[FG] Zaugg Judith
Publications
63 found
Show per page
Costea, J. et al. (2025) ‘Role of stem-like cells in chemotherapy resistance and relapse in pediatric T-cell acute lymphoblastic leukemia’, Nature Communications, 16(1). Available at: https://doi.org/10.1038/s41467-025-61222-1.
Costea, J. et al. (2025) ‘Role of stem-like cells in chemotherapy resistance and relapse in pediatric T-cell acute lymphoblastic leukemia’, Nature Communications, 16(1). Available at: https://doi.org/10.1038/s41467-025-61222-1.
Yildiz, U. et al. (2025) ‘High-throughput single-cell CRISPRi screens stratify neurodevelopmental functions of schizophrenia-associated genes’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.06.13.659629.
Yildiz, U. et al. (2025) ‘High-throughput single-cell CRISPRi screens stratify neurodevelopmental functions of schizophrenia-associated genes’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.06.13.659629.
Sigalova, O.M. et al. (2025) ‘Integrating genetic variation with deep learning provides context for variants impacting transcription factor binding during embryogenesis’, Genome Research, 35(5), pp. 1138–1153. Available at: https://doi.org/10.1101/gr.279652.124.
Sigalova, O.M. et al. (2025) ‘Integrating genetic variation with deep learning provides context for variants impacting transcription factor binding during embryogenesis’, Genome Research, 35(5), pp. 1138–1153. Available at: https://doi.org/10.1101/gr.279652.124.
Barzaghi, G., Krebs, A.R. and Zaugg, J.B. (2025) ‘FootprintCharter: unsupervised detection and quantification of footprints in single molecule footprinting data’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.31.646464.
Barzaghi, G., Krebs, A.R. and Zaugg, J.B. (2025) ‘FootprintCharter: unsupervised detection and quantification of footprints in single molecule footprinting data’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.31.646464.
Baderna, V. et al. (2025) ‘Cumulative TF binding and H3K27 Acetylation drive enhancer activation frequency’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.26.645413.
Baderna, V. et al. (2025) ‘Cumulative TF binding and H3K27 Acetylation drive enhancer activation frequency’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.26.645413.
Sigalova, O.M. et al. (2024) ‘Contextualising transcription factor binding during embryogenesis using natural sequence variation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.10.24.619975.
Sigalova, O.M. et al. (2024) ‘Contextualising transcription factor binding during embryogenesis using natural sequence variation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.10.24.619975.
Lim, B. et al. (2024) ‘Active repression of cell fate plasticity by PROX1 safeguards hepatocyte identity and prevents liver tumourigenesis’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.09.10.612045.
Lim, B. et al. (2024) ‘Active repression of cell fate plasticity by PROX1 safeguards hepatocyte identity and prevents liver tumourigenesis’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.09.10.612045.
Sabath, K. et al. (2024) ‘Basis of gene-specific transcription regulation by the Integrator complex’, Molecular Cell, 84(13), pp. 2525–2541.e12. Available at: https://doi.org/10.1016/j.molcel.2024.05.027.
Sabath, K. et al. (2024) ‘Basis of gene-specific transcription regulation by the Integrator complex’, Molecular Cell, 84(13), pp. 2525–2541.e12. Available at: https://doi.org/10.1016/j.molcel.2024.05.027.
Costea, J. et al. (2024) ‘Role of Stem-Like Cells in Chemotherapy Resistance and Relapse in pediatric T Cell Acute Lymphoblastic Leukemia’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.06.24.600391.
Costea, J. et al. (2024) ‘Role of Stem-Like Cells in Chemotherapy Resistance and Relapse in pediatric T Cell Acute Lymphoblastic Leukemia’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.06.24.600391.
Lindenhofer, D. et al. (2024) ‘Functional phenotyping of genomic variants using multiomic scDNA-scRNA-seq’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.05.31.596895.
Lindenhofer, D. et al. (2024) ‘Functional phenotyping of genomic variants using multiomic scDNA-scRNA-seq’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.05.31.596895.
Lorenzo, J.P. et al. (2024) ‘APOBEC2 safeguards skeletal muscle cell fate through binding chromatin and regulating transcription of non-muscle genes during myoblast differentiation’, Proceedings of the National Academy of Sciences of the United States of America, 121(17). Available at: https://doi.org/10.1073/pnas.2312330121.
Lorenzo, J.P. et al. (2024) ‘APOBEC2 safeguards skeletal muscle cell fate through binding chromatin and regulating transcription of non-muscle genes during myoblast differentiation’, Proceedings of the National Academy of Sciences of the United States of America, 121(17). Available at: https://doi.org/10.1073/pnas.2312330121.
Mathioudaki, A. et al. (2024) ‘The remission status of AML patients after allo-HCT is associated with a distinct single-cell bone marrow T-cell signature’, Blood, 143(13), pp. 1269–1281. Available at: https://doi.org/10.1182/blood.2023021815.
Mathioudaki, A. et al. (2024) ‘The remission status of AML patients after allo-HCT is associated with a distinct single-cell bone marrow T-cell signature’, Blood, 143(13), pp. 1269–1281. Available at: https://doi.org/10.1182/blood.2023021815.
Hauth, A. et al. (2024) ‘Escape from X inactivation is directly modulated by levels of Xist non-coding RNA’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.02.22.581559.
Hauth, A. et al. (2024) ‘Escape from X inactivation is directly modulated by levels of Xist non-coding RNA’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.02.22.581559.
Miyazawa, H. et al. (2024) ‘Glycolysis–Wnt signaling axis tunes developmental timing of embryo segmentation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.01.22.576629.
Miyazawa, H. et al. (2024) ‘Glycolysis–Wnt signaling axis tunes developmental timing of embryo segmentation’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.01.22.576629.
Daga, N. et al. (2024) ‘Integration of genetic and epigenetic data pinpoints autoimmune specific remodelling of enhancer landscape in CD4+ T cells’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.01.11.575022.
Daga, N. et al. (2024) ‘Integration of genetic and epigenetic data pinpoints autoimmune specific remodelling of enhancer landscape in CD4+ T cells’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.01.11.575022.
Türk, L. et al. (2024) ‘Cytotoxic CD8+ Temra cells show loss of chromatin accessibility at genes associated with T cell activation’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1285798.
Türk, L. et al. (2024) ‘Cytotoxic CD8+ Temra cells show loss of chromatin accessibility at genes associated with T cell activation’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1285798.
Lobato-Moreno, S. et al. (2023) ‘Scalable ultra-high-throughput single-cell chromatin and RNA sequencing reveals gene regulatory dynamics linking macrophage polarization to autoimmune disease’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.12.26.573253.
Lobato-Moreno, S. et al. (2023) ‘Scalable ultra-high-throughput single-cell chromatin and RNA sequencing reveals gene regulatory dynamics linking macrophage polarization to autoimmune disease’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.12.26.573253.
Fitzgerald, D. et al. (2023) ‘A single-cell multi-omic and spatial atlas of B cell lymphomas reveals differentiation drives intratumor heterogeneity’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.06.565756.
Fitzgerald, D. et al. (2023) ‘A single-cell multi-omic and spatial atlas of B cell lymphomas reveals differentiation drives intratumor heterogeneity’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.06.565756.
Kamal, A. et al. (2023) ‘GRaNIE and GRaNPA: inference and evaluation of enhancer-mediated gene regulatory networks’, Molecular Systems Biology, 19(6). Available at: https://doi.org/10.15252/msb.202311627.
Kamal, A. et al. (2023) ‘GRaNIE and GRaNPA: inference and evaluation of enhancer-mediated gene regulatory networks’, Molecular Systems Biology, 19(6). Available at: https://doi.org/10.15252/msb.202311627.
Weigel, B. et al. (2023) ‘MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention’, Molecular Psychiatry, 28(5), pp. 2122–2135. Available at: https://doi.org/10.1038/s41380-023-01959-7.
Weigel, B. et al. (2023) ‘MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention’, Molecular Psychiatry, 28(5), pp. 2122–2135. Available at: https://doi.org/10.1038/s41380-023-01959-7.
de Teresa-Trueba, I. et al. (2023) ‘Convolutional networks for supervised mining of molecular patterns within cellular context’, Nature Methods, 20(2), pp. 284–294. Available at: https://doi.org/10.1038/s41592-022-01746-2.
de Teresa-Trueba, I. et al. (2023) ‘Convolutional networks for supervised mining of molecular patterns within cellular context’, Nature Methods, 20(2), pp. 284–294. Available at: https://doi.org/10.1038/s41592-022-01746-2.
Serina Secanechia, Y.N. et al. (2022) ‘Identifying a novel role for the master regulator Tal1 in the Endothelial to Hematopoietic Transition’, Scientific Reports, 12(1). Available at: https://doi.org/10.1038/s41598-022-20906-0.
Serina Secanechia, Y.N. et al. (2022) ‘Identifying a novel role for the master regulator Tal1 in the Endothelial to Hematopoietic Transition’, Scientific Reports, 12(1). Available at: https://doi.org/10.1038/s41598-022-20906-0.
Zaugg, J.B. et al. (2022) ‘Current challenges in understanding the role of enhancers in disease’, Nature Structural and Molecular Biology, 29(12), pp. 1148–1158. Available at: https://doi.org/10.1038/s41594-022-00896-3.
Zaugg, J.B. et al. (2022) ‘Current challenges in understanding the role of enhancers in disease’, Nature Structural and Molecular Biology, 29(12), pp. 1148–1158. Available at: https://doi.org/10.1038/s41594-022-00896-3.
Kafkia, E. et al. (2022) ‘Operation of a TCA cycle subnetwork in the mammalian nucleus’, Science Advances, 8(35). Available at: https://doi.org/10.1126/sciadv.abq5206.
Kafkia, E. et al. (2022) ‘Operation of a TCA cycle subnetwork in the mammalian nucleus’, Science Advances, 8(35). Available at: https://doi.org/10.1126/sciadv.abq5206.
Bruch, P.-M. et al. (2022) ‘Drug-microenvironment perturbations reveal resistance mechanisms and prognostic subgroups in CLL’, Molecular Systems Biology, 18(8). Available at: https://doi.org/10.15252/msb.202110855.
Bruch, P.-M. et al. (2022) ‘Drug-microenvironment perturbations reveal resistance mechanisms and prognostic subgroups in CLL’, Molecular Systems Biology, 18(8). Available at: https://doi.org/10.15252/msb.202110855.
Ibarra, I.L. et al. (2022) ‘Comparative chromatin accessibility upon BDNF stimulation delineates neuronal regulatory elements’, Molecular Systems Biology, 18(8). Available at: https://doi.org/10.15252/msb.202110473.
Ibarra, I.L. et al. (2022) ‘Comparative chromatin accessibility upon BDNF stimulation delineates neuronal regulatory elements’, Molecular Systems Biology, 18(8). Available at: https://doi.org/10.15252/msb.202110473.
He, L. et al. (2022) ‘CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia’, EMBO Molecular Medicine, 14(4). Available at: https://doi.org/10.15252/emmm.202114990.
He, L. et al. (2022) ‘CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia’, EMBO Molecular Medicine, 14(4). Available at: https://doi.org/10.15252/emmm.202114990.
Poisa-Beiro, L. et al. (2022) ‘Glucose Metabolism and Aging of Hematopoietic Stem and Progenitor Cells’, International Journal of Molecular Sciences, 23(6). Available at: https://doi.org/10.3390/ijms23063028.
Poisa-Beiro, L. et al. (2022) ‘Glucose Metabolism and Aging of Hematopoietic Stem and Progenitor Cells’, International Journal of Molecular Sciences, 23(6). Available at: https://doi.org/10.3390/ijms23063028.
Kleinendorst, R.W.D. et al. (2021) ‘Genome-wide quantification of transcription factor binding at single-DNA-molecule resolution using methyl-transferase footprinting’, Nature Protocols, 16(12), pp. 5673–5706. Available at: https://doi.org/10.1038/s41596-021-00630-1.
Kleinendorst, R.W.D. et al. (2021) ‘Genome-wide quantification of transcription factor binding at single-DNA-molecule resolution using methyl-transferase footprinting’, Nature Protocols, 16(12), pp. 5673–5706. Available at: https://doi.org/10.1038/s41596-021-00630-1.
Weidemüller, P. et al. (2021) ‘Transcription factors: Bridge between cell signaling and gene regulation’, Proteomics, 21(23-24). Available at: https://doi.org/10.1002/pmic.202000034.
Weidemüller, P. et al. (2021) ‘Transcription factors: Bridge between cell signaling and gene regulation’, Proteomics, 21(23-24). Available at: https://doi.org/10.1002/pmic.202000034.
Claringbould, A. and Zaugg, J.B. (2021) ‘Enhancers in disease: molecular basis and emerging treatment strategies’, Trends in Molecular Medicine, 27(11), pp. 1060–1073. Available at: https://doi.org/10.1016/j.molmed.2021.07.012.
Claringbould, A. and Zaugg, J.B. (2021) ‘Enhancers in disease: molecular basis and emerging treatment strategies’, Trends in Molecular Medicine, 27(11), pp. 1060–1073. Available at: https://doi.org/10.1016/j.molmed.2021.07.012.
Lai, M.C. et al. (2021) ‘Enhancer-priming in ageing human bone marrow mesenchymal stromal cells contributes to immune traits’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.09.03.458728.
Lai, M.C. et al. (2021) ‘Enhancer-priming in ageing human bone marrow mesenchymal stromal cells contributes to immune traits’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.09.03.458728.
Kim, K.-P. et al. (2021) ‘Donor cell memory confers a metastable state of directly converted cells’, Cell Stem Cell, 28(7), pp. 1291–1306.e10. Available at: https://doi.org/10.1016/j.stem.2021.02.023.
Kim, K.-P. et al. (2021) ‘Donor cell memory confers a metastable state of directly converted cells’, Cell Stem Cell, 28(7), pp. 1291–1306.e10. Available at: https://doi.org/10.1016/j.stem.2021.02.023.
Ibarra, I.L. et al. (2021) ‘Comparative chromatin accessibility upon BDNF-induced neuronal activity delineates neuronal regulatory elements’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.05.28.446128.
Ibarra, I.L. et al. (2021) ‘Comparative chromatin accessibility upon BDNF-induced neuronal activity delineates neuronal regulatory elements’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2021.05.28.446128.
Scheller, M. et al. (2021) ‘Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response’, Nature Cancer, 2(5), pp. 527–544. Available at: https://doi.org/10.1038/s43018-021-00213-9.
Scheller, M. et al. (2021) ‘Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response’, Nature Cancer, 2(5), pp. 527–544. Available at: https://doi.org/10.1038/s43018-021-00213-9.
Guha, R. et al. (2021) ‘Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype’, PLoS Pathogens, 17(4 April). Available at: https://doi.org/10.1371/journal.ppat.1009430.
Guha, R. et al. (2021) ‘Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype’, PLoS Pathogens, 17(4 April). Available at: https://doi.org/10.1371/journal.ppat.1009430.
Ranzoni, A.M. et al. (2021) ‘Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Human Developmental Hematopoiesis’, Cell Stem Cell, 28(3), pp. 472–487.e7. Available at: https://doi.org/10.1016/j.stem.2020.11.015.
Ranzoni, A.M. et al. (2021) ‘Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Human Developmental Hematopoiesis’, Cell Stem Cell, 28(3), pp. 472–487.e7. Available at: https://doi.org/10.1016/j.stem.2020.11.015.
Ibarra, I.L. et al. (2020) ‘Mechanistic insights into transcription factor cooperativity and its impact on protein-phenotype interactions’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-019-13888-7.
Ibarra, I.L. et al. (2020) ‘Mechanistic insights into transcription factor cooperativity and its impact on protein-phenotype interactions’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-019-13888-7.
Reyes-Palomares, A. et al. (2020) ‘Remodeling of active endothelial enhancers is associated with aberrant gene-regulatory networks in pulmonary arterial hypertension’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-020-15463-x.
Reyes-Palomares, A. et al. (2020) ‘Remodeling of active endothelial enhancers is associated with aberrant gene-regulatory networks in pulmonary arterial hypertension’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-020-15463-x.
Kafkia, E. et al. (2020) ‘Operation of a TCA cycle subnetwork in the mammalian nucleus’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2020.11.22.393413.
Kafkia, E. et al. (2020) ‘Operation of a TCA cycle subnetwork in the mammalian nucleus’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2020.11.22.393413.
Sigalova, O.M. et al. (2020) ‘Predictive features of gene expression variation reveal mechanistic link with differential expression’, Molecular Systems Biology, 16(8). Available at: https://doi.org/10.15252/msb.20209539.
Sigalova, O.M. et al. (2020) ‘Predictive features of gene expression variation reveal mechanistic link with differential expression’, Molecular Systems Biology, 16(8). Available at: https://doi.org/10.15252/msb.20209539.
Grubert, F. et al. (2020) ‘Landscape of cohesin-mediated chromatin loops in the human genome’, Nature, 583(7818), pp. 737–743. Available at: https://doi.org/10.1038/s41586-020-2151-x.
Grubert, F. et al. (2020) ‘Landscape of cohesin-mediated chromatin loops in the human genome’, Nature, 583(7818), pp. 737–743. Available at: https://doi.org/10.1038/s41586-020-2151-x.
Bunina, D. et al. (2020) ‘Genomic Rewiring of SOX2 Chromatin Interaction Network during Differentiation of ESCs to Postmitotic Neurons’, Cell Systems, 10(6), pp. 480–494.e8. Available at: https://doi.org/10.1016/j.cels.2020.05.003.
Bunina, D. et al. (2020) ‘Genomic Rewiring of SOX2 Chromatin Interaction Network during Differentiation of ESCs to Postmitotic Neurons’, Cell Systems, 10(6), pp. 480–494.e8. Available at: https://doi.org/10.1016/j.cels.2020.05.003.
Gehre, M. et al. (2020) ‘Lysine 4 of histone H3.3 is required for embryonic stem cell differentiation, histone enrichment at regulatory regions and transcription accuracy’, Nature Genetics, 52(3), pp. 273–282. Available at: https://doi.org/10.1038/s41588-020-0586-5.
Gehre, M. et al. (2020) ‘Lysine 4 of histone H3.3 is required for embryonic stem cell differentiation, histone enrichment at regulatory regions and transcription accuracy’, Nature Genetics, 52(3), pp. 273–282. Available at: https://doi.org/10.1038/s41588-020-0586-5.
Berest, I. et al. (2019) ‘Quantification of Differential Transcription Factor Activity and Multiomics-Based Classification into Activators and Repressors: diffTF’, Cell Reports, 29(10), pp. 3147–3159.e12. Available at: https://doi.org/10.1016/j.celrep.2019.10.106.
Berest, I. et al. (2019) ‘Quantification of Differential Transcription Factor Activity and Multiomics-Based Classification into Activators and Repressors: diffTF’, Cell Reports, 29(10), pp. 3147–3159.e12. Available at: https://doi.org/10.1016/j.celrep.2019.10.106.
Garg, S. et al. (2019) ‘Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML’, Blood, 134(3), pp. 263–276. Available at: https://doi.org/10.1182/blood.2018862383.
Garg, S. et al. (2019) ‘Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML’, Blood, 134(3), pp. 263–276. Available at: https://doi.org/10.1182/blood.2018862383.
Rasmussen, K.D. et al. (2019) ‘TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells’, Genome Research, 29(4), pp. 564–575. Available at: https://doi.org/10.1101/gr.239277.118.
Rasmussen, K.D. et al. (2019) ‘TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells’, Genome Research, 29(4), pp. 564–575. Available at: https://doi.org/10.1101/gr.239277.118.
Hennrich, M.L. et al. (2018) ‘Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline’, Nature Communications, 9(1). Available at: https://doi.org/10.1038/s41467-018-06353-4.
Hennrich, M.L. et al. (2018) ‘Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline’, Nature Communications, 9(1). Available at: https://doi.org/10.1038/s41467-018-06353-4.
Ruiz-Velasco, M. et al. (2017) ‘CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals’, Cell Systems, 5(6), pp. 628–637.e6. Available at: https://doi.org/10.1016/j.cels.2017.10.018.
Ruiz-Velasco, M. et al. (2017) ‘CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals’, Cell Systems, 5(6), pp. 628–637.e6. Available at: https://doi.org/10.1016/j.cels.2017.10.018.
Lai, M.C. et al. (2017) ‘Haplotype-specific MAPT exon 3 expression regulated by common intronic polymorphisms associated with Parkinsonian disorders’, Molecular Neurodegeneration, 12(1). Available at: https://doi.org/10.1186/s13024-017-0224-6.
Lai, M.C. et al. (2017) ‘Haplotype-specific MAPT exon 3 expression regulated by common intronic polymorphisms associated with Parkinsonian disorders’, Molecular Neurodegeneration, 12(1). Available at: https://doi.org/10.1186/s13024-017-0224-6.
Ruiz-Velasco, M. and Zaugg, J.B. (2017) ‘Structure meets function: How chromatin organisation conveys functionality’, Current Opinion in Systems Biology, 1, pp. 129–136. Available at: https://doi.org/10.1016/j.coisb.2017.01.003.
Ruiz-Velasco, M. and Zaugg, J.B. (2017) ‘Structure meets function: How chromatin organisation conveys functionality’, Current Opinion in Systems Biology, 1, pp. 129–136. Available at: https://doi.org/10.1016/j.coisb.2017.01.003.
Cakiroglu, S.A., Zaugg, J.B. and Luscombe, N.M. (2016) ‘Backmasking in the yeast genome: Encoding overlapping information for protein-coding and RNA degradation’, Nucleic Acids Research, 44(17), pp. 8065–8072. Available at: https://doi.org/10.1093/nar/gkw683.
Cakiroglu, S.A., Zaugg, J.B. and Luscombe, N.M. (2016) ‘Backmasking in the yeast genome: Encoding overlapping information for protein-coding and RNA degradation’, Nucleic Acids Research, 44(17), pp. 8065–8072. Available at: https://doi.org/10.1093/nar/gkw683.
Arnold, C., Bhat, P. and Zaugg, J.B. (2016) ‘SNPhood: Investigate, quantify and visualise the epigenomic neighbourhood of SNPs using NGS data’, Bioinformatics, 32(15), pp. 2359–2360. Available at: https://doi.org/10.1093/bioinformatics/btw127.
Arnold, C., Bhat, P. and Zaugg, J.B. (2016) ‘SNPhood: Investigate, quantify and visualise the epigenomic neighbourhood of SNPs using NGS data’, Bioinformatics, 32(15), pp. 2359–2360. Available at: https://doi.org/10.1093/bioinformatics/btw127.
Ignatiadis, N. et al. (2016) ‘Data-driven hypothesis weighting increases detection power in genome-scale multiple testing’, Nature Methods, 13(7), pp. 577–580. Available at: https://doi.org/10.1038/nmeth.3885.
Ignatiadis, N. et al. (2016) ‘Data-driven hypothesis weighting increases detection power in genome-scale multiple testing’, Nature Methods, 13(7), pp. 577–580. Available at: https://doi.org/10.1038/nmeth.3885.
Zaugg LK et al. (2016) ‘Influence of the bleaching interval on the luminosity of long-term discolored enamel-dentin discs’, Clinical Oral Investigations, 20(3), pp. 451–458. Available at: https://doi.org/10.1007/s00784-015-1545-x.
Zaugg LK et al. (2016) ‘Influence of the bleaching interval on the luminosity of long-term discolored enamel-dentin discs’, Clinical Oral Investigations, 20(3), pp. 451–458. Available at: https://doi.org/10.1007/s00784-015-1545-x.
Grubert, F. et al. (2015) ‘Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions’, Cell, 162(5), pp. 1051–1065. Available at: https://doi.org/10.1016/j.cell.2015.07.048.
Grubert, F. et al. (2015) ‘Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions’, Cell, 162(5), pp. 1051–1065. Available at: https://doi.org/10.1016/j.cell.2015.07.048.
Castelnuovo, M. et al. (2014) ‘Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast’, Nucleic Acids Research, 42(7), pp. 4348–4362. Available at: https://doi.org/10.1093/nar/gku100.
Castelnuovo, M. et al. (2014) ‘Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast’, Nucleic Acids Research, 42(7), pp. 4348–4362. Available at: https://doi.org/10.1093/nar/gku100.
Kasowski, M. et al. (2013) ‘Extensive variation in chromatin states across humans’, Science, 342(6159), pp. 750–752. Available at: https://doi.org/10.1126/science.1242510.
Kasowski, M. et al. (2013) ‘Extensive variation in chromatin states across humans’, Science, 342(6159), pp. 750–752. Available at: https://doi.org/10.1126/science.1242510.
Tan-Wong, S.M. et al. (2012) ‘Gene loops enhance transcriptional directionality’, Science, 338(6107), pp. 671–675. Available at: https://doi.org/10.1126/science.1224350.
Tan-Wong, S.M. et al. (2012) ‘Gene loops enhance transcriptional directionality’, Science, 338(6107), pp. 671–675. Available at: https://doi.org/10.1126/science.1224350.
Zaugg, J.B. and Luscombe, N.M. (2012) ‘A genomic model of condition-specific nucleosome behavior explains transcriptional activity in yeast’, Genome Research, 22(1), pp. 84–94. Available at: https://doi.org/10.1101/gr.124099.111.
Zaugg, J.B. and Luscombe, N.M. (2012) ‘A genomic model of condition-specific nucleosome behavior explains transcriptional activity in yeast’, Genome Research, 22(1), pp. 84–94. Available at: https://doi.org/10.1101/gr.124099.111.
Kotte, O., Zaugg, J.B. and Heinemann, M. (2010) ‘Bacterial adaptation through distributed sensing of metabolic fluxes’, Molecular Systems Biology, 6. Available at: https://doi.org/10.1038/msb.2010.10.
Kotte, O., Zaugg, J.B. and Heinemann, M. (2010) ‘Bacterial adaptation through distributed sensing of metabolic fluxes’, Molecular Systems Biology, 6. Available at: https://doi.org/10.1038/msb.2010.10.
Gattin, Z., Zaugg, J. and van Gunsteren, W.F. (2010) ‘Structure determination of a flexible cyclic peptide based on NMR and MD simulation 3J-coupling’, ChemPhysChem, 11(4), pp. 830–835. Available at: https://doi.org/10.1002/cphc.200900501.
Gattin, Z., Zaugg, J. and van Gunsteren, W.F. (2010) ‘Structure determination of a flexible cyclic peptide based on NMR and MD simulation 3J-coupling’, ChemPhysChem, 11(4), pp. 830–835. Available at: https://doi.org/10.1002/cphc.200900501.
Hoskins, A.A. et al. (2007) ‘N5-CAIR mutase: Role of a CO2 binding site and substrate movement in catalysis’, Biochemistry, 46(10), pp. 2842–2855. Available at: https://doi.org/10.1021/bi602436g.
Hoskins, A.A. et al. (2007) ‘N5-CAIR mutase: Role of a CO2 binding site and substrate movement in catalysis’, Biochemistry, 46(10), pp. 2842–2855. Available at: https://doi.org/10.1021/bi602436g.