[FG] Le Magnen Clémentine
Publications
20 found
Show per page
Yanushko, Darya et al. (2025) ‘p53-loss induced prostatic epithelial cell plasticity and invasion is driven by a crosstalk with the tumor microenvironment’, Cell Death and Disease, 16. Available at: https://doi.org/10.1038/s41419-025-07361-1.
Yanushko, Darya et al. (2025) ‘p53-loss induced prostatic epithelial cell plasticity and invasion is driven by a crosstalk with the tumor microenvironment’, Cell Death and Disease, 16. Available at: https://doi.org/10.1038/s41419-025-07361-1.
Heuzeroth, Frederick et al. (2024) ‘Exploratory testing of functional blood oxygenation level dependent-MRI to image the renoprotective effect of Remote Ischaemic PreConditioning during partial nephrectomy’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-83643-6.
Heuzeroth, Frederick et al. (2024) ‘Exploratory testing of functional blood oxygenation level dependent-MRI to image the renoprotective effect of Remote Ischaemic PreConditioning during partial nephrectomy’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-83643-6.
Elyan, A. and Mortezavi, A. (2024) ‘PSA-Test und moderne Biomarker zur Detektion von Prostatakrebs’, Urologie in der Praxis [Preprint]. Available at: https://doi.org/10.1007/s41973-024-00258-0.
Elyan, A. and Mortezavi, A. (2024) ‘PSA-Test und moderne Biomarker zur Detektion von Prostatakrebs’, Urologie in der Praxis [Preprint]. Available at: https://doi.org/10.1007/s41973-024-00258-0.
Brennen, W. Nathaniel et al. (2024) ‘Defining the challenges and opportunities for using patient‐derived models in prostate cancer research’, The Prostate [Preprint]. Available at: https://doi.org/10.1002/pros.24682.
Brennen, W. Nathaniel et al. (2024) ‘Defining the challenges and opportunities for using patient‐derived models in prostate cancer research’, The Prostate [Preprint]. Available at: https://doi.org/10.1002/pros.24682.
Bratic Hench, Ivana et al. (2024) ‘Cell-Free DNA Genomic Profiling and Its Clinical Implementation in Advanced Prostate Cancer’, Cancers, 16(1), p. 45. Available at: https://doi.org/10.3390/cancers16010045.
Bratic Hench, Ivana et al. (2024) ‘Cell-Free DNA Genomic Profiling and Its Clinical Implementation in Advanced Prostate Cancer’, Cancers, 16(1), p. 45. Available at: https://doi.org/10.3390/cancers16010045.
Dolgos, R. et al. (2024) ‘ECM-free patient-derived organoids preserve diverse prostate cancer lineages and uncover in vitro-enriched cell types’. Available at: https://doi.org/https://doi.org/10.1101/2024.10.16.618617.
Dolgos, R. et al. (2024) ‘ECM-free patient-derived organoids preserve diverse prostate cancer lineages and uncover in vitro-enriched cell types’. Available at: https://doi.org/https://doi.org/10.1101/2024.10.16.618617.
Vlajnic, Tatjana et al. (2024) ‘Exploring the intratumoral heterogeneity of DNA ploidy in prostate cancer’, Cancer Reports, 7. Available at: https://doi.org/10.1002/cnr2.1953.
Vlajnic, Tatjana et al. (2024) ‘Exploring the intratumoral heterogeneity of DNA ploidy in prostate cancer’, Cancer Reports, 7. Available at: https://doi.org/10.1002/cnr2.1953.
Lampart, F.L. et al. (2023) Morphometry and mechanical instability at the onset of epithelial bladder cancer. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.17.553533.
Lampart, F.L. et al. (2023) Morphometry and mechanical instability at the onset of epithelial bladder cancer. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.17.553533.
Lawrence, Mitchell G. et al. (2023) ‘The future of patient-derived xenografts in prostate cancer research’, Nature Reviews Urology, 20(6), pp. 371–384. Available at: https://doi.org/10.1038/s41585-022-00706-x.
Lawrence, Mitchell G. et al. (2023) ‘The future of patient-derived xenografts in prostate cancer research’, Nature Reviews Urology, 20(6), pp. 371–384. Available at: https://doi.org/10.1038/s41585-022-00706-x.
Marhold M. et al. (2022) ‘The prostate cancer landscape in Europe: Current challenges, future opportunities’, Cancer Letters, 526, pp. 304–310. Available at: https://doi.org/10.1016/j.canlet.2021.11.033.
Marhold M. et al. (2022) ‘The prostate cancer landscape in Europe: Current challenges, future opportunities’, Cancer Letters, 526, pp. 304–310. Available at: https://doi.org/10.1016/j.canlet.2021.11.033.
Servant R et al. (2021) ‘Prostate cancer patient-derived organoids: detailed outcome from a prospective cohort of 81 clinical specimens’, Journal of Pathology, 254(5), pp. 543–555. Available at: https://doi.org/10.1002/path.5698.
Servant R et al. (2021) ‘Prostate cancer patient-derived organoids: detailed outcome from a prospective cohort of 81 clinical specimens’, Journal of Pathology, 254(5), pp. 543–555. Available at: https://doi.org/10.1002/path.5698.
Federer-Gsponer JR et al. (2020) ‘Patterns of stemness-associated markers in the development of castration-resistant prostate cancer’, Prostate, 80(13), pp. 1108–1117. Available at: https://doi.org/10.1002/pros.24039.
Federer-Gsponer JR et al. (2020) ‘Patterns of stemness-associated markers in the development of castration-resistant prostate cancer’, Prostate, 80(13), pp. 1108–1117. Available at: https://doi.org/10.1002/pros.24039.
Dugas SG et al. (2019) ‘Immunocytochemistry for ARID1A as a potential biomarker in urine cytology of bladder cancer’, Cancer Cytopathology, 127(9), pp. 578–585. Available at: https://doi.org/10.1002/cncy.22167.
Dugas SG et al. (2019) ‘Immunocytochemistry for ARID1A as a potential biomarker in urine cytology of bladder cancer’, Cancer Cytopathology, 127(9), pp. 578–585. Available at: https://doi.org/10.1002/cncy.22167.
Le Magnen, C. et al. (2018) ‘Cooperation of loss of NKX3.1 and inflammation in prostate cancer initiation’, DMM Disease Models and Mechanisms, 11(11). Available at: https://doi.org/10.1242/dmm.035139.
Le Magnen, C. et al. (2018) ‘Cooperation of loss of NKX3.1 and inflammation in prostate cancer initiation’, DMM Disease Models and Mechanisms, 11(11). Available at: https://doi.org/10.1242/dmm.035139.
Le Magnen, C., Shen, M.M. and Abate-Shen, C. (2018) ‘Lineage Plasticity in Cancer Progression and Treatment’, Annual Review of Cancer Biology, 2, pp. 271–289. Available at: https://doi.org/10.1146/annurev-cancerbio-030617-050224.
Le Magnen, C., Shen, M.M. and Abate-Shen, C. (2018) ‘Lineage Plasticity in Cancer Progression and Treatment’, Annual Review of Cancer Biology, 2, pp. 271–289. Available at: https://doi.org/10.1146/annurev-cancerbio-030617-050224.
Zou, M. et al. (2017) ‘Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer’, Cancer Discovery, 7(7), pp. 736–749. Available at: https://doi.org/10.1158/2159-8290.CD-16-1174.
Zou, M. et al. (2017) ‘Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer’, Cancer Discovery, 7(7), pp. 736–749. Available at: https://doi.org/10.1158/2159-8290.CD-16-1174.
Dutta, A. et al. (2016) ‘Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation’, Science, 352(6293), pp. 1576–1580. Available at: https://doi.org/10.1126/science.aad9512.
Dutta, A. et al. (2016) ‘Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation’, Science, 352(6293), pp. 1576–1580. Available at: https://doi.org/10.1126/science.aad9512.
Le Magnen, C., Dutta, A. and Abate-Shen, C. (2016) ‘Optimizing mouse models for precision cancer prevention’, Nature Reviews Cancer, 16(3), pp. 187–196. Available at: https://doi.org/10.1038/nrc.2016.1.
Le Magnen, C., Dutta, A. and Abate-Shen, C. (2016) ‘Optimizing mouse models for precision cancer prevention’, Nature Reviews Cancer, 16(3), pp. 187–196. Available at: https://doi.org/10.1038/nrc.2016.1.
Irshad, S. et al. (2013) ‘A molecular signature predictive of indolent prostate cancer (Science Translational Medicine (2013) 5, (203er9))’, Science Translational Medicine, 5(203). Available at: https://doi.org/10.1126/scitranslmed.3007585.
Irshad, S. et al. (2013) ‘A molecular signature predictive of indolent prostate cancer (Science Translational Medicine (2013) 5, (203er9))’, Science Translational Medicine, 5(203). Available at: https://doi.org/10.1126/scitranslmed.3007585.
Irshad, S. et al. (2013) ‘A molecular signature predictive of indolent prostate cancer’, Science Translational Medicine, 5(202). Available at: https://doi.org/10.1126/scitranslmed.3006408.
Irshad, S. et al. (2013) ‘A molecular signature predictive of indolent prostate cancer’, Science Translational Medicine, 5(202). Available at: https://doi.org/10.1126/scitranslmed.3006408.