Faculty of Medicine
Institute of Molecular and Clinical Ophthalmology Basel
Publications
360 found
Show per page
Valmaggia, Philippe et al. (2025) ‘Heart-retina time analysis using electrocardiogram-coupled time-resolved dynamic optical coherence tomography’, Scientific Reports. 02.01.2025, 15(1). Available at: https://doi.org/10.1038/s41598-024-84417-w.
Valmaggia, Philippe et al. (2025) ‘Heart-retina time analysis using electrocardiogram-coupled time-resolved dynamic optical coherence tomography’, Scientific Reports. 02.01.2025, 15(1). Available at: https://doi.org/10.1038/s41598-024-84417-w.
Vuille-dit-Bille, Emilie et al. (2025) ‘PEGDA-based HistoBrick for increasing throughput of cryosectioning and immunohistochemistry in organoid and small tissue studies’, Scientific Reports, 15(1). Available at: https://doi.org/10.1038/s41598-024-83164-2.
Vuille-dit-Bille, Emilie et al. (2025) ‘PEGDA-based HistoBrick for increasing throughput of cryosectioning and immunohistochemistry in organoid and small tissue studies’, Scientific Reports, 15(1). Available at: https://doi.org/10.1038/s41598-024-83164-2.
Kaminska, K. et al. (2025) ‘Bi-allelic variants in three genes encoding distinct subunits of the vesicular AP-5 complex cause hereditary macular dystrophy’, The American Journal of Human Genetics [Preprint]. Available at: https://doi.org/10.1016/j.ajhg.2025.02.015.
Kaminska, K. et al. (2025) ‘Bi-allelic variants in three genes encoding distinct subunits of the vesicular AP-5 complex cause hereditary macular dystrophy’, The American Journal of Human Genetics [Preprint]. Available at: https://doi.org/10.1016/j.ajhg.2025.02.015.
Moekotte, Lude et al. (2025) ‘Elevated Plasma Complement Factors in CRB1 -Associated Inherited Retinal Dystrophies’, Investigative Ophthalmology & Visual Science, 66(2), p. 55. Available at: https://doi.org/10.1167/iovs.66.2.55.
Moekotte, Lude et al. (2025) ‘Elevated Plasma Complement Factors in CRB1 -Associated Inherited Retinal Dystrophies’, Investigative Ophthalmology & Visual Science, 66(2), p. 55. Available at: https://doi.org/10.1167/iovs.66.2.55.
Futterknecht, Stefan et al. (2025) ‘Targeted Microperimetry Grids for Focal Lesions in Intermediate AMD: PINNACLE Study Report 7’, Investigative Ophthalmology & Visual Science, 66(2), p. 6. Available at: https://doi.org/10.1167/iovs.66.2.6.
Futterknecht, Stefan et al. (2025) ‘Targeted Microperimetry Grids for Focal Lesions in Intermediate AMD: PINNACLE Study Report 7’, Investigative Ophthalmology & Visual Science, 66(2), p. 6. Available at: https://doi.org/10.1167/iovs.66.2.6.
Muller, Alissa et al. (2025) ‘High-efficiency base editing in the retina in primates and human tissues’, Nature Medicine, 31(2), pp. 490–501. Available at: https://doi.org/10.1038/s41591-024-03422-8.
Muller, Alissa et al. (2025) ‘High-efficiency base editing in the retina in primates and human tissues’, Nature Medicine, 31(2), pp. 490–501. Available at: https://doi.org/10.1038/s41591-024-03422-8.
Zabiegalov, O. et al. (2025) ‘Generation of a Double Reporter mES Cell Line to Simultaneously Trace the Generation of Retinal Progenitors and Photoreceptors’, Cells, 14(4), p. 252. Available at: https://doi.org/10.3390/cells14040252.
Zabiegalov, O. et al. (2025) ‘Generation of a Double Reporter mES Cell Line to Simultaneously Trace the Generation of Retinal Progenitors and Photoreceptors’, Cells, 14(4), p. 252. Available at: https://doi.org/10.3390/cells14040252.
Moye, A.R. et al. (2025) ‘Ciliopathy-associated protein, CEP290, is required for ciliary necklace and outer segment membrane formation in retinal photoreceptors’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.01.20.633784.
Moye, A.R. et al. (2025) ‘Ciliopathy-associated protein, CEP290, is required for ciliary necklace and outer segment membrane formation in retinal photoreceptors’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.01.20.633784.
Quinodoz, M. et al. (2025) ‘De novo variants in LRRC8C resulting in constitutive channel activation cause a human multisystem disorder’, EMBO Journal, 44(2), pp. 413–436. Available at: https://doi.org/10.1038/s44318-024-00322-y.
Quinodoz, M. et al. (2025) ‘De novo variants in LRRC8C resulting in constitutive channel activation cause a human multisystem disorder’, EMBO Journal, 44(2), pp. 413–436. Available at: https://doi.org/10.1038/s44318-024-00322-y.
Quinodoz, M. et al. (2025) ‘De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.01.06.24317169.
Quinodoz, M. et al. (2025) ‘De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.01.06.24317169.
Muller, Alissa et al. (2025) ‘High-efficiency base editing in the retina in primates and human tissues’, Nature Medicine [Preprint]. Available at: https://doi.org/10.1038/s41591-024-03422-8.
Muller, Alissa et al. (2025) ‘High-efficiency base editing in the retina in primates and human tissues’, Nature Medicine [Preprint]. Available at: https://doi.org/10.1038/s41591-024-03422-8.
Pfau, Kristina et al. (2025) ‘Topography of Slowed Dark Adaptation in Pseudoxanthoma Elasticum: PROPXE Study Report 1’, Investigative Ophthalmology and Visual Science, 66. Available at: https://doi.org/10.1167/iovs.66.2.17.
Pfau, Kristina et al. (2025) ‘Topography of Slowed Dark Adaptation in Pseudoxanthoma Elasticum: PROPXE Study Report 1’, Investigative Ophthalmology and Visual Science, 66. Available at: https://doi.org/10.1167/iovs.66.2.17.
Szabó, Viktória et al. (2025) ‘Insights into eye genetics and recent advances in ocular gene therapy’, Molecular and Cellular Probes, 79, p. 102008. Available at: https://doi.org/10.1016/j.mcp.2025.102008.
Szabó, Viktória et al. (2025) ‘Insights into eye genetics and recent advances in ocular gene therapy’, Molecular and Cellular Probes, 79, p. 102008. Available at: https://doi.org/10.1016/j.mcp.2025.102008.
Bibert, Stéphanie et al. (2024) ‘Herpes simplex encephalitis due to a mutation in an E3 ubiquitin ligase’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-48287-0.
Bibert, Stéphanie et al. (2024) ‘Herpes simplex encephalitis due to a mutation in an E3 ubiquitin ligase’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-48287-0.
Dueñas Rey, A. et al. (2024) ‘Combining a prioritization strategy and functional studies nominates 5’UTR variants underlying inherited retinal disease’, Genome Medicine, 16(1). Available at: https://doi.org/10.1186/s13073-023-01277-1.
Dueñas Rey, A. et al. (2024) ‘Combining a prioritization strategy and functional studies nominates 5’UTR variants underlying inherited retinal disease’, Genome Medicine, 16(1). Available at: https://doi.org/10.1186/s13073-023-01277-1.
Feu-Basilio, Silvia et al. (2024) ‘Retinal vessel volume reference database derived from volume-rendered optical coherence tomography angiography’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-53000-8.
Feu-Basilio, Silvia et al. (2024) ‘Retinal vessel volume reference database derived from volume-rendered optical coherence tomography angiography’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-53000-8.
Morikawa, Rei et al. (2024) ‘The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision’, Neuron, 112(22), pp. 3715–3733.e9. Available at: https://doi.org/10.1016/j.neuron.2024.08.015.
Morikawa, Rei et al. (2024) ‘The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision’, Neuron, 112(22), pp. 3715–3733.e9. Available at: https://doi.org/10.1016/j.neuron.2024.08.015.
Fröhlich, Jacqueline et al. (2024) ‘Factors Associated With Ocular Perfusion Measurements as Obtained With Laser Speckle Contrast Imaging’, Translational Vision Science and Technology, 13(11). Available at: https://doi.org/10.1167/tvst.13.11.8.
Fröhlich, Jacqueline et al. (2024) ‘Factors Associated With Ocular Perfusion Measurements as Obtained With Laser Speckle Contrast Imaging’, Translational Vision Science and Technology, 13(11). Available at: https://doi.org/10.1167/tvst.13.11.8.
Prétot, Dominique et al. (2024) ‘Retinal oxygen metabolic function in choroideremia and retinitis pigmentosa’, Graefe’s Archive for Clinical and Experimental Ophthalmology [Preprint]. Available at: https://doi.org/10.1007/s00417-024-06659-8.
Prétot, Dominique et al. (2024) ‘Retinal oxygen metabolic function in choroideremia and retinitis pigmentosa’, Graefe’s Archive for Clinical and Experimental Ophthalmology [Preprint]. Available at: https://doi.org/10.1007/s00417-024-06659-8.
Fellmann, F. et al. (2024) ‘An atypical form of 60S ribosomal subunit in Diamond-Blackfan anemia linked to RPL17 variants’, JCI Insight, 9(17). Available at: https://doi.org/10.1172/jci.insight.172475.
Fellmann, F. et al. (2024) ‘An atypical form of 60S ribosomal subunit in Diamond-Blackfan anemia linked to RPL17 variants’, JCI Insight, 9(17). Available at: https://doi.org/10.1172/jci.insight.172475.
Müllner, Fiona E. and Roska, Botond (2024) ‘Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features’, Neuron, 112(16), pp. 2765–2782.e9. Available at: https://doi.org/10.1016/j.neuron.2024.06.001.
Müllner, Fiona E. and Roska, Botond (2024) ‘Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features’, Neuron, 112(16), pp. 2765–2782.e9. Available at: https://doi.org/10.1016/j.neuron.2024.06.001.
Calzetti, G. et al. (2024) ‘Genetic Testing of Patients with Inherited Retinal Diseases in the European Countries: An International Survey by the European Vision Institute’, Ophthalmic Research, 67(1), pp. 448–457. Available at: https://doi.org/10.1159/000540607.
Calzetti, G. et al. (2024) ‘Genetic Testing of Patients with Inherited Retinal Diseases in the European Countries: An International Survey by the European Vision Institute’, Ophthalmic Research, 67(1), pp. 448–457. Available at: https://doi.org/10.1159/000540607.
Chan, Eric J. et al. (2024) ‘Retinal sensitivity in macular subfields and their association with contrast sensitivity in early and intermediate age-related macular degeneration’, Ophthalmic Research, 67(1), pp. 458–469. Available at: https://doi.org/10.1159/000540312.
Chan, Eric J. et al. (2024) ‘Retinal sensitivity in macular subfields and their association with contrast sensitivity in early and intermediate age-related macular degeneration’, Ophthalmic Research, 67(1), pp. 458–469. Available at: https://doi.org/10.1159/000540312.
Valmaggia, Philippe et al. (2024) ‘Heart-retina time analysis using electrocardiogram-coupled time-resolved dynamic optical coherence tomography’, medRxiv [Preprint]. Cold Spring Harbor Laboratory (medRxiv). Available at: https://doi.org/10.1101/2024.07.15.24310387.
Valmaggia, Philippe et al. (2024) ‘Heart-retina time analysis using electrocardiogram-coupled time-resolved dynamic optical coherence tomography’, medRxiv [Preprint]. Cold Spring Harbor Laboratory (medRxiv). Available at: https://doi.org/10.1101/2024.07.15.24310387.
Laich, Yannik et al. (2024) ‘Optical Coherence Tomography Angiography–Navigated Laser Photocoagulation of Retinal Hemangioblastomas in Patients With von Hippel–Lindau Disease’, Translational Vision Science and Technology, 13(7). Available at: https://doi.org/10.1167/tvst.13.7.8.
Laich, Yannik et al. (2024) ‘Optical Coherence Tomography Angiography–Navigated Laser Photocoagulation of Retinal Hemangioblastomas in Patients With von Hippel–Lindau Disease’, Translational Vision Science and Technology, 13(7). Available at: https://doi.org/10.1167/tvst.13.7.8.
Cortinhal, T. et al. (2024) ‘Genetic profile of syndromic retinitis pigmentosa in Portugal’, Graefe’s Archive for Clinical and Experimental Ophthalmology, 262(6), pp. 1883–1897. Available at: https://doi.org/10.1007/s00417-023-06360-2.
Cortinhal, T. et al. (2024) ‘Genetic profile of syndromic retinitis pigmentosa in Portugal’, Graefe’s Archive for Clinical and Experimental Ophthalmology, 262(6), pp. 1883–1897. Available at: https://doi.org/10.1007/s00417-023-06360-2.
Han, Ji Hoon et al. (2024) ‘Loss-of-function variants in UBAP1L cause autosomal recessive retinal degeneration’, Genetics in Medicine, 26(6). Available at: https://doi.org/10.1016/j.gim.2024.101106.
Han, Ji Hoon et al. (2024) ‘Loss-of-function variants in UBAP1L cause autosomal recessive retinal degeneration’, Genetics in Medicine, 26(6). Available at: https://doi.org/10.1016/j.gim.2024.101106.
Valmaggia, Philippe et al. (2024) ‘Time-Resolved Dynamic Optical Coherence Tomography for Retinal Blood Flow Analysis’, Investigative Ophthalmology and Visual Science, 65(6). Available at: https://doi.org/10.1167/iovs.65.6.9.
Valmaggia, Philippe et al. (2024) ‘Time-Resolved Dynamic Optical Coherence Tomography for Retinal Blood Flow Analysis’, Investigative Ophthalmology and Visual Science, 65(6). Available at: https://doi.org/10.1167/iovs.65.6.9.
Arsenijevic, Y. et al. (2024) ‘Fine-tuning FAM161A gene augmentation therapy to restore retinal function’, EMBO Molecular Medicine, 16(4), pp. 805–822. Available at: https://doi.org/10.1038/s44321-024-00053-x.
Arsenijevic, Y. et al. (2024) ‘Fine-tuning FAM161A gene augmentation therapy to restore retinal function’, EMBO Molecular Medicine, 16(4), pp. 805–822. Available at: https://doi.org/10.1038/s44321-024-00053-x.
Quinodoz, Mathieu et al. (2024) ‘Detection of elusive DNA copy-number variations in hereditary disease and cancer through the use of noncoding and off-target sequencing reads’, American Journal of Human Genetics. 25.03.2024, 111(4), pp. 701–713. Available at: https://doi.org/10.1016/j.ajhg.2024.03.001.
Quinodoz, Mathieu et al. (2024) ‘Detection of elusive DNA copy-number variations in hereditary disease and cancer through the use of noncoding and off-target sequencing reads’, American Journal of Human Genetics. 25.03.2024, 111(4), pp. 701–713. Available at: https://doi.org/10.1016/j.ajhg.2024.03.001.
Quinodoz, Mathieu et al. (2024) ‘Detection of elusive DNA copy-number variations in hereditary disease and cancer through the use of noncoding and off-target sequencing reads’, American Journal of Human Genetics, 111(4), pp. 701–713. Available at: https://doi.org/10.1016/j.ajhg.2024.03.001.
Quinodoz, Mathieu et al. (2024) ‘Detection of elusive DNA copy-number variations in hereditary disease and cancer through the use of noncoding and off-target sequencing reads’, American Journal of Human Genetics, 111(4), pp. 701–713. Available at: https://doi.org/10.1016/j.ajhg.2024.03.001.
Conti, Giovanni Marco et al. (2024) ‘GNB1-Related Rod-Cone Dystrophy: A Case Report’, Case Reports in Ophthalmology, 15(1), pp. 230–237. Available at: https://doi.org/10.1159/000537997.
Conti, Giovanni Marco et al. (2024) ‘GNB1-Related Rod-Cone Dystrophy: A Case Report’, Case Reports in Ophthalmology, 15(1), pp. 230–237. Available at: https://doi.org/10.1159/000537997.
Hitti-Malin, R.J. et al. (2024) ‘Towards Uncovering the Role of Incomplete Penetrance in Maculopathies through Sequencing of 105 Disease-Associated Genes’, Biomolecules, 14(3). Available at: https://doi.org/10.3390/biom14030367.
Hitti-Malin, R.J. et al. (2024) ‘Towards Uncovering the Role of Incomplete Penetrance in Maculopathies through Sequencing of 105 Disease-Associated Genes’, Biomolecules, 14(3). Available at: https://doi.org/10.3390/biom14030367.
Nunes, M.J. et al. (2024) ‘Sustained PGC-1α2 or PGC-1α3 expression induces astrocyte dysfunction and degeneration’, European Journal of Cell Biology, 103(1), p. 151377. Available at: https://doi.org/10.1016/j.ejcb.2023.151377.
Nunes, M.J. et al. (2024) ‘Sustained PGC-1α2 or PGC-1α3 expression induces astrocyte dysfunction and degeneration’, European Journal of Cell Biology, 103(1), p. 151377. Available at: https://doi.org/10.1016/j.ejcb.2023.151377.
Zhang, Z. et al. (2024) ‘Centriole and transition zone structures in photoreceptor cilia revealed by cryo-electron tomography’, Life Science Alliance, 7(3). Available at: https://doi.org/10.26508/lsa.202302409.
Zhang, Z. et al. (2024) ‘Centriole and transition zone structures in photoreceptor cilia revealed by cryo-electron tomography’, Life Science Alliance, 7(3). Available at: https://doi.org/10.26508/lsa.202302409.
Bauwens, Miriam et al. (2024) ‘Mutations in SAMD7 cause autosomal-recessive macular dystrophy with or without cone dysfunction’, American Journal of Human Genetics, 111(2), pp. 393–402. Available at: https://doi.org/10.1016/j.ajhg.2024.01.001.
Bauwens, Miriam et al. (2024) ‘Mutations in SAMD7 cause autosomal-recessive macular dystrophy with or without cone dysfunction’, American Journal of Human Genetics, 111(2), pp. 393–402. Available at: https://doi.org/10.1016/j.ajhg.2024.01.001.
Lang, Stefan J. et al. (2024) ‘ZEISS PLEX Elite 9000 Widefield Optical Coherence Tomography Angiography as Screening Method for Early Detection of Retinal Hemangioblastomas in von Hippel–Lindau Disease’, Translational Vision Science and Technology, 13(2), p. 8. Available at: https://doi.org/10.1167/tvst.13.2.8.
Lang, Stefan J. et al. (2024) ‘ZEISS PLEX Elite 9000 Widefield Optical Coherence Tomography Angiography as Screening Method for Early Detection of Retinal Hemangioblastomas in von Hippel–Lindau Disease’, Translational Vision Science and Technology, 13(2), p. 8. Available at: https://doi.org/10.1167/tvst.13.2.8.
Maloca, Peter M. et al. (2024) ‘Human selection bias drives the linear nature of the more ground truth effect in explainable deep learning optical coherence tomography image segmentation’, Journal of Biophotonics, 17(2). Available at: https://doi.org/10.1002/jbio.202300274.
Maloca, Peter M. et al. (2024) ‘Human selection bias drives the linear nature of the more ground truth effect in explainable deep learning optical coherence tomography image segmentation’, Journal of Biophotonics, 17(2). Available at: https://doi.org/10.1002/jbio.202300274.
Iglesias-Romero, Ana Belén et al. (2024) ‘Bi-allelic variants in COQ8B, a gene involved in the biosynthesis of coenzyme Q10, lead to non-syndromic retinitis pigmentosa’, American Journal of Human Genetics, 111, pp. 2299–2306. Available at: https://doi.org/10.1016/j.ajhg.2024.08.005.
Iglesias-Romero, Ana Belén et al. (2024) ‘Bi-allelic variants in COQ8B, a gene involved in the biosynthesis of coenzyme Q10, lead to non-syndromic retinitis pigmentosa’, American Journal of Human Genetics, 111, pp. 2299–2306. Available at: https://doi.org/10.1016/j.ajhg.2024.08.005.
Karali, Marianthi et al. (2024) ‘Variants in the AGBL5 gene are responsible for autosomal recessive Retinitis pigmentosa with hearing loss’, European Journal of Human Genetics [Preprint]. Available at: https://doi.org/10.1038/s41431-024-01768-8.
Karali, Marianthi et al. (2024) ‘Variants in the AGBL5 gene are responsible for autosomal recessive Retinitis pigmentosa with hearing loss’, European Journal of Human Genetics [Preprint]. Available at: https://doi.org/10.1038/s41431-024-01768-8.
Malka, Samantha et al. (2024) ‘Substitution of a single non-coding nucleotide upstream of TMEM216 causes non-syndromic retinitis pigmentosa and is associated with reduced TMEM216 expression’, American Journal of Human Genetics, 111, pp. 2012–2030. Available at: https://doi.org/10.1016/j.ajhg.2024.07.020.
Malka, Samantha et al. (2024) ‘Substitution of a single non-coding nucleotide upstream of TMEM216 causes non-syndromic retinitis pigmentosa and is associated with reduced TMEM216 expression’, American Journal of Human Genetics, 111, pp. 2012–2030. Available at: https://doi.org/10.1016/j.ajhg.2024.07.020.
Zanetti, Andrea et al. (2024) ‘GPATCH11 variants cause mis-splicing and early-onset retinal dystrophy with neurological impairment’, Nature Communications, 15. Available at: https://doi.org/10.1038/s41467-024-54549-8.
Zanetti, Andrea et al. (2024) ‘GPATCH11 variants cause mis-splicing and early-onset retinal dystrophy with neurological impairment’, Nature Communications, 15. Available at: https://doi.org/10.1038/s41467-024-54549-8.
Conti, G.M. et al. (2023) ‘Genetics of Retinitis Pigmentosa and Other Hereditary Retinal Disorders in Western Switzerland’, Ophthalmic Research, 67(1), pp. 172–182. Available at: https://doi.org/10.1159/000536036.
Conti, G.M. et al. (2023) ‘Genetics of Retinitis Pigmentosa and Other Hereditary Retinal Disorders in Western Switzerland’, Ophthalmic Research, 67(1), pp. 172–182. Available at: https://doi.org/10.1159/000536036.
Denk, Nora et al. (2023) ‘Cynomolgus monkey’s retina volume reference database based on hybrid deep learning optical coherence tomography segmentation’, Scientific Reports, 13(1). Available at: https://doi.org/10.1038/s41598-023-32739-6.
Denk, Nora et al. (2023) ‘Cynomolgus monkey’s retina volume reference database based on hybrid deep learning optical coherence tomography segmentation’, Scientific Reports, 13(1). Available at: https://doi.org/10.1038/s41598-023-32739-6.
Maloca, Peter M. et al. (2023) ‘Validation of collaborative cyberspace virtual reality oculometry enhanced with near real-time spatial audio’, Scientific Reports, 13(1). Available at: https://doi.org/10.1038/s41598-023-37267-x.
Maloca, Peter M. et al. (2023) ‘Validation of collaborative cyberspace virtual reality oculometry enhanced with near real-time spatial audio’, Scientific Reports, 13(1). Available at: https://doi.org/10.1038/s41598-023-37267-x.
Wahle, Philipp et al. (2023) ‘Multimodal spatiotemporal phenotyping of human retinal organoid development’, Nature Biotechnology, 41(12), pp. 1765–1775. Available at: https://doi.org/10.1038/s41587-023-01747-2.
Wahle, Philipp et al. (2023) ‘Multimodal spatiotemporal phenotyping of human retinal organoid development’, Nature Biotechnology, 41(12), pp. 1765–1775. Available at: https://doi.org/10.1038/s41587-023-01747-2.
Ansari, Georg et al. (2023) ‘The Optical Coherence Tomography and Microperimetry Biomarker Evaluation in Patients with Geographic Atrophy (OMEGA) Study: Design and Baseline Characteristics - OMEGA Report 1’, Ophthalmic Research, 66(1), pp. 1392–1401. Available at: https://doi.org/10.1159/000535375.
Ansari, Georg et al. (2023) ‘The Optical Coherence Tomography and Microperimetry Biomarker Evaluation in Patients with Geographic Atrophy (OMEGA) Study: Design and Baseline Characteristics - OMEGA Report 1’, Ophthalmic Research, 66(1), pp. 1392–1401. Available at: https://doi.org/10.1159/000535375.
Han, Ji Hoon et al. (2023) ‘The p.C759F Variant in USH2A Is a Pathogenic Mutation: Systematic Literature Review and Meta-Analysis of 667 Genotypes’, Ophthalmic Research, 67(1), pp. 107–114. Available at: https://doi.org/10.1159/000535545.
Han, Ji Hoon et al. (2023) ‘The p.C759F Variant in USH2A Is a Pathogenic Mutation: Systematic Literature Review and Meta-Analysis of 667 Genotypes’, Ophthalmic Research, 67(1), pp. 107–114. Available at: https://doi.org/10.1159/000535545.
Bjerager, Jakob et al. (2023) ‘Laser-Induced Chorioretinal Anastomosis in Neurofibromatosis Type 1’, JAMA Ophthalmology, 141(11), pp. 1083–1085. Available at: https://doi.org/10.1001/jamaophthalmol.2023.4215.
Bjerager, Jakob et al. (2023) ‘Laser-Induced Chorioretinal Anastomosis in Neurofibromatosis Type 1’, JAMA Ophthalmology, 141(11), pp. 1083–1085. Available at: https://doi.org/10.1001/jamaophthalmol.2023.4215.
Valmaggia, P. et al. (2023) Time-resolved dynamic optical coherence tomography for retinal blood flow analysis. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.10.31.23297800.
Valmaggia, P. et al. (2023) Time-resolved dynamic optical coherence tomography for retinal blood flow analysis. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.10.31.23297800.
Grosso, Andrea et al. (2023) ‘A Unique Presentation of Bilateral Chorioretinal Atrophy’, Asia-Pacific Journal of Ophthalmology, 12(5), pp. 500–501. Available at: https://doi.org/10.1097/APO.0000000000000563.
Grosso, Andrea et al. (2023) ‘A Unique Presentation of Bilateral Chorioretinal Atrophy’, Asia-Pacific Journal of Ophthalmology, 12(5), pp. 500–501. Available at: https://doi.org/10.1097/APO.0000000000000563.
Cheng YM et al. (2023) ‘Retinal organoid and gene editing for basic and translational research’, Vision Research, 210, p. 108273. Available at: https://doi.org/10.1016/j.visres.2023.108273.
Cheng YM et al. (2023) ‘Retinal organoid and gene editing for basic and translational research’, Vision Research, 210, p. 108273. Available at: https://doi.org/10.1016/j.visres.2023.108273.
Faes L et al. (2023) ‘Transforming ophthalmology in the digital century—new care models with added value for patients’, Eye (Basingstoke), 37(11), pp. 2172–2175. Available at: https://doi.org/10.1038/s41433-022-02313-x.
Faes L et al. (2023) ‘Transforming ophthalmology in the digital century—new care models with added value for patients’, Eye (Basingstoke), 37(11), pp. 2172–2175. Available at: https://doi.org/10.1038/s41433-022-02313-x.
Hangartner K et al. (2023) ‘Assessment of Retinal Vessel Tortuosity Index in Patients with Fabry Disease Using Optical Coherence Tomography Angiography (OCTA)’, Diagnostics, 13(15). Available at: https://doi.org/10.3390/diagnostics13152496.
Hangartner K et al. (2023) ‘Assessment of Retinal Vessel Tortuosity Index in Patients with Fabry Disease Using Optical Coherence Tomography Angiography (OCTA)’, Diagnostics, 13(15). Available at: https://doi.org/10.3390/diagnostics13152496.
Cadoni, Sara et al. (2023) ‘Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration’, Nature Nanotechnology, 18(6), pp. 667–676. Available at: https://doi.org/10.1038/s41565-023-01359-6.
Cadoni, Sara et al. (2023) ‘Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration’, Nature Nanotechnology, 18(6), pp. 667–676. Available at: https://doi.org/10.1038/s41565-023-01359-6.
Koval, Alexey et al. (2023) ‘In-depth molecular profiling of an intronic GNAO1 mutant as the basis for personalized high-throughput drug screening’, Med, 4(5), pp. 311–325.e7. Available at: https://doi.org/10.1016/j.medj.2023.03.001.
Koval, Alexey et al. (2023) ‘In-depth molecular profiling of an intronic GNAO1 mutant as the basis for personalized high-throughput drug screening’, Med, 4(5), pp. 311–325.e7. Available at: https://doi.org/10.1016/j.medj.2023.03.001.
Munz, M. et al. (2023) ‘Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex’, Cell, 186(9), pp. 1930–1949.e31. Available at: https://doi.org/10.1016/j.cell.2023.03.025.
Munz, M. et al. (2023) ‘Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex’, Cell, 186(9), pp. 1930–1949.e31. Available at: https://doi.org/10.1016/j.cell.2023.03.025.
Ullah, Mukhtar et al. (2023) ‘A Novel Intronic Deletion in PDE6B Causes Autosomal Recessive Retinitis Pigmentosa by Interfering with RNA Splicing’, Ophthalmic Research, 66(1), pp. 878–884. Available at: https://doi.org/10.1159/000530800.
Ullah, Mukhtar et al. (2023) ‘A Novel Intronic Deletion in PDE6B Causes Autosomal Recessive Retinitis Pigmentosa by Interfering with RNA Splicing’, Ophthalmic Research, 66(1), pp. 878–884. Available at: https://doi.org/10.1159/000530800.
Peter, Virginie G et al. (2023) ‘The first genetic landscape of inherited retinal dystrophies in Portuguese patients identifies recurrent homozygous mutations as a frequent cause of pathogenesis’, PNAS Nexus, 2(3), p. pgad043. Available at: https://doi.org/10.1093/pnasnexus/pgad043.
Peter, Virginie G et al. (2023) ‘The first genetic landscape of inherited retinal dystrophies in Portuguese patients identifies recurrent homozygous mutations as a frequent cause of pathogenesis’, PNAS Nexus, 2(3), p. pgad043. Available at: https://doi.org/10.1093/pnasnexus/pgad043.
Daich Varela M et al. (2023) ‘Multidisciplinary team directed analysis of whole genome sequencing reveals pathogenic non-coding variants in molecularly undiagnosed inherited retinal dystrophies’, Human Molecular Genetics, 32(4), pp. 595–607. Available at: https://doi.org/10.1093/hmg/ddac227.
Daich Varela M et al. (2023) ‘Multidisciplinary team directed analysis of whole genome sequencing reveals pathogenic non-coding variants in molecularly undiagnosed inherited retinal dystrophies’, Human Molecular Genetics, 32(4), pp. 595–607. Available at: https://doi.org/10.1093/hmg/ddac227.
Bocquet, Béatrice et al. (2023) ‘TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa’, JCI Insight, 8. Available at: https://doi.org/10.1172/jci.insight.169426.
Bocquet, Béatrice et al. (2023) ‘TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa’, JCI Insight, 8. Available at: https://doi.org/10.1172/jci.insight.169426.
Cuadrado-Vilanova M et al. (2023) ‘Follow-up of intraocular retinoblastoma through the quantitative analysis of conserved nuclear DNA sequences in aqueous humor from patients’, Journal of Pathology: Clinical Research, 9(1), pp. 32–43. Available at: https://doi.org/10.1002/cjp2.296.
Cuadrado-Vilanova M et al. (2023) ‘Follow-up of intraocular retinoblastoma through the quantitative analysis of conserved nuclear DNA sequences in aqueous humor from patients’, Journal of Pathology: Clinical Research, 9(1), pp. 32–43. Available at: https://doi.org/10.1002/cjp2.296.
Hartmann J. et al. (2023) ‘Comparative Deep Learning Architectures to Detect Tiny Features in Ophthalmic Imaging’. Institute of Electrical and Electronics Engineers Inc., pp. 112–119. Available at: https://doi.org/10.1109/SDS57534.2023.00024.
Hartmann J. et al. (2023) ‘Comparative Deep Learning Architectures to Detect Tiny Features in Ophthalmic Imaging’. Institute of Electrical and Electronics Engineers Inc., pp. 112–119. Available at: https://doi.org/10.1109/SDS57534.2023.00024.
Moreno-Juan, V. et al. (2023) ‘Spontaneous Thalamic Activity Modulates the Cortical Innervation of the Primary Visual Nucleus of the Thalamus’, Neuroscience, 508, pp. 87–97. Available at: https://doi.org/10.1016/j.neuroscience.2022.07.022.
Moreno-Juan, V. et al. (2023) ‘Spontaneous Thalamic Activity Modulates the Cortical Innervation of the Primary Visual Nucleus of the Thalamus’, Neuroscience, 508, pp. 87–97. Available at: https://doi.org/10.1016/j.neuroscience.2022.07.022.
Moyel, A.R., Robichaux, M.A. and Wensel, T. (2023) ‘Expansion Microscopy of Mouse Photoreceptor Cilia’. Springer, pp. 395–402. Available at: https://doi.org/10.1007/978-3-031-27681-1_58.
Moyel, A.R., Robichaux, M.A. and Wensel, T. (2023) ‘Expansion Microscopy of Mouse Photoreceptor Cilia’. Springer, pp. 395–402. Available at: https://doi.org/10.1007/978-3-031-27681-1_58.
Panneman, Daan M. et al. (2023) ‘Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis’, Frontiers in Cell and Developmental Biology, 11. Available at: https://doi.org/10.3389/fcell.2023.1112270.
Panneman, Daan M. et al. (2023) ‘Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis’, Frontiers in Cell and Developmental Biology, 11. Available at: https://doi.org/10.3389/fcell.2023.1112270.
Enz TJ et al. (2022) ‘Volume-rendered optical coherence tomography angiography during ocular interventions: Advocating for noninvasive intraoperative retinal perfusion monitoring’, Journal of Biophotonics, 15(12), p. e202200169. Available at: https://doi.org/10.1002/jbio.202200169.
Enz TJ et al. (2022) ‘Volume-rendered optical coherence tomography angiography during ocular interventions: Advocating for noninvasive intraoperative retinal perfusion monitoring’, Journal of Biophotonics, 15(12), p. e202200169. Available at: https://doi.org/10.1002/jbio.202200169.
Judák, Linda et al. (2022) ‘Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo’, Nature Communications, 13(1). Available at: https://doi.org/10.1038/s41467-022-34520-1.
Judák, Linda et al. (2022) ‘Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo’, Nature Communications, 13(1). Available at: https://doi.org/10.1038/s41467-022-34520-1.
Jurkute N. et al. (2022) ‘Biallelic variants in coenzyme Q10 biosynthesis pathway genes cause a retinitis pigmentosa phenotype’, npj Genomic Medicine, 7(1). Available at: https://doi.org/10.1038/s41525-022-00330-z.
Jurkute N. et al. (2022) ‘Biallelic variants in coenzyme Q10 biosynthesis pathway genes cause a retinitis pigmentosa phenotype’, npj Genomic Medicine, 7(1). Available at: https://doi.org/10.1038/s41525-022-00330-z.
Maloca PM et al. (2022) ‘Reference database of total retinal vessel surface area derived from volume-rendered optical coherence tomography angiography’, Scientific Reports, 12(1), p. 3695. Available at: https://doi.org/10.1038/s41598-022-07439-2.
Maloca PM et al. (2022) ‘Reference database of total retinal vessel surface area derived from volume-rendered optical coherence tomography angiography’, Scientific Reports, 12(1), p. 3695. Available at: https://doi.org/10.1038/s41598-022-07439-2.
Maloca PM et al. (2022) ‘Cynomolgus monkey’s choroid reference database derived from hybrid deep learning optical coherence tomography segmentation’, Scientific Reports, 12(1), p. 13276. Available at: https://doi.org/10.1038/s41598-022-17699-7.
Maloca PM et al. (2022) ‘Cynomolgus monkey’s choroid reference database derived from hybrid deep learning optical coherence tomography segmentation’, Scientific Reports, 12(1), p. 13276. Available at: https://doi.org/10.1038/s41598-022-17699-7.
Van de Sompele S. et al. (2022) ‘Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy’, American Journal of Human Genetics, 109(11), pp. 2029–2048. Available at: https://doi.org/10.1016/j.ajhg.2022.09.013.
Van de Sompele S. et al. (2022) ‘Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy’, American Journal of Human Genetics, 109(11), pp. 2029–2048. Available at: https://doi.org/10.1016/j.ajhg.2022.09.013.
Valmaggia, Philippe et al. (2022) ‘Iris Color Matters—A Contractility Analysis With Dynamic Volume-Rendered Optical Coherence Tomography Pupillometry’, Translational Vision Science and Technology, 11(11). Available at: https://doi.org/10.1167/tvst.11.11.6.
Valmaggia, Philippe et al. (2022) ‘Iris Color Matters—A Contractility Analysis With Dynamic Volume-Rendered Optical Coherence Tomography Pupillometry’, Translational Vision Science and Technology, 11(11). Available at: https://doi.org/10.1167/tvst.11.11.6.
Hahaut, V. et al. (2022) ‘Fast and highly sensitive full-length single-cell RNA sequencing using FLASH-seq’, Nature Biotechnology, 40(10), pp. 1447–1451. Available at: https://doi.org/10.1038/s41587-022-01312-3.
Hahaut, V. et al. (2022) ‘Fast and highly sensitive full-length single-cell RNA sequencing using FLASH-seq’, Nature Biotechnology, 40(10), pp. 1447–1451. Available at: https://doi.org/10.1038/s41587-022-01312-3.
Rothenbuehler SP et al. (2022) ‘Comparison of Spectral-Domain OCT versus Swept-Source OCT for the Detection of Deep Optic Disc Drusen’, Diagnostics, 12(10). Available at: https://doi.org/10.3390/diagnostics12102515.
Rothenbuehler SP et al. (2022) ‘Comparison of Spectral-Domain OCT versus Swept-Source OCT for the Detection of Deep Optic Disc Drusen’, Diagnostics, 12(10). Available at: https://doi.org/10.3390/diagnostics12102515.
Maloca PM et al. (2022) ‘Dynamic volume-rendered optical coherence tomography pupillometry’, Acta Ophthalmologica, 100(6), pp. 654–664. Available at: https://doi.org/10.1111/aos.15063.
Maloca PM et al. (2022) ‘Dynamic volume-rendered optical coherence tomography pupillometry’, Acta Ophthalmologica, 100(6), pp. 654–664. Available at: https://doi.org/10.1111/aos.15063.
Maloca PM et al. (2022) ‘Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation’, PLoS ONE, 17(9 September), p. e0275050. Available at: https://doi.org/10.1371/journal.pone.0275050.
Maloca PM et al. (2022) ‘Volumetric subfield analysis of cynomolgus monkey’s choroid derived from hybrid machine learning optical coherence tomography segmentation’, PLoS ONE, 17(9 September), p. e0275050. Available at: https://doi.org/10.1371/journal.pone.0275050.
Valmaggia P et al. (2022) ‘Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data With Deep Learning’, Translational Vision Science and Technology, 11(9), p. 25. Available at: https://doi.org/10.1167/tvst.11.9.25.
Valmaggia P et al. (2022) ‘Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data With Deep Learning’, Translational Vision Science and Technology, 11(9), p. 25. Available at: https://doi.org/10.1167/tvst.11.9.25.
Pathak, Gita A. et al. (2022) ‘A first update on mapping the human genetic architecture of COVID-19’, Nature, 608(7921), pp. E1–E10. Available at: https://doi.org/10.1038/s41586-022-04826-7.
Pathak, Gita A. et al. (2022) ‘A first update on mapping the human genetic architecture of COVID-19’, Nature, 608(7921), pp. E1–E10. Available at: https://doi.org/10.1038/s41586-022-04826-7.
Kelbsch C et al. (2022) ‘Unilateral Retinal Ischemia’, Klinische Monatsblatter fur Augenheilkunde, 239(8), pp. 1013–1015. Available at: https://doi.org/10.1055/a-1315-0518.
Kelbsch C et al. (2022) ‘Unilateral Retinal Ischemia’, Klinische Monatsblatter fur Augenheilkunde, 239(8), pp. 1013–1015. Available at: https://doi.org/10.1055/a-1315-0518.
Spaide RF, Valmaggia P and Maloca PM (2022) ‘IMAGING the VITREOUS with A NOVEL BOOSTED OPTICAL COHERENCE TOMOGRAPHY TECHNIQUE: Posterior Vitreous Detachment’, Retina, 42(8), pp. 1425–1432. Available at: https://doi.org/10.1097/IAE.0000000000003500.
Spaide RF, Valmaggia P and Maloca PM (2022) ‘IMAGING the VITREOUS with A NOVEL BOOSTED OPTICAL COHERENCE TOMOGRAPHY TECHNIQUE: Posterior Vitreous Detachment’, Retina, 42(8), pp. 1425–1432. Available at: https://doi.org/10.1097/IAE.0000000000003500.
Spaide RF et al. (2022) ‘Imaging the vitreous with a novel boosted optical coherence tomography technique: Vitreous degeneration and cisterns’, Retina, 42(8), pp. 1433–1441. Available at: https://doi.org/10.1097/IAE.0000000000003474.
Spaide RF et al. (2022) ‘Imaging the vitreous with a novel boosted optical coherence tomography technique: Vitreous degeneration and cisterns’, Retina, 42(8), pp. 1433–1441. Available at: https://doi.org/10.1097/IAE.0000000000003474.
Kousathanas, Athanasios et al. (2022) ‘Whole-genome sequencing reveals host factors underlying critical COVID-19’, Nature, 607(7917), pp. 97–103. Available at: https://doi.org/10.1038/s41586-022-04576-6.
Kousathanas, Athanasios et al. (2022) ‘Whole-genome sequencing reveals host factors underlying critical COVID-19’, Nature, 607(7917), pp. 97–103. Available at: https://doi.org/10.1038/s41586-022-04576-6.
Bharioke A et al. (2022) ‘General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons’, Neuron, 110(12), pp. 2024–2040.e10. Available at: https://doi.org/10.1016/j.neuron.2022.03.032.
Bharioke A et al. (2022) ‘General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons’, Neuron, 110(12), pp. 2024–2040.e10. Available at: https://doi.org/10.1016/j.neuron.2022.03.032.
Dentici, M.L. et al. (2022) ‘Biallelic variants in ZNF526 cause a severe neurodevelopmental disorder with microcephaly, bilateral cataract, epilepsy and simplified gyration’, Journal of Medical Genetics, 59(3), pp. 262–269. Available at: https://doi.org/10.1136/jmedgenet-2020-107430.
Dentici, M.L. et al. (2022) ‘Biallelic variants in ZNF526 cause a severe neurodevelopmental disorder with microcephaly, bilateral cataract, epilepsy and simplified gyration’, Journal of Medical Genetics, 59(3), pp. 262–269. Available at: https://doi.org/10.1136/jmedgenet-2020-107430.
Jurkute N et al. (2022) ‘Vessel Volume Rendering Quantifies Disease Conversion and Progression in Leber Hereditary Optic Neuropathy’, Journal of Neuro-Ophthalmology, 42(1), pp. E331–E334. Available at: https://doi.org/10.1097/WNO.0000000000001407.
Jurkute N et al. (2022) ‘Vessel Volume Rendering Quantifies Disease Conversion and Progression in Leber Hereditary Optic Neuropathy’, Journal of Neuro-Ophthalmology, 42(1), pp. E331–E334. Available at: https://doi.org/10.1097/WNO.0000000000001407.
Maloca PM et al. (2022) ‘Feasibility and tolerability of ophthalmic virtual reality as a medical communication tool in children and young people’, Acta Ophthalmologica, 100(2), pp. e588–e597. Available at: https://doi.org/10.1111/aos.14900.
Maloca PM et al. (2022) ‘Feasibility and tolerability of ophthalmic virtual reality as a medical communication tool in children and young people’, Acta Ophthalmologica, 100(2), pp. e588–e597. Available at: https://doi.org/10.1111/aos.14900.
Okada M et al. (2022) ‘State of the art spatial visualization of the response of neovascularisation to anti-vascular endothelial growth factor therapy’, American Journal of Ophthalmology Case Reports. Elsevier Inc., 25. Available at: https://doi.org/10.1016/j.ajoc.2022.101267.
Okada M et al. (2022) ‘State of the art spatial visualization of the response of neovascularisation to anti-vascular endothelial growth factor therapy’, American Journal of Ophthalmology Case Reports. Elsevier Inc., 25. Available at: https://doi.org/10.1016/j.ajoc.2022.101267.
Azhar Baig, Hafiz Muhammad et al. (2022) ‘Genetic Analysis of Consanguineous Pakistani Families with Congenital Stationary Night Blindness’, Ophthalmic Research, 65(1), pp. 104–110. Available at: https://doi.org/10.1159/000520895.
Azhar Baig, Hafiz Muhammad et al. (2022) ‘Genetic Analysis of Consanguineous Pakistani Families with Congenital Stationary Night Blindness’, Ophthalmic Research, 65(1), pp. 104–110. Available at: https://doi.org/10.1159/000520895.
Ansar, Muhammad et al. (2022) ‘A new nonsense mutation in; HMX1; in two siblings with oculoauricular syndrome’, Ophthalmic Genetics, 43(5), pp. 720–723. Available at: https://doi.org/10.1080/13816810.2022.2096242.
Ansar, Muhammad et al. (2022) ‘A new nonsense mutation in; HMX1; in two siblings with oculoauricular syndrome’, Ophthalmic Genetics, 43(5), pp. 720–723. Available at: https://doi.org/10.1080/13816810.2022.2096242.
Butler-Laporte, Guillaume et al. (2022) ‘Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative’, PLoS Genetics, 18(11), p. e1010367. Available at: https://doi.org/10.1371/journal.pgen.1010367.
Butler-Laporte, Guillaume et al. (2022) ‘Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative’, PLoS Genetics, 18(11), p. e1010367. Available at: https://doi.org/10.1371/journal.pgen.1010367.
Han, Ji Hoon et al. (2022) ‘Mutations in the ribosome biogenesis factor gene LTV1 are linked to LIPHAK syndrome, a novel poikiloderma-like disorder’, Human Molecular Genetics, 31(12), pp. 1970–1978. Available at: https://doi.org/10.1093/hmg/ddab368.
Han, Ji Hoon et al. (2022) ‘Mutations in the ribosome biogenesis factor gene LTV1 are linked to LIPHAK syndrome, a novel poikiloderma-like disorder’, Human Molecular Genetics, 31(12), pp. 1970–1978. Available at: https://doi.org/10.1093/hmg/ddab368.
Janeschitz-Kriegl L et al. (2022) ‘c.-61g> a in ovol2 is a pathogenic 5′ untranslated region variant causing posterior polymorphous corneal dystrophy 1’, Cornea, 41(1), pp. 89–94. Available at: https://doi.org/10.1097/ICO.0000000000002843.
Janeschitz-Kriegl L et al. (2022) ‘c.-61g> a in ovol2 is a pathogenic 5′ untranslated region variant causing posterior polymorphous corneal dystrophy 1’, Cornea, 41(1), pp. 89–94. Available at: https://doi.org/10.1097/ICO.0000000000002843.
Nardou, Katya et al. (2022) ‘Identification of New Vulnerabilities in Conjunctival Melanoma Using Image-Based High Content Drug Screening’, Cancers, 14(6), p. 1575. Available at: https://doi.org/10.3390/cancers14061575.
Nardou, Katya et al. (2022) ‘Identification of New Vulnerabilities in Conjunctival Melanoma Using Image-Based High Content Drug Screening’, Cancers, 14(6), p. 1575. Available at: https://doi.org/10.3390/cancers14061575.
Quinodoz, Mathieu et al. (2022) ‘Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity’, American Journal of Human Genetics (AJHG), 109(3), pp. 457–470. Available at: https://doi.org/10.1016/j.ajhg.2022.01.006.
Quinodoz, Mathieu et al. (2022) ‘Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity’, American Journal of Human Genetics (AJHG), 109(3), pp. 457–470. Available at: https://doi.org/10.1016/j.ajhg.2022.01.006.
Santos, Cristina et al. (2022) ‘Anisometropia and asymmetric ABCA4-related cone-rod dystrophy’, Ophthalmic genetics, 43(4), pp. 576–580. Available at: https://doi.org/10.1080/13816810.2022.2103834.
Santos, Cristina et al. (2022) ‘Anisometropia and asymmetric ABCA4-related cone-rod dystrophy’, Ophthalmic genetics, 43(4), pp. 576–580. Available at: https://doi.org/10.1080/13816810.2022.2103834.
Schroeder, Marion et al. (2022) ‘A novel phenotype associated with the R162W variant in the KCNJ13 gene’, Ophthalmic genetics, 43(4), pp. 500–507. Available at: https://doi.org/10.1080/13816810.2022.2068041.
Schroeder, Marion et al. (2022) ‘A novel phenotype associated with the R162W variant in the KCNJ13 gene’, Ophthalmic genetics, 43(4), pp. 500–507. Available at: https://doi.org/10.1080/13816810.2022.2068041.
Spaide RF et al. (2022) ‘Venous overload choroidopathy: A hypothetical framework for central serous chorioretinopathy and allied disorders’, Progress in Retinal and Eye Research, 86, p. 100973. Available at: https://doi.org/10.1016/j.preteyeres.2021.100973.
Spaide RF et al. (2022) ‘Venous overload choroidopathy: A hypothetical framework for central serous chorioretinopathy and allied disorders’, Progress in Retinal and Eye Research, 86, p. 100973. Available at: https://doi.org/10.1016/j.preteyeres.2021.100973.
Yahya, Faady et al. (2022) ‘SPATA7 -Associated Juvenile Retinitis Pigmentosa in Two Brothers from a Consanguineous Iraqi Family in Switzerland’, Klinische Monatsblatter fur Augenheilkunde, 240, pp. 544–548. Available at: https://doi.org/10.1055/a-2009-0498.
Yahya, Faady et al. (2022) ‘SPATA7 -Associated Juvenile Retinitis Pigmentosa in Two Brothers from a Consanguineous Iraqi Family in Switzerland’, Klinische Monatsblatter fur Augenheilkunde, 240, pp. 544–548. Available at: https://doi.org/10.1055/a-2009-0498.
Maloca PM et al. (2021) ‘Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence’, Communications Biology, 4(1), p. 170. Available at: https://doi.org/10.1038/s42003-021-01697-y.
Maloca PM et al. (2021) ‘Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence’, Communications Biology, 4(1), p. 170. Available at: https://doi.org/10.1038/s42003-021-01697-y.