-cell multi-omic and spatial atlas of B cell lymphomas reveals differentiation drives intratumor heterogeneity’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.06.565756.
Fitzgerald, D. et al. (2023) ‘A single-cell multi-omic and spatial atlas of B cell lymphomas reveals differentiation drives intratumor heterogeneity’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.06.565756.
Kamal, A. et al. (2023) ‘GRaNIE and GRaNPA: inference and evaluation of enhancer-mediated gene regulatory networks’, Molecular Systems Biology, 19(6). Available at: https://doi.org/10.15252/msb.202311627.
Kamal, A. et al. (2023) ‘GRaNIE and GRaNPA: inference and evaluation of enhancer-mediated gene regulatory networks’, Molecular Systems Biology, 19(6). Available at: https://doi.org/10.15252/msb.202311627.
Weigel, B. et al. (2023) ‘MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention’, Molecular Psychiatry, 28(5), pp. 2122–2135. Available at: https://doi.org/10.1038/s41380-023-01959-7.
Weigel, B. et al. (2023) ‘MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention’, Molecular Psychiatry, 28(5), pp. 2122–2135. Available at: https://doi.org/10.1038/s41380-023-01959-7.
de Teresa-Trueba, I. et al. (2023) ‘Convolutional networks for supervised mining of molecular patterns within cellular context’, Nature Methods, 20(2), pp. 284–294. Available at: https://doi.org/10.1038/s41592-022-01746-2.
de Teresa-Trueba, I. et al. (2023) ‘Convolutional networks for supervised mining of molecular patterns within cellular context’, Nature Methods, 20(2), pp. 284–294. Available at: https://doi.org/10.1038/s41592-022-01746-2.
Serina Secanechia, Y.N. et al. (2022) ‘Identifying a novel role for the master regulator Tal1 in the Endothelial to Hematopoietic Transition’, Scientific Reports, 12(1). Available at: https://doi.org/10.1038/s41598-022-20906-0.
Serina Secanechia, Y.N. et al. (2022) ‘Identifying a novel role for the master regulator Tal1 in the Endothelial to Hematopoietic Transition’, Scientific Reports, 12(1). Available at: https://doi.org/10.1038/s41598-022-20906-0.
Zaugg, J.B. et al. (2022) ‘Current challenges in understanding the role of enhancers in disease’, Nature Structural and Molecular Biology, 29(12), pp. 1148–1158. Available at: https://doi.org/10.1038/s41594-022-00896-3.
Zaugg, J.B. et al. (2022) ‘Current challenges in understanding the role of enhancers in disease’, Nature Structural and Molecular Biology, 29(12), pp. 1148–1158. Available at: https://doi.org/10.1038/s41594-022-00896-3.
Bruch, P.-M. et al. (2022) ‘Drug-microenvironment perturbations reveal resistance mechanisms and prognostic subgroups in CLL’, Molecular Systems Biology, 18(8). Available at: https://doi.org/10.15252/msb.202110855.
Bruch, P.-M. et al. (2022) ‘Drug-microenvironment perturbations reveal resistance mechanisms and prognostic subgroups in CLL’, Molecular Systems Biology, 18(8). Available at: https://doi.org/10.15252/msb.202110855.
Ibarra, I.L. et al. (2022) ‘Comparative chromatin accessibility upon BDNF stimulation delineates neuronal regulatory elements’, Molecular Systems Biology, 18(8). Available at: https://doi.org/10.15252/msb.202110473.
Ibarra, I.L. et al. (2022) ‘Comparative chromatin accessibility upon BDNF stimulation delineates neuronal regulatory elements’, Molecular Systems Biology, 18(8). Available at: https://doi.org/10.15252/msb.202110473.
He, L. et al. (2022) ‘CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia’, EMBO Molecular Medicine, 14(4). Available at: https://doi.org/10.15252/emmm.202114990.
He, L. et al. (2022) ‘CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia’, EMBO Molecular Medicine, 14(4). Available at: https://doi.org/10.15252/emmm.202114990.
Kleinendorst, R.W.D. et al. (2021) ‘Genome-wide quantification of transcription factor binding at single-DNA-molecule resolution using methyl-transferase footprinting’, Nature Protocols, 16(12), pp. 5673–5706. Available at: https://doi.org/10.1038/s41596-021-00630-1.
Kleinendorst, R.W.D. et al. (2021) ‘Genome-wide quantification of transcription factor binding at single-DNA-molecule resolution using methyl-transferase footprinting’, Nature Protocols, 16(12), pp. 5673–5706. Available at: https://doi.org/10.1038/s41596-021-00630-1.
Weidemüller, P. et al. (2021) ‘Transcription factors: Bridge between cell signaling and gene regulation’, Proteomics, 21(23-24). Available at: https://doi.org/10.1002/pmic.202000034.
Weidemüller, P. et al. (2021) ‘Transcription factors: Bridge between cell signaling and gene regulation’, Proteomics, 21(23-24). Available at: https://doi.org/10.1002/pmic.202000034.
Claringbould, A. and Zaugg, J.B. (2021) ‘Enhancers in disease: molecular basis and emerging treatment strategies’, Trends in Molecular Medicine, 27(11), pp. 1060–1073. Available at: https://doi.org/10.1016/j.molmed.2021.07.012.
Claringbould, A. and Zaugg, J.B. (2021) ‘Enhancers in disease: molecular basis and emerging treatment strategies’, Trends in Molecular Medicine, 27(11), pp. 1060–1073. Available at: https://doi.org/10.1016/j.molmed.2021.07.012.
Lai, M.C. et al. (2021) ‘Enhancer-priming in ageing human bone marrow mesenchymal stromal cells contributes to immune traits’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.09.03.458728.
Lai, M.C. et al. (2021) ‘Enhancer-priming in ageing human bone marrow mesenchymal stromal cells contributes to immune traits’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.09.03.458728.
Ibarra, I.L. et al. (2021) ‘Comparative chromatin accessibility upon BDNF-induced neuronal activity delineates neuronal regulatory elements’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.05.28.446128.
Ibarra, I.L. et al. (2021) ‘Comparative chromatin accessibility upon BDNF-induced neuronal activity delineates neuronal regulatory elements’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.05.28.446128.
Scheller, M. et al. (2021) ‘Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response’, Nature Cancer, 2(5), pp. 527–544. Available at: https://doi.org/10.1038/s43018-021-00213-9.
Scheller, M. et al. (2021) ‘Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response’, Nature Cancer, 2(5), pp. 527–544. Available at: https://doi.org/10.1038/s43018-021-00213-9.
Ranzoni, A.M. et al. (2021) ‘Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Human Developmental Hematopoiesis’, Cell Stem Cell, 28(3), pp. 472–487.e7. Available at: https://doi.org/10.1016/j.stem.2020.11.015.
Ranzoni, A.M. et al. (2021) ‘Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Human Developmental Hematopoiesis’, Cell Stem Cell, 28(3), pp. 472–487.e7. Available at: https://doi.org/10.1016/j.stem.2020.11.015.
Ibarra, I.L. et al. (2020) ‘Mechanistic insights into transcription factor cooperativity and its impact on protein-phenotype interactions’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-019-13888-7.
Ibarra, I.L. et al. (2020) ‘Mechanistic insights into transcription factor cooperativity and its impact on protein-phenotype interactions’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-019-13888-7.
Reyes-Palomares, A. et al. (2020) ‘Remodeling of active endothelial enhancers is associated with aberrant gene-regulatory networks in pulmonary arterial hypertension’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-020-15463-x.
Reyes-Palomares, A. et al. (2020) ‘Remodeling of active endothelial enhancers is associated with aberrant gene-regulatory networks in pulmonary arterial hypertension’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-020-15463-x.
Sigalova, O.M. et al. (2020) ‘Predictive features of gene expression variation reveal mechanistic link with differential expression’, Molecular Systems Biology, 16(8). Available at: https://doi.org/10.15252/msb.20209539.
Sigalova, O.M. et al. (2020) ‘Predictive features of gene expression variation reveal mechanistic link with differential expression’, Molecular Systems Biology, 16(8). Available at: https://doi.org/10.15252/msb.20209539.
Grubert, F. et al. (2020) ‘Landscape of cohesin-mediated chromatin loops in the human genome’, Nature, 583(7818), pp. 737–743. Available at: https://doi.org/10.1038/s41586-020-2151-x.
Grubert, F. et al. (2020) ‘Landscape of cohesin-mediated chromatin loops in the human genome’, Nature, 583(7818), pp. 737–743. Available at: https://doi.org/10.1038/s41586-020-2151-x.
Bunina, D. et al. (2020) ‘Genomic Rewiring of SOX2 Chromatin Interaction Network during Differentiation of ESCs to Postmitotic Neurons’, Cell Systems, 10(6), pp. 480–494.e8. Available at: https://doi.org/10.1016/j.cels.2020.05.003.
Bunina, D. et al. (2020) ‘Genomic Rewiring of SOX2 Chromatin Interaction Network during Differentiation of ESCs to Postmitotic Neurons’, Cell Systems, 10(6), pp. 480–494.e8. Available at: https://doi.org/10.1016/j.cels.2020.05.003.
Berest, I. et al. (2019) ‘Quantification of Differential Transcription Factor Activity and Multiomics-Based Classification into Activators and Repressors: diffTF’, Cell Reports, 29(10), pp. 3147–3159.e12. Available at: https://doi.org/10.1016/j.celrep.2019.10.106.
Berest, I. et al. (2019) ‘Quantification of Differential Transcription Factor Activity and Multiomics-Based Classification into Activators and Repressors: diffTF’, Cell Reports, 29(10), pp. 3147–3159.e12. Available at: https://doi.org/10.1016/j.celrep.2019.10.106.
Garg, S. et al. (2019) ‘Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML’, Blood, 134(3), pp. 263–276. Available at: https://doi.org/10.1182/blood.2018862383.
Garg, S. et al. (2019) ‘Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML’, Blood, 134(3), pp. 263–276. Available at: https://doi.org/10.1182/blood.2018862383.
Rasmussen, K.D. et al. (2019) ‘TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells’, Genome Research, 29(4), pp. 564–575. Available at: https://doi.org/10.1101/gr.239277.118.
Rasmussen, K.D. et al. (2019) ‘TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells’, Genome Research, 29(4), pp. 564–575. Available at: https://doi.org/10.1101/gr.239277.118.
Hennrich, M.L. et al. (2018) ‘Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline’, Nature Communications, 9(1). Available at: https://doi.org/10.1038/s41467-018-06353-4.
Hennrich, M.L. et al. (2018) ‘Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline’, Nature Communications, 9(1). Available at: https://doi.org/10.1038/s41467-018-06353-4.
Ruiz-Velasco, M. et al. (2017) ‘CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals’, Cell Systems, 5(6), pp. 628–637.e6. Available at: https://doi.org/10.1016/j.cels.2017.10.018.
Ruiz-Velasco, M. et al. (2017) ‘CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals’, Cell Systems, 5(6), pp. 628–637.e6. Available at: https://doi.org/10.1016/j.cels.2017.10.018.
Ruiz-Velasco, M. and Zaugg, J.B. (2017) ‘Structure meets function: How chromatin organisation conveys functionality’, Current Opinion in Systems Biology, 1, pp. 129–136. Available at: https://doi.org/10.1016/j.coisb.2017.01.003.
Ruiz-Velasco, M. and Zaugg, J.B. (2017) ‘Structure meets function: How chromatin organisation conveys functionality’, Current Opinion in Systems Biology, 1, pp. 129–136. Available at: https://doi.org/10.1016/j.coisb.2017.01.003.
Arnold, C., Bhat, P. and Zaugg, J.B. (2016) ‘SNPhood: Investigate, quantify and visualise the epigenomic neighbourhood of SNPs using NGS data’, Bioinformatics, 32(15), pp. 2359–2360. Available at: https://doi.org/10.1093/bioinformatics/btw127.
Arnold, C., Bhat, P. and Zaugg, J.B. (2016) ‘SNPhood: Investigate, quantify and visualise the epigenomic neighbourhood of SNPs using NGS data’, Bioinformatics, 32(15), pp. 2359–2360. Available at: https://doi.org/10.1093/bioinformatics/btw127.
Ignatiadis, N. et al. (2016) ‘Data-driven hypothesis weighting increases detection power in genome-scale multiple testing’, Nature Methods, 13(7), pp. 577–580. Available at: https://doi.org/10.1038/nmeth.3885.
Ignatiadis, N. et al. (2016) ‘Data-driven hypothesis weighting increases detection power in genome-scale multiple testing’, Nature Methods, 13(7), pp. 577–580. Available at: https://doi.org/10.1038/nmeth.3885.
Grubert, F. et al. (2015) ‘Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions’, Cell, 162(5), pp. 1051–1065. Available at: https://doi.org/10.1016/j.cell.2015.07.048.
Grubert, F. et al. (2015) ‘Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions’, Cell, 162(5), pp. 1051–1065. Available at: https://doi.org/10.1016/j.cell.2015.07.048.
Kasowski, M. et al. (2013) ‘Extensive variation in chromatin states across humans’, Science, 342(6159), pp. 750–752. Available at: https://doi.org/10.1126/science.1242510.
Kasowski, M. et al. (2013) ‘Extensive variation in chromatin states across humans’, Science, 342(6159), pp. 750–752. Available at: https://doi.org/10.1126/science.1242510.