Faculty of Medicine
Institute of Molecular and Clinical Ophthalmology Basel
Publications
357 found
Show per page
Quinodoz, M. et al. (2025) ‘De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.01.06.24317169.
Quinodoz, M. et al. (2025) ‘De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.01.06.24317169.
Quinodoz, M. et al. (2024) ‘De novo variants in LRRC8C resulting in constitutive channel activation cause a human multisystem disorder’, The EMBO Journal [Preprint]. Available at: https://doi.org/10.1038/s44318-024-00322-y.
Quinodoz, M. et al. (2024) ‘De novo variants in LRRC8C resulting in constitutive channel activation cause a human multisystem disorder’, The EMBO Journal [Preprint]. Available at: https://doi.org/10.1038/s44318-024-00322-y.
Dueñas Rey, A. et al. (2024) ‘Combining a prioritization strategy and functional studies nominates 5’UTR variants underlying inherited retinal disease’, Genome Medicine, 16(1). Available at: https://doi.org/10.1186/s13073-023-01277-1.
Dueñas Rey, A. et al. (2024) ‘Combining a prioritization strategy and functional studies nominates 5’UTR variants underlying inherited retinal disease’, Genome Medicine, 16(1). Available at: https://doi.org/10.1186/s13073-023-01277-1.
Megaw, R. et al. (2024) ‘Ciliary tip actin dynamics regulate photoreceptor outer segment integrity’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-48639-w.
Megaw, R. et al. (2024) ‘Ciliary tip actin dynamics regulate photoreceptor outer segment integrity’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-48639-w.
Fellmann, F. et al. (2024) ‘An atypical form of 60S ribosomal subunit in Diamond-Blackfan anemia linked to RPL17 variants’, JCI Insight [Preprint]. Available at: https://doi.org/10.1172/jci.insight.172475.
Fellmann, F. et al. (2024) ‘An atypical form of 60S ribosomal subunit in Diamond-Blackfan anemia linked to RPL17 variants’, JCI Insight [Preprint]. Available at: https://doi.org/10.1172/jci.insight.172475.
Calzetti, G. et al. (2024) ‘Genetic Testing of Patients with Inherited Retinal Diseases in the European Countries. An International Survey by the European Vision Institute’, Ophthalmic Research [Preprint]. Available at: https://doi.org/10.1159/000540607.
Calzetti, G. et al. (2024) ‘Genetic Testing of Patients with Inherited Retinal Diseases in the European Countries. An International Survey by the European Vision Institute’, Ophthalmic Research [Preprint]. Available at: https://doi.org/10.1159/000540607.
Chan, Eric J. et al. (2024) ‘Retinal sensitivity in macular subfields and their association with contrast sensitivity in early and intermediate age-related macular degeneration’, Ophthalmic Research, 67(1), pp. 458–469. Available at: https://doi.org/10.1159/000540312.
Chan, Eric J. et al. (2024) ‘Retinal sensitivity in macular subfields and their association with contrast sensitivity in early and intermediate age-related macular degeneration’, Ophthalmic Research, 67(1), pp. 458–469. Available at: https://doi.org/10.1159/000540312.
Cortinhal, T. et al. (2024) ‘Genetic profile of syndromic retinitis pigmentosa in Portugal’, Graefe’s Archive for Clinical and Experimental Ophthalmology, 262(6), pp. 1883–1897. Available at: https://doi.org/10.1007/s00417-023-06360-2.
Cortinhal, T. et al. (2024) ‘Genetic profile of syndromic retinitis pigmentosa in Portugal’, Graefe’s Archive for Clinical and Experimental Ophthalmology, 262(6), pp. 1883–1897. Available at: https://doi.org/10.1007/s00417-023-06360-2.
Arsenijevic, Y. et al. (2024) ‘Fine-tuning FAM161A gene augmentation therapy to restore retinal function’, EMBO Molecular Medicine, 16(4), pp. 805–822. Available at: https://doi.org/10.1038/s44321-024-00053-x.
Arsenijevic, Y. et al. (2024) ‘Fine-tuning FAM161A gene augmentation therapy to restore retinal function’, EMBO Molecular Medicine, 16(4), pp. 805–822. Available at: https://doi.org/10.1038/s44321-024-00053-x.
Hitti-Malin, R.J. et al. (2024) ‘Towards Uncovering the Role of Incomplete Penetrance in Maculopathies through Sequencing of 105 Disease-Associated Genes’, Biomolecules, 14(3). Available at: https://doi.org/10.3390/biom14030367.
Hitti-Malin, R.J. et al. (2024) ‘Towards Uncovering the Role of Incomplete Penetrance in Maculopathies through Sequencing of 105 Disease-Associated Genes’, Biomolecules, 14(3). Available at: https://doi.org/10.3390/biom14030367.
Zhang, Z. et al. (2024) ‘Centriole and transition zone structures in photoreceptor cilia revealed by cryo-electron tomography’, Life Science Alliance, 7(3). Available at: https://doi.org/10.26508/lsa.202302409.
Zhang, Z. et al. (2024) ‘Centriole and transition zone structures in photoreceptor cilia revealed by cryo-electron tomography’, Life Science Alliance, 7(3). Available at: https://doi.org/10.26508/lsa.202302409.
Lang, Stefan J. et al. (2024) ‘ZEISS PLEX Elite 9000 Widefield Optical Coherence Tomography Angiography as Screening Method for Early Detection of Retinal Hemangioblastomas in von Hippel–Lindau Disease’, Translational Vision Science & Technology, 13(2), p. 8. Available at: https://doi.org/10.1167/tvst.13.2.8.
Lang, Stefan J. et al. (2024) ‘ZEISS PLEX Elite 9000 Widefield Optical Coherence Tomography Angiography as Screening Method for Early Detection of Retinal Hemangioblastomas in von Hippel–Lindau Disease’, Translational Vision Science & Technology, 13(2), p. 8. Available at: https://doi.org/10.1167/tvst.13.2.8.
Bauwens, Miriam et al. (2024) ‘Mutations in SAMD7 cause autosomal-recessive macular dystrophy with or without cone dysfunction’, American Journal of Human Genetics, 111, pp. 393–402. Available at: https://doi.org/10.1016/j.ajhg.2024.01.001.
Bauwens, Miriam et al. (2024) ‘Mutations in SAMD7 cause autosomal-recessive macular dystrophy with or without cone dysfunction’, American Journal of Human Genetics, 111, pp. 393–402. Available at: https://doi.org/10.1016/j.ajhg.2024.01.001.
Bibert, Stéphanie et al. (2024) ‘Herpes simplex encephalitis due to a mutation in an E3 ubiquitin ligase’, Nature Communications, 15. Available at: https://doi.org/10.1038/s41467-024-48287-0.
Bibert, Stéphanie et al. (2024) ‘Herpes simplex encephalitis due to a mutation in an E3 ubiquitin ligase’, Nature Communications, 15. Available at: https://doi.org/10.1038/s41467-024-48287-0.
Conti, Giovanni Marco et al. (2024) ‘GNB1-Related Rod-Cone Dystrophy: A Case Report’, Case Reports in Ophthalmology, pp. 230–237. Available at: https://doi.org/10.1159/000537997.
Conti, Giovanni Marco et al. (2024) ‘GNB1-Related Rod-Cone Dystrophy: A Case Report’, Case Reports in Ophthalmology, pp. 230–237. Available at: https://doi.org/10.1159/000537997.
Feu-Basilio, Silvia et al. (2024) ‘Retinal vessel volume reference database derived from volume-rendered optical coherence tomography angiography’, Scientific Reports, 14. Available at: https://doi.org/10.1038/s41598-024-53000-8.
Feu-Basilio, Silvia et al. (2024) ‘Retinal vessel volume reference database derived from volume-rendered optical coherence tomography angiography’, Scientific Reports, 14. Available at: https://doi.org/10.1038/s41598-024-53000-8.
Han, Ji Hoon et al. (2024) ‘The p.C759F Variant in USH2A Is a Pathogenic Mutation: Systematic Literature Review and Meta-Analysis of 667 Genotypes’, Ophthalmic research, 67, pp. 107–114. Available at: https://doi.org/10.1159/000535545.
Han, Ji Hoon et al. (2024) ‘The p.C759F Variant in USH2A Is a Pathogenic Mutation: Systematic Literature Review and Meta-Analysis of 667 Genotypes’, Ophthalmic research, 67, pp. 107–114. Available at: https://doi.org/10.1159/000535545.
Han, Ji Hoon et al. (2024) ‘Loss-of-function variants in UBAP1L cause autosomal recessive retinal degeneration’, Genetics in Medicine [Preprint]. Available at: https://doi.org/10.1016/j.gim.2024.101106.
Han, Ji Hoon et al. (2024) ‘Loss-of-function variants in UBAP1L cause autosomal recessive retinal degeneration’, Genetics in Medicine [Preprint]. Available at: https://doi.org/10.1016/j.gim.2024.101106.
Maloca, Peter M. et al. (2024) ‘Human selection bias drives the linear nature of the more ground truth effect in explainable deep learning optical coherence tomography image segmentation’, Journal of Biophotonics, 17. Available at: https://doi.org/10.1002/jbio.202300274.
Maloca, Peter M. et al. (2024) ‘Human selection bias drives the linear nature of the more ground truth effect in explainable deep learning optical coherence tomography image segmentation’, Journal of Biophotonics, 17. Available at: https://doi.org/10.1002/jbio.202300274.
Müllner, Fiona E. and Roska, Botond (2024) ‘Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features’, Neuron [Preprint]. Available at: https://doi.org/10.1016/j.neuron.2024.06.001.
Müllner, Fiona E. and Roska, Botond (2024) ‘Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features’, Neuron [Preprint]. Available at: https://doi.org/10.1016/j.neuron.2024.06.001.
Quinodoz, Mathieu et al. (2024) ‘Detection of elusive DNA copy-number variations in hereditary disease and cancer through the use of noncoding and off-target sequencing reads’, The American Journal of Human Genetics. 25.03.2024, 111(4), pp. 701–713. Available at: https://doi.org/10.1016/j.ajhg.2024.03.001.
Quinodoz, Mathieu et al. (2024) ‘Detection of elusive DNA copy-number variations in hereditary disease and cancer through the use of noncoding and off-target sequencing reads’, The American Journal of Human Genetics. 25.03.2024, 111(4), pp. 701–713. Available at: https://doi.org/10.1016/j.ajhg.2024.03.001.
Quinodoz, Mathieu et al. (2024) ‘Detection of elusive DNA copy-number variations in hereditary disease and cancer through the use of noncoding and off-target sequencing reads’, American Journal of Human Genetics, 111(4), pp. 701–713. Available at: https://doi.org/10.1016/j.ajhg.2024.03.001.
Quinodoz, Mathieu et al. (2024) ‘Detection of elusive DNA copy-number variations in hereditary disease and cancer through the use of noncoding and off-target sequencing reads’, American Journal of Human Genetics, 111(4), pp. 701–713. Available at: https://doi.org/10.1016/j.ajhg.2024.03.001.
Conti, G.M. et al. (2023) ‘Genetics of Retinitis Pigmentosa and Other Hereditary Retinal Disorders in Western Switzerland’, Ophthalmic Research, 67(1), pp. 172–182. Available at: https://doi.org/10.1159/000536036.
Conti, G.M. et al. (2023) ‘Genetics of Retinitis Pigmentosa and Other Hereditary Retinal Disorders in Western Switzerland’, Ophthalmic Research, 67(1), pp. 172–182. Available at: https://doi.org/10.1159/000536036.
Moekotte, L. et al. (2023) ‘Elevated Plasma Complement Factors in CRB1 -associated Inherited Retinal Dystrophies’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.10.23298334.
Moekotte, L. et al. (2023) ‘Elevated Plasma Complement Factors in CRB1 -associated Inherited Retinal Dystrophies’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.11.10.23298334.
Nunes, M.J. et al. (2023) ‘Sustained PGC-1α2 or PGC-1α3 expression induces astrocyte dysfunction and degeneration.’, European Journal of Cell Biology, p. 151377. Available at: https://doi.org/10.1016/j.ejcb.2023.151377.
Nunes, M.J. et al. (2023) ‘Sustained PGC-1α2 or PGC-1α3 expression induces astrocyte dysfunction and degeneration.’, European Journal of Cell Biology, p. 151377. Available at: https://doi.org/10.1016/j.ejcb.2023.151377.
Valmaggia, P. et al. (2023) Time-resolved dynamic optical coherence tomography for retinal blood flow analysis. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.10.31.23297800.
Valmaggia, P. et al. (2023) Time-resolved dynamic optical coherence tomography for retinal blood flow analysis. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.10.31.23297800.
Arsenijevic, Y. et al. (2023) ‘Fine-tuning FAM161A gene augmentation therapy to restore retinal function’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.10.06.561164.
Arsenijevic, Y. et al. (2023) ‘Fine-tuning FAM161A gene augmentation therapy to restore retinal function’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.10.06.561164.
Zhang, Z. et al. (2023) Centriole and transition zone structures in photoreceptor cilia revealed by cryo-electron tomography. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.10.05.560879.
Zhang, Z. et al. (2023) Centriole and transition zone structures in photoreceptor cilia revealed by cryo-electron tomography. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.10.05.560879.
Cheng YM et al. (2023) ‘Retinal organoid and gene editing for basic and translational research.’, Vision research, 210, p. 108273. Available at: https://doi.org/10.1016/j.visres.2023.108273.
Cheng YM et al. (2023) ‘Retinal organoid and gene editing for basic and translational research.’, Vision research, 210, p. 108273. Available at: https://doi.org/10.1016/j.visres.2023.108273.
Zanetti, A. et al. (2023) ‘GPATCH11 variants cause mis-splicing and early-onset retinal dystrophy with neurological impairment’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.19.23293832.
Zanetti, A. et al. (2023) ‘GPATCH11 variants cause mis-splicing and early-onset retinal dystrophy with neurological impairment’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.19.23293832.
Faes L et al. (2023) ‘Transforming ophthalmology in the digital century-new care models with added value for patients.’, Eye (London, England), 37(11), pp. 2172–2175. Available at: https://doi.org/10.1038/s41433-022-02313-x.
Faes L et al. (2023) ‘Transforming ophthalmology in the digital century-new care models with added value for patients.’, Eye (London, England), 37(11), pp. 2172–2175. Available at: https://doi.org/10.1038/s41433-022-02313-x.
Hangartner K et al. (2023) ‘Assessment of Retinal Vessel Tortuosity Index in Patients with Fabry Disease Using Optical Coherence Tomography Angiography (OCTA).’, Diagnostics (Basel, Switzerland), 13(15). Available at: https://doi.org/10.3390/diagnostics13152496.
Hangartner K et al. (2023) ‘Assessment of Retinal Vessel Tortuosity Index in Patients with Fabry Disease Using Optical Coherence Tomography Angiography (OCTA).’, Diagnostics (Basel, Switzerland), 13(15). Available at: https://doi.org/10.3390/diagnostics13152496.
Rey, A.D. et al. (2023) ‘Combining a prioritization strategy and functional studies nominates 5’UTR variants underlying inherited retinal disease’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.06.19.23291376.
Rey, A.D. et al. (2023) ‘Combining a prioritization strategy and functional studies nominates 5’UTR variants underlying inherited retinal disease’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.06.19.23291376.
Pascual-Pasto G et al. (2023) ‘Low Bcl-2 is a robust biomarker of sensitivity to nab-paclitaxel in Ewing sarcoma.’, Biochemical pharmacology, 208, p. 115408. Available at: https://doi.org/10.1016/j.bcp.2022.115408.
Pascual-Pasto G et al. (2023) ‘Low Bcl-2 is a robust biomarker of sensitivity to nab-paclitaxel in Ewing sarcoma.’, Biochemical pharmacology, 208, p. 115408. Available at: https://doi.org/10.1016/j.bcp.2022.115408.
Daich Varela M et al. (2023) ‘Multidisciplinary team directed analysis of whole genome sequencing reveals pathogenic non-coding variants in molecularly undiagnosed inherited retinal dystrophies.’, Human molecular genetics, 32(4), pp. 595–607. Available at: https://doi.org/10.1093/hmg/ddac227.
Daich Varela M et al. (2023) ‘Multidisciplinary team directed analysis of whole genome sequencing reveals pathogenic non-coding variants in molecularly undiagnosed inherited retinal dystrophies.’, Human molecular genetics, 32(4), pp. 595–607. Available at: https://doi.org/10.1093/hmg/ddac227.
Ansari, Georg et al. (2023) ‘The Optical Coherence Tomography and Microperimetry Biomarker Evaluation in Patients with Geographic Atrophy (OMEGA) Study: Design and Baseline Characteristics - OMEGA Report 1’, Ophthalmic Research, 66, pp. 1392–1401. Available at: https://doi.org/10.1159/000535375.
Ansari, Georg et al. (2023) ‘The Optical Coherence Tomography and Microperimetry Biomarker Evaluation in Patients with Geographic Atrophy (OMEGA) Study: Design and Baseline Characteristics - OMEGA Report 1’, Ophthalmic Research, 66, pp. 1392–1401. Available at: https://doi.org/10.1159/000535375.
Bjerager, Jakob et al. (2023) ‘Laser-Induced Chorioretinal Anastomosis in Neurofibromatosis Type 1’, JAMA Ophthalmology, 141, pp. 1083–1085. Available at: https://doi.org/10.1001/jamaophthalmol.2023.4215.
Bjerager, Jakob et al. (2023) ‘Laser-Induced Chorioretinal Anastomosis in Neurofibromatosis Type 1’, JAMA Ophthalmology, 141, pp. 1083–1085. Available at: https://doi.org/10.1001/jamaophthalmol.2023.4215.
Cadoni, Sara et al. (2023) ‘Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration’, Nature Nanotechnology, 18, pp. 667–676. Available at: https://doi.org/10.1038/s41565-023-01359-6.
Cadoni, Sara et al. (2023) ‘Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration’, Nature Nanotechnology, 18, pp. 667–676. Available at: https://doi.org/10.1038/s41565-023-01359-6.
Cuadrado-Vilanova M et al. (2023) ‘Follow-up of intraocular retinoblastoma through the quantitative analysis of conserved nuclear DNA sequences in aqueous humor from patients.’, The journal of pathology. Clinical research, 9(1), pp. 32–43. Available at: https://doi.org/10.1002/cjp2.296.
Cuadrado-Vilanova M et al. (2023) ‘Follow-up of intraocular retinoblastoma through the quantitative analysis of conserved nuclear DNA sequences in aqueous humor from patients.’, The journal of pathology. Clinical research, 9(1), pp. 32–43. Available at: https://doi.org/10.1002/cjp2.296.
Denk, Nora et al. (2023) ‘Cynomolgus monkey’s retina volume reference database based on hybrid deep learning optical coherence tomography segmentation’, Scientific Reports, 13. Available at: https://doi.org/10.1038/s41598-023-32739-6.
Denk, Nora et al. (2023) ‘Cynomolgus monkey’s retina volume reference database based on hybrid deep learning optical coherence tomography segmentation’, Scientific Reports, 13. Available at: https://doi.org/10.1038/s41598-023-32739-6.
Grosso, Andrea et al. (2023) ‘A Unique Presentation of Bilateral Chorioretinal Atrophy’, Asia-Pacific Journal of Ophthalmology, 12, pp. 500–501. Available at: https://doi.org/10.1097/apo.0000000000000563.
Grosso, Andrea et al. (2023) ‘A Unique Presentation of Bilateral Chorioretinal Atrophy’, Asia-Pacific Journal of Ophthalmology, 12, pp. 500–501. Available at: https://doi.org/10.1097/apo.0000000000000563.
Hartmann J. et al. (2023) ‘Comparative Deep Learning Architectures to Detect Tiny Features in Ophthalmic Imaging’. Institute of Electrical and Electronics Engineers Inc., pp. 112–119. Available at: https://doi.org/10.1109/sds57534.2023.00024.
Hartmann J. et al. (2023) ‘Comparative Deep Learning Architectures to Detect Tiny Features in Ophthalmic Imaging’. Institute of Electrical and Electronics Engineers Inc., pp. 112–119. Available at: https://doi.org/10.1109/sds57534.2023.00024.
Koval, Alexey et al. (2023) ‘In-depth molecular profiling of an intronic GNAO1 mutant as the basis for personalized high-throughput drug screening.’, Med (New York, N.Y.), 4(5), pp. 311–325.e7. Available at: https://doi.org/10.1016/j.medj.2023.03.001.
Koval, Alexey et al. (2023) ‘In-depth molecular profiling of an intronic GNAO1 mutant as the basis for personalized high-throughput drug screening.’, Med (New York, N.Y.), 4(5), pp. 311–325.e7. Available at: https://doi.org/10.1016/j.medj.2023.03.001.
Maloca, Peter M. et al. (2023) ‘Validation of collaborative cyberspace virtual reality oculometry enhanced with near real-time spatial audio’, Scientific Reports, 13. Available at: https://doi.org/10.1038/s41598-023-37267-x.
Maloca, Peter M. et al. (2023) ‘Validation of collaborative cyberspace virtual reality oculometry enhanced with near real-time spatial audio’, Scientific Reports, 13. Available at: https://doi.org/10.1038/s41598-023-37267-x.
Moreno-Juan, V. et al. (2023) ‘Spontaneous Thalamic Activity Modulates the Cortical Innervation of the Primary Visual Nucleus of the Thalamus’, Neuroscience, 508, pp. 87–97. Available at: https://doi.org/10.1016/j.neuroscience.2022.07.022.
Moreno-Juan, V. et al. (2023) ‘Spontaneous Thalamic Activity Modulates the Cortical Innervation of the Primary Visual Nucleus of the Thalamus’, Neuroscience, 508, pp. 87–97. Available at: https://doi.org/10.1016/j.neuroscience.2022.07.022.
Moyel, A.R., Robichaux, M.A. and Wensel, T. (2023) ‘Expansion Microscopy of Mouse Photoreceptor Cilia’. Springer, pp. 395–402. Available at: https://doi.org/10.1007/978-3-031-27681-1_58.
Moyel, A.R., Robichaux, M.A. and Wensel, T. (2023) ‘Expansion Microscopy of Mouse Photoreceptor Cilia’. Springer, pp. 395–402. Available at: https://doi.org/10.1007/978-3-031-27681-1_58.
Munz, M. et al. (2023) ‘Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex’, Cell, 186, pp. 1930–1949.e31. Available at: https://doi.org/10.1016/j.cell.2023.03.025.
Munz, M. et al. (2023) ‘Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex’, Cell, 186, pp. 1930–1949.e31. Available at: https://doi.org/10.1016/j.cell.2023.03.025.
Peter, Virginie G et al. (2023) ‘The first genetic landscape of inherited retinal dystrophies in Portuguese patients identifies recurrent homozygous mutations as a frequent cause of pathogenesis.’, PNAS nexus, 2(3), p. pgad043. Available at: https://doi.org/10.1093/pnasnexus/pgad043.
Peter, Virginie G et al. (2023) ‘The first genetic landscape of inherited retinal dystrophies in Portuguese patients identifies recurrent homozygous mutations as a frequent cause of pathogenesis.’, PNAS nexus, 2(3), p. pgad043. Available at: https://doi.org/10.1093/pnasnexus/pgad043.
Ullah, Mukhtar et al. (2023) ‘A novel intronic deletion in PDE6B causes autosomal recessive retinitis pigmentosa by interfering with RNA splicing.’, Ophthalmic research, 66 (1), pp. 866–871. Available at: https://doi.org/10.1159/000530800.
Ullah, Mukhtar et al. (2023) ‘A novel intronic deletion in PDE6B causes autosomal recessive retinitis pigmentosa by interfering with RNA splicing.’, Ophthalmic research, 66 (1), pp. 866–871. Available at: https://doi.org/10.1159/000530800.
Wahle, Philipp et al. (2023) ‘Multimodal spatiotemporal phenotyping of human retinal organoid development’, Nature Biotechnology, 41, pp. 1765–1775. Available at: https://doi.org/10.1038/s41587-023-01747-2.
Wahle, Philipp et al. (2023) ‘Multimodal spatiotemporal phenotyping of human retinal organoid development’, Nature Biotechnology, 41, pp. 1765–1775. Available at: https://doi.org/10.1038/s41587-023-01747-2.
Enz TJ et al. (2022) ‘Volume-rendered optical coherence tomography angiography during ocular interventions: Advocating for noninvasive intraoperative retinal perfusion monitoring.’, Journal of biophotonics, 15(12), p. e202200169. Available at: https://doi.org/10.1002/jbio.202200169.
Enz TJ et al. (2022) ‘Volume-rendered optical coherence tomography angiography during ocular interventions: Advocating for noninvasive intraoperative retinal perfusion monitoring.’, Journal of biophotonics, 15(12), p. e202200169. Available at: https://doi.org/10.1002/jbio.202200169.
Jurkute N. et al. (2022) ‘Biallelic variants in coenzyme Q10 biosynthesis pathway genes cause a retinitis pigmentosa phenotype’, npj Genomic Medicine, 7(1). Available at: https://doi.org/10.1038/s41525-022-00330-z.
Jurkute N. et al. (2022) ‘Biallelic variants in coenzyme Q10 biosynthesis pathway genes cause a retinitis pigmentosa phenotype’, npj Genomic Medicine, 7(1). Available at: https://doi.org/10.1038/s41525-022-00330-z.
Peter, V.G. et al. (2022) ‘Erratum to: New clinical and molecular evidence linking mutations in ARSG to Usher syndrome type IV (Human Mutation, (2021), 42, 3, (261-271), 10.1002/humu.24150)’, Human Mutation, 43(12), pp. 2326–2327. Available at: https://doi.org/10.1002/humu.24496.
Peter, V.G. et al. (2022) ‘Erratum to: New clinical and molecular evidence linking mutations in ARSG to Usher syndrome type IV (Human Mutation, (2021), 42, 3, (261-271), 10.1002/humu.24150)’, Human Mutation, 43(12), pp. 2326–2327. Available at: https://doi.org/10.1002/humu.24496.
Panneman, D.M. et al. (2022) ‘Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.11.24.22282656.
Panneman, D.M. et al. (2022) ‘Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.11.24.22282656.
Megaw, R. et al. (2022) Ciliary tip actin dynamics regulate the cadence of photoreceptor disc formation. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.11.10.516020.
Megaw, R. et al. (2022) Ciliary tip actin dynamics regulate the cadence of photoreceptor disc formation. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2022.11.10.516020.
Van de Sompele S. et al. (2022) ‘Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy’, American Journal of Human Genetics, 109(11), pp. 2029–2048. Available at: https://doi.org/10.1016/j.ajhg.2022.09.013.
Van de Sompele S. et al. (2022) ‘Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy’, American Journal of Human Genetics, 109(11), pp. 2029–2048. Available at: https://doi.org/10.1016/j.ajhg.2022.09.013.
Rothenbuehler SP et al. (2022) ‘Comparison of Spectral-Domain OCT versus Swept-Source OCT for the Detection of Deep Optic Disc Drusen.’, Diagnostics (Basel, Switzerland), 12(10). Available at: https://doi.org/10.3390/diagnostics12102515.
Rothenbuehler SP et al. (2022) ‘Comparison of Spectral-Domain OCT versus Swept-Source OCT for the Detection of Deep Optic Disc Drusen.’, Diagnostics (Basel, Switzerland), 12(10). Available at: https://doi.org/10.3390/diagnostics12102515.
Hahaut, V. et al. (2022) ‘Fast and highly sensitive full-length single-cell RNA sequencing using FLASH-seq’, Nature Biotechnology, 40(10), pp. 1447–1451. Available at: https://doi.org/10.1038/s41587-022-01312-3.
Hahaut, V. et al. (2022) ‘Fast and highly sensitive full-length single-cell RNA sequencing using FLASH-seq’, Nature Biotechnology, 40(10), pp. 1447–1451. Available at: https://doi.org/10.1038/s41587-022-01312-3.
Maloca PM et al. (2022) ‘Dynamic volume-rendered optical coherence tomography pupillometry’, Acta Ophthalmologica, 100(6), pp. 654–664. Available at: https://doi.org/10.1111/aos.15063.
Maloca PM et al. (2022) ‘Dynamic volume-rendered optical coherence tomography pupillometry’, Acta Ophthalmologica, 100(6), pp. 654–664. Available at: https://doi.org/10.1111/aos.15063.
Valmaggia P et al. (2022) ‘Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data With Deep Learning.’, Translational vision science & technology, 11(9), p. 25. Available at: https://doi.org/10.1167/tvst.11.9.25.
Valmaggia P et al. (2022) ‘Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data With Deep Learning.’, Translational vision science & technology, 11(9), p. 25. Available at: https://doi.org/10.1167/tvst.11.9.25.
Maloca PM et al. (2022) ‘Cynomolgus monkey’s choroid reference database derived from hybrid deep learning optical coherence tomography segmentation.’, Scientific reports, 12(1), p. 13276. Available at: https://doi.org/10.1038/s41598-022-17699-7.
Maloca PM et al. (2022) ‘Cynomolgus monkey’s choroid reference database derived from hybrid deep learning optical coherence tomography segmentation.’, Scientific reports, 12(1), p. 13276. Available at: https://doi.org/10.1038/s41598-022-17699-7.
Kelbsch C et al. (2022) ‘Unilateral Retinal Ischemia’, Klinische Monatsblatter fur Augenheilkunde, 239(8), pp. 1013–1015. Available at: https://doi.org/10.1055/a-1315-0518.
Kelbsch C et al. (2022) ‘Unilateral Retinal Ischemia’, Klinische Monatsblatter fur Augenheilkunde, 239(8), pp. 1013–1015. Available at: https://doi.org/10.1055/a-1315-0518.
Spaide RF, Valmaggia P and Maloca PM (2022) ‘IMAGING THE VITREOUS WITH A NOVEL BOOSTED OPTICAL COHERENCE TOMOGRAPHY TECHNIQUE: Posterior Vitreous Detachment.’, Retina (Philadelphia, Pa.), 42(8), pp. 1425–1432. Available at: https://doi.org/10.1097/iae.0000000000003500.
Spaide RF, Valmaggia P and Maloca PM (2022) ‘IMAGING THE VITREOUS WITH A NOVEL BOOSTED OPTICAL COHERENCE TOMOGRAPHY TECHNIQUE: Posterior Vitreous Detachment.’, Retina (Philadelphia, Pa.), 42(8), pp. 1425–1432. Available at: https://doi.org/10.1097/iae.0000000000003500.
Spaide RF et al. (2022) ‘IMAGING THE VITREOUS WITH A NOVEL BOOSTED OPTICAL COHERENCE TOMOGRAPHY TECHNIQUE: Vitreous Degeneration and Cisterns.’, Retina (Philadelphia, Pa.), 42(8), pp. 1433–1441. Available at: https://doi.org/10.1097/iae.0000000000003474.
Spaide RF et al. (2022) ‘IMAGING THE VITREOUS WITH A NOVEL BOOSTED OPTICAL COHERENCE TOMOGRAPHY TECHNIQUE: Vitreous Degeneration and Cisterns.’, Retina (Philadelphia, Pa.), 42(8), pp. 1433–1441. Available at: https://doi.org/10.1097/iae.0000000000003474.
Cuadrado-Vilanova M et al. (2022) ‘Identification of immunosuppressive factors in retinoblastoma cell secretomes and aqueous humor from patients.’, The Journal of pathology, 257(3), pp. 327–339. Available at: https://doi.org/10.1002/path.5893.
Cuadrado-Vilanova M et al. (2022) ‘Identification of immunosuppressive factors in retinoblastoma cell secretomes and aqueous humor from patients.’, The Journal of pathology, 257(3), pp. 327–339. Available at: https://doi.org/10.1002/path.5893.
Bharioke A et al. (2022) ‘General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons.’, Neuron, 110(12), pp. 2024–2040.e10. Available at: https://doi.org/10.1016/j.neuron.2022.03.032.
Bharioke A et al. (2022) ‘General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons.’, Neuron, 110(12), pp. 2024–2040.e10. Available at: https://doi.org/10.1016/j.neuron.2022.03.032.
Maloca PM et al. (2022) ‘Reference database of total retinal vessel surface area derived from volume-rendered optical coherence tomography angiography.’, Scientific reports, 12(1), p. 3695. Available at: https://doi.org/10.1038/s41598-022-07439-2.
Maloca PM et al. (2022) ‘Reference database of total retinal vessel surface area derived from volume-rendered optical coherence tomography angiography.’, Scientific reports, 12(1), p. 3695. Available at: https://doi.org/10.1038/s41598-022-07439-2.
Dentici, M.L. et al. (2022) ‘Biallelic variants in ZNF526 cause a severe neurodevelopmental disorder with microcephaly, bilateral cataract, epilepsy and simplified gyration’, Journal of Medical Genetics, 59(3), pp. 262–269. Available at: https://doi.org/10.1136/jmedgenet-2020-107430.
Dentici, M.L. et al. (2022) ‘Biallelic variants in ZNF526 cause a severe neurodevelopmental disorder with microcephaly, bilateral cataract, epilepsy and simplified gyration’, Journal of Medical Genetics, 59(3), pp. 262–269. Available at: https://doi.org/10.1136/jmedgenet-2020-107430.
Jurkute N et al. (2022) ‘Vessel Volume Rendering Quantifies Disease Conversion and Progression in Leber Hereditary Optic Neuropathy.’, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society, 42(1), pp. e331–e334. Available at: https://doi.org/10.1097/wno.0000000000001407.
Jurkute N et al. (2022) ‘Vessel Volume Rendering Quantifies Disease Conversion and Progression in Leber Hereditary Optic Neuropathy.’, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society, 42(1), pp. e331–e334. Available at: https://doi.org/10.1097/wno.0000000000001407.
Maloca PM et al. (2022) ‘Feasibility and tolerability of ophthalmic virtual reality as a medical communication tool in children and young people’, Acta Ophthalmologica, 100(2), pp. e588–e597. Available at: https://doi.org/10.1111/aos.14900.
Maloca PM et al. (2022) ‘Feasibility and tolerability of ophthalmic virtual reality as a medical communication tool in children and young people’, Acta Ophthalmologica, 100(2), pp. e588–e597. Available at: https://doi.org/10.1111/aos.14900.
Okada M et al. (2022) ‘State of the art spatial visualization of the response of neovascularisation to anti-vascular endothelial growth factor therapy.’, 25. Available at: https://doi.org/10.1016/j.ajoc.2022.101267.
Okada M et al. (2022) ‘State of the art spatial visualization of the response of neovascularisation to anti-vascular endothelial growth factor therapy.’, 25. Available at: https://doi.org/10.1016/j.ajoc.2022.101267.
Ansar, Muhammad et al. (2022) ‘A new nonsense mutation in; HMX1; in two siblings with oculoauricular syndrome’, Ophthalmic Genetics, 43(5), pp. 720–723. Available at: https://doi.org/10.1080/13816810.2022.2096242.
Ansar, Muhammad et al. (2022) ‘A new nonsense mutation in; HMX1; in two siblings with oculoauricular syndrome’, Ophthalmic Genetics, 43(5), pp. 720–723. Available at: https://doi.org/10.1080/13816810.2022.2096242.
Azhar Baig, Hafiz Muhammad et al. (2022) ‘Genetic Analysis of Consanguineous Pakistani Families with Congenital Stationary Night Blindness’, Ophthalmic Research, 65, pp. 104–110. Available at: https://doi.org/10.1159/000520895.
Azhar Baig, Hafiz Muhammad et al. (2022) ‘Genetic Analysis of Consanguineous Pakistani Families with Congenital Stationary Night Blindness’, Ophthalmic Research, 65, pp. 104–110. Available at: https://doi.org/10.1159/000520895.
Butler-Laporte, Guillaume et al. (2022) ‘Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative’, PLoS Genetics, 18(11), p. e1010367. Available at: https://doi.org/10.1371/journal.pgen.1010367.
Butler-Laporte, Guillaume et al. (2022) ‘Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative’, PLoS Genetics, 18(11), p. e1010367. Available at: https://doi.org/10.1371/journal.pgen.1010367.
Han, Ji Hoon et al. (2022) ‘Mutations in the ribosome biogenesis factor gene LTV1 are linked to LIPHAK syndrome, a novel poikiloderma-like disorder’, Human Molecular Genetics, 31(12), pp. 1970–1978. Available at: https://doi.org/10.1093/hmg/ddab368.
Han, Ji Hoon et al. (2022) ‘Mutations in the ribosome biogenesis factor gene LTV1 are linked to LIPHAK syndrome, a novel poikiloderma-like disorder’, Human Molecular Genetics, 31(12), pp. 1970–1978. Available at: https://doi.org/10.1093/hmg/ddab368.
Janeschitz-Kriegl L et al. (2022) ‘c.-61g> a in ovol2 is a pathogenic 5′ untranslated region variant causing posterior polymorphous corneal dystrophy 1’, Cornea, 41(1), pp. 89–94. Available at: https://doi.org/10.1097/ICO.0000000000002843.
Janeschitz-Kriegl L et al. (2022) ‘c.-61g> a in ovol2 is a pathogenic 5′ untranslated region variant causing posterior polymorphous corneal dystrophy 1’, Cornea, 41(1), pp. 89–94. Available at: https://doi.org/10.1097/ICO.0000000000002843.
Judák, Linda et al. (2022) ‘Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo’, Nature Communications, 13. Available at: https://doi.org/10.1038/s41467-022-34520-1.
Judák, Linda et al. (2022) ‘Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo’, Nature Communications, 13. Available at: https://doi.org/10.1038/s41467-022-34520-1.
Kousathanas, Athanasios et al. (2022) ‘Whole-genome sequencing reveals host factors underlying critical COVID-19’, Nature, 607, pp. 97–103. Available at: https://doi.org/10.1038/s41586-022-04576-6.
Kousathanas, Athanasios et al. (2022) ‘Whole-genome sequencing reveals host factors underlying critical COVID-19’, Nature, 607, pp. 97–103. Available at: https://doi.org/10.1038/s41586-022-04576-6.
Maloca PM et al. (2022) ‘Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation.’, PloS one, 17(9), p. e0275050. Available at: https://doi.org/10.1371/journal.pone.0275050.
Maloca PM et al. (2022) ‘Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation.’, PloS one, 17(9), p. e0275050. Available at: https://doi.org/10.1371/journal.pone.0275050.
Nardou, Katya et al. (2022) ‘Identification of New Vulnerabilities in Conjunctival Melanoma Using Image-Based High Content Drug Screening’, Cancers, 14(6), p. 1575. Available at: https://doi.org/10.3390/cancers14061575.
Nardou, Katya et al. (2022) ‘Identification of New Vulnerabilities in Conjunctival Melanoma Using Image-Based High Content Drug Screening’, Cancers, 14(6), p. 1575. Available at: https://doi.org/10.3390/cancers14061575.
Pathak, Gita A. et al. (2022) ‘A first update on mapping the human genetic architecture of COVID-19’, Nature, 608, pp. E1–E10. Available at: https://doi.org/10.1038/s41586-022-04826-7.
Pathak, Gita A. et al. (2022) ‘A first update on mapping the human genetic architecture of COVID-19’, Nature, 608, pp. E1–E10. Available at: https://doi.org/10.1038/s41586-022-04826-7.
Quinodoz, Mathieu et al. (2022) ‘Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity’, American Journal of Human Genetics (AJHG), 109(3), pp. 457–470. Available at: https://doi.org/10.1016/j.ajhg.2022.01.006.
Quinodoz, Mathieu et al. (2022) ‘Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity’, American Journal of Human Genetics (AJHG), 109(3), pp. 457–470. Available at: https://doi.org/10.1016/j.ajhg.2022.01.006.
Santos, Cristina et al. (2022) ‘Anisometropia and asymmetric ABCA4-related cone-rod dystrophy’, Ophthalmic genetics, 43(4), pp. 576–580. Available at: https://doi.org/10.1080/13816810.2022.2103834.
Santos, Cristina et al. (2022) ‘Anisometropia and asymmetric ABCA4-related cone-rod dystrophy’, Ophthalmic genetics, 43(4), pp. 576–580. Available at: https://doi.org/10.1080/13816810.2022.2103834.
Schroeder, Marion et al. (2022) ‘A novel phenotype associated with the R162W variant in the KCNJ13 gene’, Ophthalmic genetics, 43(4), pp. 500–507. Available at: https://doi.org/10.1080/13816810.2022.2068041.
Schroeder, Marion et al. (2022) ‘A novel phenotype associated with the R162W variant in the KCNJ13 gene’, Ophthalmic genetics, 43(4), pp. 500–507. Available at: https://doi.org/10.1080/13816810.2022.2068041.
Spaide RF et al. (2022) ‘Venous overload choroidopathy: A hypothetical framework for central serous chorioretinopathy and allied disorders.’, Progress in retinal and eye research, 86, p. 100973. Available at: https://doi.org/10.1016/j.preteyeres.2021.100973.
Spaide RF et al. (2022) ‘Venous overload choroidopathy: A hypothetical framework for central serous chorioretinopathy and allied disorders.’, Progress in retinal and eye research, 86, p. 100973. Available at: https://doi.org/10.1016/j.preteyeres.2021.100973.
Valmaggia, Philippe et al. (2022) ‘Iris Color Matters—A Contractility Analysis With Dynamic Volume-Rendered Optical Coherence Tomography Pupillometry’, Translational Vision Science and Technology, 11. Available at: https://doi.org/10.1167/tvst.11.11.6.
Valmaggia, Philippe et al. (2022) ‘Iris Color Matters—A Contractility Analysis With Dynamic Volume-Rendered Optical Coherence Tomography Pupillometry’, Translational Vision Science and Technology, 11. Available at: https://doi.org/10.1167/tvst.11.11.6.
Maloca PM et al. (2021) ‘Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence’, Communications Biology, 4(1), p. 170. Available at: https://doi.org/10.1038/s42003-021-01697-y.
Maloca PM et al. (2021) ‘Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence’, Communications Biology, 4(1), p. 170. Available at: https://doi.org/10.1038/s42003-021-01697-y.
Maloca PM et al. (2021) ‘Uncovering of intraspecies macular heterogeneity in cynomolgus monkeys using hybrid machine learning optical coherence tomography image segmentation’, Scientific Reports, 11(1), p. 20647. Available at: https://doi.org/10.1038/s41598-021-99704-z.
Maloca PM et al. (2021) ‘Uncovering of intraspecies macular heterogeneity in cynomolgus monkeys using hybrid machine learning optical coherence tomography image segmentation’, Scientific Reports, 11(1), p. 20647. Available at: https://doi.org/10.1038/s41598-021-99704-z.
Perea-Romero I. et al. (2021) ‘Author Correction: Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications (Scientific Reports, (2021), 11, 1, (1526), 10.1038/s41598-021-81093-y)’, Scientific Reports, 11(1). Available at: https://doi.org/10.1038/s41598-021-89275-4.
Perea-Romero I. et al. (2021) ‘Author Correction: Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications (Scientific Reports, (2021), 11, 1, (1526), 10.1038/s41598-021-81093-y)’, Scientific Reports, 11(1). Available at: https://doi.org/10.1038/s41598-021-89275-4.
Rothenbuehler SP et al. (2021) ‘Branch retinal vein occlusion precipitated by compression between a major retinal artery and underlying optic disc drusen.’, Acta ophthalmologica, 99(8), pp. 931–933. Available at: https://doi.org/10.1111/aos.14840.
Rothenbuehler SP et al. (2021) ‘Branch retinal vein occlusion precipitated by compression between a major retinal artery and underlying optic disc drusen.’, Acta ophthalmologica, 99(8), pp. 931–933. Available at: https://doi.org/10.1111/aos.14840.
Sangermano R et al. (2021) ‘Broadening INPP5E phenotypic spectrum: detection of rare variants in syndromic and non-syndromic IRD’, npj Genomic Medicine, 6(1), p. 53. Available at: https://doi.org/10.1038/s41525-021-00214-8.
Sangermano R et al. (2021) ‘Broadening INPP5E phenotypic spectrum: detection of rare variants in syndromic and non-syndromic IRD’, npj Genomic Medicine, 6(1), p. 53. Available at: https://doi.org/10.1038/s41525-021-00214-8.
Potter VL et al. (2021) ‘Super-resolution microscopy reveals photoreceptor-specific subciliary location and function of ciliopathy-associated protein CEP290.’, JCI insight, 6(20). Available at: https://doi.org/10.1172/jci.insight.145256.
Potter VL et al. (2021) ‘Super-resolution microscopy reveals photoreceptor-specific subciliary location and function of ciliopathy-associated protein CEP290.’, JCI insight, 6(20). Available at: https://doi.org/10.1172/jci.insight.145256.
Rodan, L.H. et al. (2021) ‘Phenotypic expansion of CACNA1C-associated disorders to include isolated neurological manifestations’, Genetics in Medicine, 23(10), pp. 1922–1932. Available at: https://doi.org/10.1038/s41436-021-01232-8.
Rodan, L.H. et al. (2021) ‘Phenotypic expansion of CACNA1C-associated disorders to include isolated neurological manifestations’, Genetics in Medicine, 23(10), pp. 1922–1932. Available at: https://doi.org/10.1038/s41436-021-01232-8.
Reich M et al. (2021) ‘NEGATIVE VESSEL REMODELING IN STARGARDT DISEASE QUANTIFIED WITH VOLUME-RENDERED OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY’, Retina, 41(9), pp. 1948–1957. Available at: https://doi.org/10.1097/IAE.0000000000003110.
Reich M et al. (2021) ‘NEGATIVE VESSEL REMODELING IN STARGARDT DISEASE QUANTIFIED WITH VOLUME-RENDERED OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY’, Retina, 41(9), pp. 1948–1957. Available at: https://doi.org/10.1097/IAE.0000000000003110.
Zweifel SA et al. (2021) ‘Long-term clinical and multimodal imaging findings in patients with disseminated mycobacterium chimaera infection’, Journal of Clinical Medicine, 10(18). Available at: https://doi.org/10.3390/jcm10184178.
Zweifel SA et al. (2021) ‘Long-term clinical and multimodal imaging findings in patients with disseminated mycobacterium chimaera infection’, Journal of Clinical Medicine, 10(18). Available at: https://doi.org/10.3390/jcm10184178.
Brunner C et al. (2021) ‘Whole-brain functional ultrasound imaging in awake head-fixed mice’, Nature Protocols, 16(7), pp. 3547–3571. Available at: https://doi.org/10.1038/s41596-021-00548-8.
Brunner C et al. (2021) ‘Whole-brain functional ultrasound imaging in awake head-fixed mice’, Nature Protocols, 16(7), pp. 3547–3571. Available at: https://doi.org/10.1038/s41596-021-00548-8.
Castillo-Ecija H et al. (2021) ‘Prognostic value of patient-derived xenograft engraftment in pediatric sarcomas.’, The journal of pathology. Clinical research, 7(4), pp. 338–349. Available at: https://doi.org/10.1002/cjp2.210.
Castillo-Ecija H et al. (2021) ‘Prognostic value of patient-derived xenograft engraftment in pediatric sarcomas.’, The journal of pathology. Clinical research, 7(4), pp. 338–349. Available at: https://doi.org/10.1002/cjp2.210.
Sahel JA et al. (2021) ‘Partial recovery of visual function in a blind patient after optogenetic therapy’, Nature Medicine, 27(7), pp. 1223–1229. Available at: https://doi.org/10.1038/s41591-021-01351-4.
Sahel JA et al. (2021) ‘Partial recovery of visual function in a blind patient after optogenetic therapy’, Nature Medicine, 27(7), pp. 1223–1229. Available at: https://doi.org/10.1038/s41591-021-01351-4.
Atallah I et al. (2021) ‘Immune deficiency, autoimmune disease and intellectual disability: A pleiotropic disorder caused by biallelic variants in the TPP2 gene’, Clinical Genetics, 99(6), pp. 780–788. Available at: https://doi.org/10.1111/cge.13942.
Atallah I et al. (2021) ‘Immune deficiency, autoimmune disease and intellectual disability: A pleiotropic disorder caused by biallelic variants in the TPP2 gene’, Clinical Genetics, 99(6), pp. 780–788. Available at: https://doi.org/10.1111/cge.13942.
Cedro L et al. (2021) ‘Feasibility and Safety of a Coaxial Dual-Wavelength Optical Coherence Tomography Apparatus’, Ophthalmic Research, 64(1), pp. 55–61. Available at: https://doi.org/10.1159/000508751.
Cedro L et al. (2021) ‘Feasibility and Safety of a Coaxial Dual-Wavelength Optical Coherence Tomography Apparatus’, Ophthalmic Research, 64(1), pp. 55–61. Available at: https://doi.org/10.1159/000508751.