[FG] Vascularized Bone Biofabrication
Publications
98 found
Show per page
Georgopoulou, Antonia et al. (2024) ‘Bioprinting of Stable Bionic Interfaces Using Piezoresistive Hydrogel Organoelectronics’, Advanced Healthcare Materials [Preprint]. Available at: https://doi.org/10.1002/adhm.202400051.
Georgopoulou, Antonia et al. (2024) ‘Bioprinting of Stable Bionic Interfaces Using Piezoresistive Hydrogel Organoelectronics’, Advanced Healthcare Materials [Preprint]. Available at: https://doi.org/10.1002/adhm.202400051.
Berger, C. et al. (2023) Tonsil explants as a human in vitro model to study immune responses to vaccines. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-3426839/v1.
Berger, C. et al. (2023) Tonsil explants as a human in vitro model to study immune responses to vaccines. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-3426839/v1.
Bitonto V. et al. (2023) ‘Prussian Blue Staining to Visualize Iron Oxide Nanoparticles’. Humana Press Inc., pp. 321–332. Available at: https://doi.org/10.1007/978-1-0716-2675-7_26.
Bitonto V. et al. (2023) ‘Prussian Blue Staining to Visualize Iron Oxide Nanoparticles’. Humana Press Inc., pp. 321–332. Available at: https://doi.org/10.1007/978-1-0716-2675-7_26.
Born, Gordian et al. (2023) ‘Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues’, Biotechnology Journal, 18. Available at: https://doi.org/10.1002/biot.202200405.
Born, Gordian et al. (2023) ‘Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues’, Biotechnology Journal, 18. Available at: https://doi.org/10.1002/biot.202200405.
Noël, Danièle and Scherberich, Arnaud (2023) ‘Editorial: Biology and clinical applications of adipose-derived cells for skeletal regeneration’, Frontiers in Bioengineering and Biotechnology, 11. Available at: https://doi.org/10.3389/fbioe.2023.1221444.
Noël, Danièle and Scherberich, Arnaud (2023) ‘Editorial: Biology and clinical applications of adipose-derived cells for skeletal regeneration’, Frontiers in Bioengineering and Biotechnology, 11. Available at: https://doi.org/10.3389/fbioe.2023.1221444.
Scatena, Lorenzo et al. (2023) ‘THE RELEVANCE OF A TOPICAL TEAM IN THE INVESTIGATION, ADVANCEMENT AND OPPORTUNITIES IN THE RESEARCH FROM THE SCIENTIFIC COMMUNITY THROUGH SPACE TECHNOLOGIES TO TERRESTRIAL IMPACTS’.
Scatena, Lorenzo et al. (2023) ‘THE RELEVANCE OF A TOPICAL TEAM IN THE INVESTIGATION, ADVANCEMENT AND OPPORTUNITIES IN THE RESEARCH FROM THE SCIENTIFIC COMMUNITY THROUGH SPACE TECHNOLOGIES TO TERRESTRIAL IMPACTS’.
Kouba L et al. (2022) ‘A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication.’, Acta biomaterialia, 154, pp. 641–649. Available at: https://doi.org/10.1016/j.actbio.2022.10.023.
Kouba L et al. (2022) ‘A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication.’, Acta biomaterialia, 154, pp. 641–649. Available at: https://doi.org/10.1016/j.actbio.2022.10.023.
Shekarian T et al. (2022) ‘Immunotherapy of glioblastoma explants induces interferon-γ responses and spatial immune cell rearrangements in tumor center, but not periphery.’, Science advances, 8(26), p. eabn9440. Available at: https://doi.org/10.1126/sciadv.abn9440.
Shekarian T et al. (2022) ‘Immunotherapy of glioblastoma explants induces interferon-γ responses and spatial immune cell rearrangements in tumor center, but not periphery.’, Science advances, 8(26), p. eabn9440. Available at: https://doi.org/10.1126/sciadv.abn9440.
Filippi M et al. (2022) ‘Engineered Magnetic Nanocomposites to Modulate Cellular Function.’, Small (Weinheim an der Bergstrasse, Germany), 18(9), p. e2104079. Available at: https://doi.org/10.1002/smll.202104079.
Filippi M et al. (2022) ‘Engineered Magnetic Nanocomposites to Modulate Cellular Function.’, Small (Weinheim an der Bergstrasse, Germany), 18(9), p. e2104079. Available at: https://doi.org/10.1002/smll.202104079.
Buergin J et al. (2022) ‘Cross-sectional Vascularization Pattern of the Adipofascial Anterolateral Thigh Flap for Application in Tissue-engineered Bone Grafts.’, Plastic and reconstructive surgery. Global open, 10(2), p. e4136. Available at: https://doi.org/10.1097/gox.0000000000004136.
Buergin J et al. (2022) ‘Cross-sectional Vascularization Pattern of the Adipofascial Anterolateral Thigh Flap for Application in Tissue-engineered Bone Grafts.’, Plastic and reconstructive surgery. Global open, 10(2), p. e4136. Available at: https://doi.org/10.1097/gox.0000000000004136.
Cheng C et al. (2022) ‘Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue.’, Frontiers in bioengineering and biotechnology, 10, p. 841690. Available at: https://doi.org/10.3389/fbioe.2022.841690.
Cheng C et al. (2022) ‘Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue.’, Frontiers in bioengineering and biotechnology, 10, p. 841690. Available at: https://doi.org/10.3389/fbioe.2022.841690.
Filippi, Miriam et al. (2022) ‘Strategies to promote vascularization, survival, and functionality of engineered tissues’. Elsevier, pp. 457–489. Available at: https://doi.org/10.1016/b978-0-12-824459-3.00014-7.
Filippi, Miriam et al. (2022) ‘Strategies to promote vascularization, survival, and functionality of engineered tissues’. Elsevier, pp. 457–489. Available at: https://doi.org/10.1016/b978-0-12-824459-3.00014-7.
Guerrero, Julien et al. (2022) ‘T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis’, Stem Cells Translational Medicine, 11, pp. 213–229. Available at: https://doi.org/10.1093/stcltm/szab021.
Guerrero, Julien et al. (2022) ‘T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis’, Stem Cells Translational Medicine, 11, pp. 213–229. Available at: https://doi.org/10.1093/stcltm/szab021.
Rodgers G. et al. (2022) ‘Combining High-Resolution Hard X-ray Tomography and Histology for Stem Cell-Mediated Distraction Osteogenesis’, Applied Sciences (Switzerland), 12. Available at: https://doi.org/10.3390/app12126286.
Rodgers G. et al. (2022) ‘Combining High-Resolution Hard X-ray Tomography and Histology for Stem Cell-Mediated Distraction Osteogenesis’, Applied Sciences (Switzerland), 12. Available at: https://doi.org/10.3390/app12126286.
Filippi M., Dasen B. and Scherberich A. (2021) ‘Rapid magneto-sonoporation of adipose-derived cells’, Materials, 14(17). Available at: https://doi.org/10.3390/ma14174877.
Filippi M., Dasen B. and Scherberich A. (2021) ‘Rapid magneto-sonoporation of adipose-derived cells’, Materials, 14(17). Available at: https://doi.org/10.3390/ma14174877.
Degen M., Scherberich A. and Tucker R.P. (2021) ‘Tenascin-W: Discovery, Evolution, and Future Prospects’, Frontiers in Immunology, 11. Available at: https://doi.org/10.3389/fimmu.2020.623305.
Degen M., Scherberich A. and Tucker R.P. (2021) ‘Tenascin-W: Discovery, Evolution, and Future Prospects’, Frontiers in Immunology, 11. Available at: https://doi.org/10.3389/fimmu.2020.623305.
Born, Gordian et al. (2021) ‘Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells’, Journal of Tissue Engineering, 12. Available at: https://doi.org/10.1177/20417314211044855.
Born, Gordian et al. (2021) ‘Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells’, Journal of Tissue Engineering, 12. Available at: https://doi.org/10.1177/20417314211044855.
García-García, Andrés et al. (2021) ‘Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches’, Proceedings of the National Academy of Sciences of the United States of America, 118. Available at: https://doi.org/10.1073/pnas.2114227118.
García-García, Andrés et al. (2021) ‘Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches’, Proceedings of the National Academy of Sciences of the United States of America, 118. Available at: https://doi.org/10.1073/pnas.2114227118.
Hirsiger, Julia R. et al. (2021) ‘Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination’, Journal of Autoimmunity, 124. Available at: https://doi.org/10.1016/j.jaut.2021.102714.
Hirsiger, Julia R. et al. (2021) ‘Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination’, Journal of Autoimmunity, 124. Available at: https://doi.org/10.1016/j.jaut.2021.102714.
Ismail T et al. (2021) ‘Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft.’, 11. Available at: https://doi.org/10.3389/fonc.2021.775136.
Ismail T et al. (2021) ‘Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft.’, 11. Available at: https://doi.org/10.3389/fonc.2021.775136.
Ismail T et al. (2020) ‘Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts.’, Journal of tissue engineering and regenerative medicine, 14(12), pp. 1908–1917. Available at: https://doi.org/10.1002/term.3141.
Ismail T et al. (2020) ‘Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts.’, Journal of tissue engineering and regenerative medicine, 14(12), pp. 1908–1917. Available at: https://doi.org/10.1002/term.3141.
Jalili-Firoozinezhad S. et al. (2020) ‘Chicken egg white: Hatching of a new old biomaterial’, Materials Today, 40, pp. 193–214. Available at: https://doi.org/10.1016/j.mattod.2020.05.022.
Jalili-Firoozinezhad S. et al. (2020) ‘Chicken egg white: Hatching of a new old biomaterial’, Materials Today, 40, pp. 193–214. Available at: https://doi.org/10.1016/j.mattod.2020.05.022.
Filippi M et al. (2020) ‘Use of nanoparticles in skeletal tissue regeneration and engineering.’, Histology and histopathology, 35(4), pp. 331–350. Available at: https://doi.org/10.14670/hh-18-184.
Filippi M et al. (2020) ‘Use of nanoparticles in skeletal tissue regeneration and engineering.’, Histology and histopathology, 35(4), pp. 331–350. Available at: https://doi.org/10.14670/hh-18-184.
Nguyen D.-V. et al. (2020) ‘Mastering bioactive coatings of metal oxide nanoparticles and surfaces through phosphonate dendrons’, New Journal of Chemistry, 44(8), pp. 3206–3214. Available at: https://doi.org/10.1039/c9nj05565g.
Nguyen D.-V. et al. (2020) ‘Mastering bioactive coatings of metal oxide nanoparticles and surfaces through phosphonate dendrons’, New Journal of Chemistry, 44(8), pp. 3206–3214. Available at: https://doi.org/10.1039/c9nj05565g.
Siemer S et al. (2020) ‘Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy.’, Nanomaterials (Basel, Switzerland), 10(2). Available at: https://doi.org/10.3390/nano10020383.
Siemer S et al. (2020) ‘Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy.’, Nanomaterials (Basel, Switzerland), 10(2). Available at: https://doi.org/10.3390/nano10020383.
Huang RL et al. (2020) ‘Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation.’, Acta biomaterialia, 102, pp. 458–467. Available at: https://doi.org/10.1016/j.actbio.2019.11.046.
Huang RL et al. (2020) ‘Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation.’, Acta biomaterialia, 102, pp. 458–467. Available at: https://doi.org/10.1016/j.actbio.2019.11.046.
Filippi M et al. (2020) ‘Natural Polymeric Scaffolds in Bone Regeneration.’, Frontiers in bioengineering and biotechnology, 8, p. 474. Available at: https://doi.org/10.3389/fbioe.2020.00474.
Filippi M et al. (2020) ‘Natural Polymeric Scaffolds in Bone Regeneration.’, Frontiers in bioengineering and biotechnology, 8, p. 474. Available at: https://doi.org/10.3389/fbioe.2020.00474.
Largo, Rene” D. et al. (2020) ‘VEGF Over-Expression by Engineered BMSC Accelerates Functional Perfusion, Improving Tissue Density and In-Growth in Clinical-Size Osteogenic Grafts’, Frontiers in bioengineering and biotechnology, 8, p. 755. Available at: https://doi.org/10.3389/fbioe.2020.00755.
Largo, Rene” D. et al. (2020) ‘VEGF Over-Expression by Engineered BMSC Accelerates Functional Perfusion, Improving Tissue Density and In-Growth in Clinical-Size Osteogenic Grafts’, Frontiers in bioengineering and biotechnology, 8, p. 755. Available at: https://doi.org/10.3389/fbioe.2020.00755.
Filippi M et al. (2019) ‘Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells.’, Biomaterials, 223, p. 119468. Available at: https://doi.org/10.1016/j.biomaterials.2019.119468.
Filippi M et al. (2019) ‘Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells.’, Biomaterials, 223, p. 119468. Available at: https://doi.org/10.1016/j.biomaterials.2019.119468.
Lunger A et al. (2019) ‘Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution’, Annals of Plastic Surgery, 83(4), pp. 464–467. Available at: https://doi.org/10.1097/sap.0000000000001857.
Lunger A et al. (2019) ‘Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution’, Annals of Plastic Surgery, 83(4), pp. 464–467. Available at: https://doi.org/10.1097/sap.0000000000001857.
Epple C et al. (2019) ‘Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction’, Biomaterials, 192, pp. 118–127. Available at: https://doi.org/10.1016/j.biomaterials.2018.11.008.
Epple C et al. (2019) ‘Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction’, Biomaterials, 192, pp. 118–127. Available at: https://doi.org/10.1016/j.biomaterials.2018.11.008.
Filippi, Miriam et al. (2019) ‘Metronidazole-functionalized iron oxide nanoparticles for molecular detection of hypoxic tissues’, Nanoscale, 11(46), pp. 22559–22574. Available at: https://doi.org/10.1039/c9nr08436c.
Filippi, Miriam et al. (2019) ‘Metronidazole-functionalized iron oxide nanoparticles for molecular detection of hypoxic tissues’, Nanoscale, 11(46), pp. 22559–22574. Available at: https://doi.org/10.1039/c9nr08436c.
Forget, Aurelien et al. (2019) ‘Mechanically defined microenvironment promotes stabilization of microvasculature, which correlates with the enrichment of a novel Piezo-1+ population of circulating CD11b+/CD115+ monocytes’, Advanced materials, 31(21), p. e1808050. Available at: https://doi.org/10.1002/adma.201808050.
Forget, Aurelien et al. (2019) ‘Mechanically defined microenvironment promotes stabilization of microvasculature, which correlates with the enrichment of a novel Piezo-1+ population of circulating CD11b+/CD115+ monocytes’, Advanced materials, 31(21), p. e1808050. Available at: https://doi.org/10.1002/adma.201808050.
Guerrero J et al. (2018) ‘Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.’, Acta biomaterialia. 04.07.2018, 77, pp. 142–154. Available at: https://doi.org/10.1016/j.actbio.2018.07.004.
Guerrero J et al. (2018) ‘Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.’, Acta biomaterialia. 04.07.2018, 77, pp. 142–154. Available at: https://doi.org/10.1016/j.actbio.2018.07.004.
Blache U. et al. (2018) ‘Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate’, EMBO Reports, 19(8). Available at: https://doi.org/10.15252/embr.201845964.
Blache U. et al. (2018) ‘Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate’, EMBO Reports, 19(8). Available at: https://doi.org/10.15252/embr.201845964.
Rossi E. et al. (2018) ‘An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis’, Tissue Engineering - Part C: Methods, 24(7), pp. 391–398. Available at: https://doi.org/10.1089/ten.tec.2018.0061.
Rossi E. et al. (2018) ‘An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis’, Tissue Engineering - Part C: Methods, 24(7), pp. 391–398. Available at: https://doi.org/10.1089/ten.tec.2018.0061.
Rossi E et al. (2018) ‘Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration.’, Acta biomaterialia. 21.04.2018, 73, pp. 154–166. Available at: https://doi.org/10.1016/j.actbio.2018.04.039.
Rossi E et al. (2018) ‘Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration.’, Acta biomaterialia. 21.04.2018, 73, pp. 154–166. Available at: https://doi.org/10.1016/j.actbio.2018.04.039.
Menzi N et al. (2018) ‘Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells.’, Cytotechnology. 17.01.2018, 70(2), pp. 807–817. Available at: https://doi.org/10.1007/s10616-018-0190-z.
Menzi N et al. (2018) ‘Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells.’, Cytotechnology. 17.01.2018, 70(2), pp. 807–817. Available at: https://doi.org/10.1007/s10616-018-0190-z.
Fennema E.M. et al. (2018) ‘Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study’, Journal of Tissue Engineering and Regenerative Medicine, 12(1), pp. e150–e158. Available at: https://doi.org/10.1002/term.2453.
Fennema E.M. et al. (2018) ‘Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study’, Journal of Tissue Engineering and Regenerative Medicine, 12(1), pp. e150–e158. Available at: https://doi.org/10.1002/term.2453.
Klar AS et al. (2017) ‘Human Adipose Mesenchymal Cells Inhibit Melanocyte Differentiation and the Pigmentation of Human Skin via Increased Expression of TGF-β1.’, The Journal of investigative dermatology. 31.07.2017, 137(12), pp. 2560–2569. Available at: https://doi.org/10.1016/j.jid.2017.06.027.
Klar AS et al. (2017) ‘Human Adipose Mesenchymal Cells Inhibit Melanocyte Differentiation and the Pigmentation of Human Skin via Increased Expression of TGF-β1.’, The Journal of investigative dermatology. 31.07.2017, 137(12), pp. 2560–2569. Available at: https://doi.org/10.1016/j.jid.2017.06.027.
Ismail T et al. (2017) ‘Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.’, Acta biomaterialia, 63, pp. 236–245. Available at: https://doi.org/10.1016/j.actbio.2017.09.003.
Ismail T et al. (2017) ‘Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.’, Acta biomaterialia, 63, pp. 236–245. Available at: https://doi.org/10.1016/j.actbio.2017.09.003.
Cerino G et al. (2017) ‘Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells.’, Scientific reports. 27.10.2017, 7(1), p. 14252. Available at: https://doi.org/10.1038/s41598-017-13882-3.
Cerino G et al. (2017) ‘Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells.’, Scientific reports. 27.10.2017, 7(1), p. 14252. Available at: https://doi.org/10.1038/s41598-017-13882-3.
Jalili-Firoozinezhad S, Martin I and Scherberich A (2017) ‘Bimodal morphological analyses of native and engineered tissues.’, Materials science & engineering. C, Materials for biological applications. 18.03.2017, 76, pp. 543–550. Available at: https://doi.org/10.1016/j.msec.2017.03.140.
Jalili-Firoozinezhad S, Martin I and Scherberich A (2017) ‘Bimodal morphological analyses of native and engineered tissues.’, Materials science & engineering. C, Materials for biological applications. 18.03.2017, 76, pp. 543–550. Available at: https://doi.org/10.1016/j.msec.2017.03.140.
Todorov A. et al. (2017) ‘Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity’, Tissue Engineering - Part A, 23(13-14), pp. 708–715. Available at: https://doi.org/10.1089/ten.tea.2016.0553.
Todorov A. et al. (2017) ‘Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity’, Tissue Engineering - Part A, 23(13-14), pp. 708–715. Available at: https://doi.org/10.1089/ten.tea.2016.0553.
Ismail T et al. (2017) ‘Low osmolality and shear stress during liposuction impair cell viability in autologous fat grafting.’, Journal of plastic, reconstructive & aesthetic surgery : JPRAS, 70(5), pp. 596–605. Available at: https://doi.org/10.1016/j.bjps.2017.01.023.
Ismail T et al. (2017) ‘Low osmolality and shear stress during liposuction impair cell viability in autologous fat grafting.’, Journal of plastic, reconstructive & aesthetic surgery : JPRAS, 70(5), pp. 596–605. Available at: https://doi.org/10.1016/j.bjps.2017.01.023.
Jalili-Firoozinezhad S. et al. (2017) ‘Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications’, RSC Advances, 7(63), pp. 39628–39634. Available at: https://doi.org/10.1039/c7ra06178a.
Jalili-Firoozinezhad S. et al. (2017) ‘Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications’, RSC Advances, 7(63), pp. 39628–39634. Available at: https://doi.org/10.1039/c7ra06178a.
Marsano, Anna et al. (2017) ‘Pericytes Accelerate the in vivo Angiogenesis in mm-Thick Engineered Tissues’. KARGER, 54.
Marsano, Anna et al. (2017) ‘Pericytes Accelerate the in vivo Angiogenesis in mm-Thick Engineered Tissues’. KARGER, 54.
Sutter, Sarah et al. (2017) ‘Contrast-Enhanced Microtomographic Characterisation of Vessels in Native Bone and Engineered Vascularised Grafts Using Ink-Gelatin Perfusion and Phosphotungstic Acid’, Contrast media & molecular imaging, 2017, p. 4035160. Available at: https://doi.org/10.1155/2017/4035160.
Sutter, Sarah et al. (2017) ‘Contrast-Enhanced Microtomographic Characterisation of Vessels in Native Bone and Engineered Vascularised Grafts Using Ink-Gelatin Perfusion and Phosphotungstic Acid’, Contrast media & molecular imaging, 2017, p. 4035160. Available at: https://doi.org/10.1155/2017/4035160.
Tchang, Laurent A. et al. (2017) ‘Pooled thrombin-activated platelet-rich plasma: a substitute for fetal bovine serum in the engineering of osteogenic/vasculogenic grafts’, Journal of Tissue Engineering and Regenerative Medicine, 11(5), pp. 1542–1552. Available at: https://doi.org/10.1002/term.2054.
Tchang, Laurent A. et al. (2017) ‘Pooled thrombin-activated platelet-rich plasma: a substitute for fetal bovine serum in the engineering of osteogenic/vasculogenic grafts’, Journal of Tissue Engineering and Regenerative Medicine, 11(5), pp. 1542–1552. Available at: https://doi.org/10.1002/term.2054.
Herrmann, M. et al. (2016) ‘Pericyte plasticity - comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues’, European Cells and Materials, 31, pp. 236–49. Available at: https://doi.org/10.22203/ecm.v031a16.
Herrmann, M. et al. (2016) ‘Pericyte plasticity - comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues’, European Cells and Materials, 31, pp. 236–49. Available at: https://doi.org/10.22203/ecm.v031a16.
Klar, Agnes S. et al. (2016) ‘Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute’, Pediatric Surgery International, 32(1), pp. 17–27. Available at: https://doi.org/10.1007/s00383-015-3808-7.
Klar, Agnes S. et al. (2016) ‘Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute’, Pediatric Surgery International, 32(1), pp. 17–27. Available at: https://doi.org/10.1007/s00383-015-3808-7.
Osinga, Rik et al. (2016) ‘Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification’, Stem cells translational medicine, 5(8), pp. 1090–7. Available at: https://doi.org/10.5966/sctm.2015-0256.
Osinga, Rik et al. (2016) ‘Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification’, Stem cells translational medicine, 5(8), pp. 1090–7. Available at: https://doi.org/10.5966/sctm.2015-0256.
Saxer, Franziska et al. (2016) ‘Implantation of Stromal Vascular Fraction Progenitors at Bone Fracture Sites: From a Rat Model to a First-in-Man Study’, Stem Cells, 34(12), pp. 2956–2966. Available at: https://doi.org/10.1002/stem.2478.
Saxer, Franziska et al. (2016) ‘Implantation of Stromal Vascular Fraction Progenitors at Bone Fracture Sites: From a Rat Model to a First-in-Man Study’, Stem Cells, 34(12), pp. 2956–2966. Available at: https://doi.org/10.1002/stem.2478.
Todorov, Atanas et al. (2016) ‘Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix’, Stem cells translational medicine, 5(12), pp. 1684–1694. Available at: https://doi.org/10.5966/sctm.2016-0006.
Todorov, Atanas et al. (2016) ‘Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix’, Stem cells translational medicine, 5(12), pp. 1684–1694. Available at: https://doi.org/10.5966/sctm.2016-0006.
Chiovaro, Francesca et al. (2015) ‘Transcriptional regulation of tenascin-W by TGF-beta signaling in the bone metastatic niche of breast cancer cells’, International Journal of Cancer, 137(8), pp. 1842–54. Available at: https://doi.org/10.1002/ijc.29565.
Chiovaro, Francesca et al. (2015) ‘Transcriptional regulation of tenascin-W by TGF-beta signaling in the bone metastatic niche of breast cancer cells’, International Journal of Cancer, 137(8), pp. 1842–54. Available at: https://doi.org/10.1002/ijc.29565.
Jalili-Firoozinezhad, Sasan et al. (2015) ‘Facile fabrication of egg white macroporous sponges for tissue regeneration’, Advanced Healthcare Materials, 4(15), pp. 2281–90. Available at: https://doi.org/10.1002/adhm.201500482.
Jalili-Firoozinezhad, Sasan et al. (2015) ‘Facile fabrication of egg white macroporous sponges for tissue regeneration’, Advanced Healthcare Materials, 4(15), pp. 2281–90. Available at: https://doi.org/10.1002/adhm.201500482.
Kaempfen, Alexandre et al. (2015) ‘Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model’, International journal of molecular sciences, 16(6), pp. 12616–30. Available at: https://doi.org/10.3390/ijms160612616.
Kaempfen, Alexandre et al. (2015) ‘Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model’, International journal of molecular sciences, 16(6), pp. 12616–30. Available at: https://doi.org/10.3390/ijms160612616.
Kappos, Elisabeth A. et al. (2015) ‘Peripheral Nerve Repair: Multimodal Comparison of the Long-Term Regenerative Potential of Adipose Tissue-Derived Cells in a Biodegradable Conduit’, Stem Cells and Development, 24(18), pp. 2127–41. Available at: https://doi.org/10.1089/scd.2014.0424.
Kappos, Elisabeth A. et al. (2015) ‘Peripheral Nerve Repair: Multimodal Comparison of the Long-Term Regenerative Potential of Adipose Tissue-Derived Cells in a Biodegradable Conduit’, Stem Cells and Development, 24(18), pp. 2127–41. Available at: https://doi.org/10.1089/scd.2014.0424.
Osinga, Rik et al. (2015) ‘Effects of intersyringe processing on adipose tissue and its cellular components: implications in autologous fat grafting’, Plastic and Reconstructive Surgery, 135(6), pp. 1618–1628. Available at: https://doi.org/10.1097/prs.0000000000001288.
Osinga, Rik et al. (2015) ‘Effects of intersyringe processing on adipose tissue and its cellular components: implications in autologous fat grafting’, Plastic and Reconstructive Surgery, 135(6), pp. 1618–1628. Available at: https://doi.org/10.1097/prs.0000000000001288.
Papadimitropoulos, Adam et al. (2015) ‘Engineered decellularized matrices to instruct bone regeneration processes’, Bone, 70, pp. 66–72. Available at: https://doi.org/10.1016/j.bone.2014.09.007.
Papadimitropoulos, Adam et al. (2015) ‘Engineered decellularized matrices to instruct bone regeneration processes’, Bone, 70, pp. 66–72. Available at: https://doi.org/10.1016/j.bone.2014.09.007.
Pippenger, Benjamin E. et al. (2015) ‘Bone-forming capacity of adult human nasal chondrocytes’, Journal of Cellular and Molecular Medicine, 19(6), pp. 1390–9. Available at: https://doi.org/10.1111/jcmm.12526.
Pippenger, Benjamin E. et al. (2015) ‘Bone-forming capacity of adult human nasal chondrocytes’, Journal of Cellular and Molecular Medicine, 19(6), pp. 1390–9. Available at: https://doi.org/10.1111/jcmm.12526.
Tremp, Mathias et al. (2015) ‘The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI’, Cell Transplantation, 24(2), pp. 203–211. Available at: https://doi.org/10.3727/096368913x676934.
Tremp, Mathias et al. (2015) ‘The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI’, Cell Transplantation, 24(2), pp. 203–211. Available at: https://doi.org/10.3727/096368913x676934.
Herrmann M. et al. (2014) ‘Vascularization, Survival, and Functionality of Tissue-Engineered Constructs’. Elsevier Inc., pp. 471–496. Available at: https://doi.org/10.1016/b978-0-12-420145-3.00014-6.
Herrmann M. et al. (2014) ‘Vascularization, Survival, and Functionality of Tissue-Engineered Constructs’. Elsevier Inc., pp. 471–496. Available at: https://doi.org/10.1016/b978-0-12-420145-3.00014-6.
Saxer, F. et al. (2014) ‘Robust-regeneration of osteoporotic bone using stem cell transplantation’. WILEY-BLACKWELL, 101.
Saxer, F. et al. (2014) ‘Robust-regeneration of osteoporotic bone using stem cell transplantation’. WILEY-BLACKWELL, 101.
Tremp, M. et al. (2014) ‘The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI’. WILEY-BLACKWELL, 8.
Tremp, M. et al. (2014) ‘The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI’. WILEY-BLACKWELL, 8.
Bourgine, P. et al. (2014) ‘Combination of immortalization and inducible death strategies to generate a human mesenchymal stromal cell line with controlled survival’, Stem Cell Research, 12(2), pp. 584–98. Available at: https://doi.org/10.1016/j.scr.2013.12.006.
Bourgine, P. et al. (2014) ‘Combination of immortalization and inducible death strategies to generate a human mesenchymal stromal cell line with controlled survival’, Stem Cell Research, 12(2), pp. 584–98. Available at: https://doi.org/10.1016/j.scr.2013.12.006.
Klar, Agnieszka S. et al. (2014) ‘Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells’, Biomaterials, 35(19), pp. 5065–78. Available at: https://doi.org/10.1016/j.biomaterials.2014.02.049.
Klar, Agnieszka S. et al. (2014) ‘Tissue-engineered dermo-epidermal skin grafts prevascularized with adipose-derived cells’, Biomaterials, 35(19), pp. 5065–78. Available at: https://doi.org/10.1016/j.biomaterials.2014.02.049.
Largo, Rene D. et al. (2014) ‘Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review’, Journal of Plastic, Reconstructive & Aesthetic Surgery, 67(4), pp. 437–48. Available at: https://doi.org/10.1016/j.bjps.2013.11.011.
Largo, Rene D. et al. (2014) ‘Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: a systematic review’, Journal of Plastic, Reconstructive & Aesthetic Surgery, 67(4), pp. 437–48. Available at: https://doi.org/10.1016/j.bjps.2013.11.011.
Mehrkens, A. et al. (2014) ‘Non-adherent mesenchymal progenitors from adipose tissue stromal vascular fraction’, Tissue Engineering, 20(5-6), pp. 1081–8. Available at: https://doi.org/10.1089/ten.tea.2013.0273.
Mehrkens, A. et al. (2014) ‘Non-adherent mesenchymal progenitors from adipose tissue stromal vascular fraction’, Tissue Engineering, 20(5-6), pp. 1081–8. Available at: https://doi.org/10.1089/ten.tea.2013.0273.
Müller, Andreas A. et al. (2014) ‘Osteoblastic differentiation of Wharton jelly biopsy specimens and their mesenchymal stromal cells after serum-free culture’, Plastic and Reconstructive Surgery, 134(1), pp. 59e–69e. Available at: https://doi.org/10.1097/prs.0000000000000305.
Müller, Andreas A. et al. (2014) ‘Osteoblastic differentiation of Wharton jelly biopsy specimens and their mesenchymal stromal cells after serum-free culture’, Plastic and Reconstructive Surgery, 134(1), pp. 59e–69e. Available at: https://doi.org/10.1097/prs.0000000000000305.
Helmrich, U. et al. (2013) ‘Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors’, Biomaterials, 34(21), pp. 5025–35. Available at: https://doi.org/10.1016/j.biomaterials.2013.03.040.
Helmrich, U. et al. (2013) ‘Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors’, Biomaterials, 34(21), pp. 5025–35. Available at: https://doi.org/10.1016/j.biomaterials.2013.03.040.
Heng, B. C. et al. (2013) ‘mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient’, Metabolic Engineering, 18, pp. 9–24. Available at: https://doi.org/10.1016/j.ymben.2013.02.004.
Heng, B. C. et al. (2013) ‘mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient’, Metabolic Engineering, 18, pp. 9–24. Available at: https://doi.org/10.1016/j.ymben.2013.02.004.
Scherberich, Arnaud, Di Maggio, Nunzia Di and McNagny, Kelly M. (2013) ‘A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue’, World journal of stem cells, 5(1), pp. 1–8. Available at: https://doi.org/10.4252/wjsc.v5.i1.1.
Scherberich, Arnaud, Di Maggio, Nunzia Di and McNagny, Kelly M. (2013) ‘A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue’, World journal of stem cells, 5(1), pp. 1–8. Available at: https://doi.org/10.4252/wjsc.v5.i1.1.
Banfi, A. (2012) ‘Generation of human adult mesenchymal stromal/stem cells expressing defined xenogenic vascular endothelial growth factor levels by optimized transduction and flow cytometry purification’, Tissue engineering. Part C, Methods, 18(4), pp. 283–92. Available at: https://doi.org/10.1089/ten.tec.2011.0413.
Banfi, A. (2012) ‘Generation of human adult mesenchymal stromal/stem cells expressing defined xenogenic vascular endothelial growth factor levels by optimized transduction and flow cytometry purification’, Tissue engineering. Part C, Methods, 18(4), pp. 283–92. Available at: https://doi.org/10.1089/ten.tec.2011.0413.
Güven, Sinan et al. (2012) ‘Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax(R) technology’, Tissue engineering. Part C, 18(8), pp. 575–82. Available at: https://doi.org/10.1089/ten.tec.2011.0617.
Güven, Sinan et al. (2012) ‘Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax(R) technology’, Tissue engineering. Part C, 18(8), pp. 575–82. Available at: https://doi.org/10.1089/ten.tec.2011.0617.
Jakob, M. et al. (2012) ‘Perspective on the evolution of cell-based bone tissue engineering strategies’, European Surgical Research, 49(1), pp. 1–7. Available at: https://doi.org/10.1159/000338362.
Jakob, M. et al. (2012) ‘Perspective on the evolution of cell-based bone tissue engineering strategies’, European Surgical Research, 49(1), pp. 1–7. Available at: https://doi.org/10.1159/000338362.
Martin I. et al. (2012) ‘Proposed evolution of bone tissue engineering strategies’, European Cells and Materials, 24(SUPPL. 1), p. 22.
Martin I. et al. (2012) ‘Proposed evolution of bone tissue engineering strategies’, European Cells and Materials, 24(SUPPL. 1), p. 22.
Mehrkens, A. et al. (2012) ‘Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2’, European cells & materials, 24, pp. 308–19. Available at: https://doi.org/10.22203/ecm.v024a22.
Mehrkens, A. et al. (2012) ‘Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2’, European cells & materials, 24, pp. 308–19. Available at: https://doi.org/10.22203/ecm.v024a22.
Sadr, N. et al. (2012) ‘Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix’, Biomaterials, 33(20), pp. 5085–93. Available at: https://doi.org/10.1016/j.biomaterials.2012.03.082.
Sadr, N. et al. (2012) ‘Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix’, Biomaterials, 33(20), pp. 5085–93. Available at: https://doi.org/10.1016/j.biomaterials.2012.03.082.
Güven, Sinan et al. (2011) ‘Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue’, Biomaterials, 32(25), pp. 5801–9. Available at: https://doi.org/10.1016/j.biomaterials.2011.04.064.
Güven, Sinan et al. (2011) ‘Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue’, Biomaterials, 32(25), pp. 5801–9. Available at: https://doi.org/10.1016/j.biomaterials.2011.04.064.
Papadimitropoulos A. et al. (2011) ‘A 3D in vitro bone organ model using human progenitor cells’, European Cells and Materials, 21, pp. 445–458. Available at: https://doi.org/10.22203/ecm.v021a33.
Papadimitropoulos A. et al. (2011) ‘A 3D in vitro bone organ model using human progenitor cells’, European Cells and Materials, 21, pp. 445–458. Available at: https://doi.org/10.22203/ecm.v021a33.
Bocelli-Tyndall, Chiara et al. (2010) ‘Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells’, Arthritis & Rheumatism, 62(12), pp. 3815–25. Available at: https://doi.org/10.1002/art.27736.
Bocelli-Tyndall, Chiara et al. (2010) ‘Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells’, Arthritis & Rheumatism, 62(12), pp. 3815–25. Available at: https://doi.org/10.1002/art.27736.
Kossowska-Tomaszczuk, Katarzyna et al. (2010) ‘A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment’, Tissue Engineering, 16(6), pp. 2063–2073. Available at: https://doi.org/10.1089/ten.tea.2009.0684.
Kossowska-Tomaszczuk, Katarzyna et al. (2010) ‘A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment’, Tissue Engineering, 16(6), pp. 2063–2073. Available at: https://doi.org/10.1089/ten.tea.2009.0684.
Müller, A. M. et al. (2010) ‘Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue’, European Cells and Materials, 19, pp. 127–35. Available at: https://doi.org/10.22203/ecm.v019a13.
Müller, A. M. et al. (2010) ‘Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue’, European Cells and Materials, 19, pp. 127–35. Available at: https://doi.org/10.22203/ecm.v019a13.
Piccinini E. et al. (2010) ‘Ceramic granules coated with fibrin sealant as a scaffold for perfusion bioreactor in bone tissue engineering’. AO Research Institute Davos, p. 38.
Piccinini E. et al. (2010) ‘Ceramic granules coated with fibrin sealant as a scaffold for perfusion bioreactor in bone tissue engineering’. AO Research Institute Davos, p. 38.
Scherberich, Arnaud et al. (2010) ‘Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts’, Journal of Cellular Physiology, 225(2), pp. 348–53. Available at: https://doi.org/10.1002/jcp.22313.
Scherberich, Arnaud et al. (2010) ‘Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts’, Journal of Cellular Physiology, 225(2), pp. 348–53. Available at: https://doi.org/10.1002/jcp.22313.
Scotti, Celeste et al. (2010) ‘Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering’, Proceedings of the National Academy of Sciences, 107(16), pp. 7251–6. Available at: https://doi.org/10.1073/pnas.1000302107.
Scotti, Celeste et al. (2010) ‘Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering’, Proceedings of the National Academy of Sciences, 107(16), pp. 7251–6. Available at: https://doi.org/10.1073/pnas.1000302107.
Papadimitropoulos A. et al. (2009) ‘An in vitro model of bone organ starting from progenitor cell populations’, p. 56.
Papadimitropoulos A. et al. (2009) ‘An in vitro model of bone organ starting from progenitor cell populations’, p. 56.
Scotti C. et al. (2009) ‘In vivo formation of bone tissue by adult human mesenchymal stem cells depends on the stage of in vitro chondrogenic differentiation’, p. 4.
Scotti C. et al. (2009) ‘In vivo formation of bone tissue by adult human mesenchymal stem cells depends on the stage of in vitro chondrogenic differentiation’, p. 4.
Kossowska-Tomaszczuk, Katarzyna et al. (2009) ‘The multipotency of luteinizing granulosa cells collected from mature ovarian follicles’, Stem Cells, 27(1), pp. 210–219. Available at: https://doi.org/10.1634/stemcells.2008-0233.
Kossowska-Tomaszczuk, Katarzyna et al. (2009) ‘The multipotency of luteinizing granulosa cells collected from mature ovarian follicles’, Stem Cells, 27(1), pp. 210–219. Available at: https://doi.org/10.1634/stemcells.2008-0233.
Müller, Andreas M et al. (2009) ‘Platelet lysate as a serum substitute for 2D static and 3D perfusion culture of stromal vascular fraction cells from human adipose tissue’, Tissue engineering. Part A, 15(4), pp. 869–75. Available at: https://doi.org/10.1089/ten.tea.2008.0498.
Müller, Andreas M et al. (2009) ‘Platelet lysate as a serum substitute for 2D static and 3D perfusion culture of stromal vascular fraction cells from human adipose tissue’, Tissue engineering. Part A, 15(4), pp. 869–75. Available at: https://doi.org/10.1089/ten.tea.2008.0498.
Montjovent M.-O. et al. (2008) ‘Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering’, Bone, 42(3), pp. 554–564. Available at: https://doi.org/10.1016/j.bone.2007.10.018.
Montjovent M.-O. et al. (2008) ‘Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering’, Bone, 42(3), pp. 554–564. Available at: https://doi.org/10.1016/j.bone.2007.10.018.
Larghero, J et al. (2008) ‘Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis’, Annals of the rheumatic diseases : ARD, 67(4), pp. 443–9. Available at: https://doi.org/10.1136/ard.2007.071233.
Larghero, J et al. (2008) ‘Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis’, Annals of the rheumatic diseases : ARD, 67(4), pp. 443–9. Available at: https://doi.org/10.1136/ard.2007.071233.
Scherberich, Arnaud et al. (2007) ‘Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity’, Stem Cells, 25(7), pp. 1823–9. Available at: https://doi.org/10.1634/stemcells.2007-0124.
Scherberich, Arnaud et al. (2007) ‘Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity’, Stem Cells, 25(7), pp. 1823–9. Available at: https://doi.org/10.1634/stemcells.2007-0124.
Timmins, Nicholas E et al. (2007) ‘Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion)’, Tissue engineering, 13(8), pp. 2021–8. Available at: https://doi.org/10.1089/ten.2006.0158.
Timmins, Nicholas E et al. (2007) ‘Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion)’, Tissue engineering, 13(8), pp. 2021–8. Available at: https://doi.org/10.1089/ten.2006.0158.
Linscheid, Philippe et al. (2006) ‘Cytokine-induced metabolic effects in human adipocytes are independent of endogenous nitric oxide’, American Journal of Physiology. Endocrinology and Metabolism, 290(6), pp. E1068–77. Available at: https://doi.org/10.1152/ajpendo.00374.2005.
Linscheid, Philippe et al. (2006) ‘Cytokine-induced metabolic effects in human adipocytes are independent of endogenous nitric oxide’, American Journal of Physiology. Endocrinology and Metabolism, 290(6), pp. E1068–77. Available at: https://doi.org/10.1152/ajpendo.00374.2005.
Scherberich A et al. (2005) ‘Tenascin-W is found in malignant mammary tumors, promotes alpha8 integrin-dependent motility and requires p38MAPK activity for BMP-2 and TNF-alpha induced expression in vitro.’, Oncogene, 24(9), pp. 1525–32. Available at: https://doi.org/10.1038/sj.onc.1208342.
Scherberich A et al. (2005) ‘Tenascin-W is found in malignant mammary tumors, promotes alpha8 integrin-dependent motility and requires p38MAPK activity for BMP-2 and TNF-alpha induced expression in vitro.’, Oncogene, 24(9), pp. 1525–32. Available at: https://doi.org/10.1038/sj.onc.1208342.
Scherberich A et al. (2004) ‘Murine tenascin-W: a novel mammalian tenascin expressed in kidney and at sites of bone and smooth muscle development.’, Journal of cell science, 117(Pt 4), pp. 571–81. Available at: https://doi.org/10.1242/jcs.00867.
Scherberich A et al. (2004) ‘Murine tenascin-W: a novel mammalian tenascin expressed in kidney and at sites of bone and smooth muscle development.’, Journal of cell science, 117(Pt 4), pp. 571–81. Available at: https://doi.org/10.1242/jcs.00867.