[FG] Center for Intelligent Optics[FG] Center for Intelligent Optics
Publications
91 found
Show per page
Bayhaqi, Y.A. et al. (2023) ‘Real-time closed-loop tissue-specific laser osteotomy using deep-learning-assisted optical coherence tomography’, Biomedical Optics Express, 14, pp. 2986–3002. Available at: https://doi.org/10.1364/boe.486660.
Bayhaqi, Y.A. et al. (2023) ‘Real-time closed-loop tissue-specific laser osteotomy using deep-learning-assisted optical coherence tomography’, Biomedical Optics Express, 14, pp. 2986–3002. Available at: https://doi.org/10.1364/boe.486660.
Canbaz, Ferda and Butkus, Arminas (2023) ‘Spectroscopic investigation of Tm<sup>3+</sup>-Dy<sup>3+</sup> co-doped KY3F10 crystals for 3 µm laser applications’. Available at: https://doi.org/10.1109/cleo/europe-eqec57999.2023.10232805.
Canbaz, Ferda and Butkus, Arminas (2023) ‘Spectroscopic investigation of Tm<sup>3+</sup>-Dy<sup>3+</sup> co-doped KY3F10 crystals for 3 µm laser applications’. Available at: https://doi.org/10.1109/cleo/europe-eqec57999.2023.10232805.
Cetin, Cigdem et al. (2023) ‘Bone ablation performance of a Tm-Cr-Ho:YAG Laser’. Available at: https://doi.org/10.1117/12.2647703.
Cetin, Cigdem et al. (2023) ‘Bone ablation performance of a Tm-Cr-Ho:YAG Laser’. Available at: https://doi.org/10.1117/12.2647703.
Hamidi, A. et al. (2023) ‘Towards phase-sensitive optical coherence tomography in smart laser osteotomy: temperature feedback’, Lasers in Medical Science, 38. Available at: https://doi.org/10.1007/s10103-023-03886-z.
Hamidi, A. et al. (2023) ‘Towards phase-sensitive optical coherence tomography in smart laser osteotomy: temperature feedback’, Lasers in Medical Science, 38. Available at: https://doi.org/10.1007/s10103-023-03886-z.
Hamidi, A. et al. (2023) ‘Multimodal feedback systems for smart laser osteotomy: Depth control and tissue differentiation’, Lasers in Surgery and Medicine, 55, pp. 900–911. Available at: https://doi.org/10.1002/lsm.23732.
Hamidi, A. et al. (2023) ‘Multimodal feedback systems for smart laser osteotomy: Depth control and tissue differentiation’, Lasers in Surgery and Medicine, 55, pp. 900–911. Available at: https://doi.org/10.1002/lsm.23732.
Hamidi, A. et al. (2023) ‘Towards miniaturized OCT-guided laser osteotomy: integration of fiber-coupled Er:YAG laser with OCT’, OSA Continuum, 2, pp. 2106–2115. Available at: https://doi.org/10.1364/optcon.497483.
Hamidi, A. et al. (2023) ‘Towards miniaturized OCT-guided laser osteotomy: integration of fiber-coupled Er:YAG laser with OCT’, OSA Continuum, 2, pp. 2106–2115. Available at: https://doi.org/10.1364/optcon.497483.
Bayhaqi Y.A. et al. (2022) ‘Deep-Learning-Based Fast Optical Coherence Tomography (OCT) Image Denoising for Smart Laser Osteotomy’, IEEE Transactions on Medical Imaging, 41(10), pp. 2615–2628. Available at: https://doi.org/10.1109/tmi.2022.3168793.
Bayhaqi Y.A. et al. (2022) ‘Deep-Learning-Based Fast Optical Coherence Tomography (OCT) Image Denoising for Smart Laser Osteotomy’, IEEE Transactions on Medical Imaging, 41(10), pp. 2615–2628. Available at: https://doi.org/10.1109/tmi.2022.3168793.
Cetin C. et al. (2022) ‘Bone ablation using a Ho:YAG laser’. Walter de Gruyter GmbH, pp. 580–583. Available at: https://doi.org/10.1515/cdbme-2022-1148.
Cetin C. et al. (2022) ‘Bone ablation using a Ho:YAG laser’. Walter de Gruyter GmbH, pp. 580–583. Available at: https://doi.org/10.1515/cdbme-2022-1148.
Nguendon Kenhagho H. et al. (2022) ‘Toward optoacoustic sciatic nerve detection using an all-fiber interferometric-based sensor for endoscopic smart laser surgery’, Lasers in Surgery and Medicine, 54(2), pp. 289–304. Available at: https://doi.org/10.1002/lsm.23473.
Nguendon Kenhagho H. et al. (2022) ‘Toward optoacoustic sciatic nerve detection using an all-fiber interferometric-based sensor for endoscopic smart laser surgery’, Lasers in Surgery and Medicine, 54(2), pp. 289–304. Available at: https://doi.org/10.1002/lsm.23473.
Abbasi, Hamed et al. (2022) ‘All-fiber-optic LIBS system for tissue differentiation: A prospect for endoscopic smart laser osteotomy’, Optics and Lasers in Engineering, 148, p. 106765. Available at: https://doi.org/10.1016/j.optlaseng.2021.106765.
Abbasi, Hamed et al. (2022) ‘All-fiber-optic LIBS system for tissue differentiation: A prospect for endoscopic smart laser osteotomy’, Optics and Lasers in Engineering, 148, p. 106765. Available at: https://doi.org/10.1016/j.optlaseng.2021.106765.
Canbaz F. et al. (2022) ‘Laser-Induced Breakdown Spectroscopy Combined with Artificial Neural Network for Pre-carbonization Detection in Laserosteotomy’. Springer Science and Business Media B.V., pp. 89–96. Available at: https://doi.org/10.1007/978-3-030-76147-9_10.
Canbaz F. et al. (2022) ‘Laser-Induced Breakdown Spectroscopy Combined with Artificial Neural Network for Pre-carbonization Detection in Laserosteotomy’. Springer Science and Business Media B.V., pp. 89–96. Available at: https://doi.org/10.1007/978-3-030-76147-9_10.
Tajmirriahi, M. et al. (2022) ‘Mixture of Symmetric Stable Distributions for Macular Pathology Detection in Optical Coherence Tomography Scans’. Institute of Electrical and Electronics Engineers Inc., pp. 3866–3869. Available at: https://doi.org/10.1109/embc48229.2022.9871357.
Tajmirriahi, M. et al. (2022) ‘Mixture of Symmetric Stable Distributions for Macular Pathology Detection in Optical Coherence Tomography Scans’. Institute of Electrical and Electronics Engineers Inc., pp. 3866–3869. Available at: https://doi.org/10.1109/embc48229.2022.9871357.
Tajmirriahi, M. et al. (2022) ‘Stochastic Differential Equations for Automatic Quality Control of Retinal Optical Coherence Tomography images’. Institute of Electrical and Electronics Engineers Inc., pp. 3870–3873. Available at: https://doi.org/10.1109/embc48229.2022.9870918.
Tajmirriahi, M. et al. (2022) ‘Stochastic Differential Equations for Automatic Quality Control of Retinal Optical Coherence Tomography images’. Institute of Electrical and Electronics Engineers Inc., pp. 3870–3873. Available at: https://doi.org/10.1109/embc48229.2022.9870918.
Bayhaqi Y.A. et al. (2021) ‘Deep learning models comparison for tissue classification using optical coherence tomography images: Toward smart laser osteotomy’, OSA Continuum, 4(9), pp. 2510–2526. Available at: https://doi.org/10.1364/osac.435184.
Bayhaqi Y.A. et al. (2021) ‘Deep learning models comparison for tissue classification using optical coherence tomography images: Toward smart laser osteotomy’, OSA Continuum, 4(9), pp. 2510–2526. Available at: https://doi.org/10.1364/osac.435184.
Beltran Bernal L.M. et al. (2021) ‘Optical fibers for endoscopic high-power Er:YAG laserosteotomy’, Journal of biomedical optics, 26(9). Available at: https://doi.org/10.1117/1.jbo.26.9.095002.
Beltran Bernal L.M. et al. (2021) ‘Optical fibers for endoscopic high-power Er:YAG laserosteotomy’, Journal of biomedical optics, 26(9). Available at: https://doi.org/10.1117/1.jbo.26.9.095002.
Tajmirriahi M. et al. (2021) ‘Modeling of Retinal Optical Coherence Tomography Based on Stochastic Differential Equations: Application to Denoising’, IEEE Transactions on Medical Imaging, 40(8), pp. 2129–2141. Available at: https://doi.org/10.1109/tmi.2021.3073174.
Tajmirriahi M. et al. (2021) ‘Modeling of Retinal Optical Coherence Tomography Based on Stochastic Differential Equations: Application to Denoising’, IEEE Transactions on Medical Imaging, 40(8), pp. 2129–2141. Available at: https://doi.org/10.1109/tmi.2021.3073174.
Kenhagho H.N. et al. (2021) ‘Corrigendum to “Miniaturized optoacoustic feedback sensor for smart laser osteotome: Fiber-coupled Fabry-Pérot etalon sensor” [Sens. Actuators A: Phys. 317 (January) (2021) 112394] (Sensors and Actuators: A. Physical (2021) 317, (S0924424720317106), (10.1016/j.sna.2020.112394))’, Sensors and Actuators, A: Physical, 320. Available at: https://doi.org/10.1016/j.sna.2021.112570.
Kenhagho H.N. et al. (2021) ‘Corrigendum to “Miniaturized optoacoustic feedback sensor for smart laser osteotome: Fiber-coupled Fabry-Pérot etalon sensor” [Sens. Actuators A: Phys. 317 (January) (2021) 112394] (Sensors and Actuators: A. Physical (2021) 317, (S0924424720317106), (10.1016/j.sna.2020.112394))’, Sensors and Actuators, A: Physical, 320. Available at: https://doi.org/10.1016/j.sna.2021.112570.
Shevchik S. et al. (2021) ‘Machine learning monitoring for laser osteotomy’, Journal of Biophotonics, 14(4). Available at: https://doi.org/10.1002/jbio.202000352.
Shevchik S. et al. (2021) ‘Machine learning monitoring for laser osteotomy’, Journal of Biophotonics, 14(4). Available at: https://doi.org/10.1002/jbio.202000352.
Duverney, Cedric et al. (2021) ‘Sterile tissue ablation using laser light⇔system design, experimental validation, and outlook on clinical applicability’, Journal of Medical Devices, Transactions of the ASME, 15(1). Available at: https://doi.org/10.1115/1.4049396.
Duverney, Cedric et al. (2021) ‘Sterile tissue ablation using laser light⇔system design, experimental validation, and outlook on clinical applicability’, Journal of Medical Devices, Transactions of the ASME, 15(1). Available at: https://doi.org/10.1115/1.4049396.
Nguendon Kenhagho H. et al. (2021) ‘Machine Learning-Based Optoacoustic Tissue Classification Method for Laser Osteotomes Using an Air-Coupled Transducer’, Lasers in Surgery and Medicine, 53(3), pp. 377–389. Available at: https://doi.org/10.1002/lsm.23290.
Nguendon Kenhagho H. et al. (2021) ‘Machine Learning-Based Optoacoustic Tissue Classification Method for Laser Osteotomes Using an Air-Coupled Transducer’, Lasers in Surgery and Medicine, 53(3), pp. 377–389. Available at: https://doi.org/10.1002/lsm.23290.
Abbasi, Hamed et al. (2021) ‘Highly flexible fiber delivery of a high peak power nanosecond Nd:YAG laser beam for flexiscopic applications’, Biomedical Optics Express, 12(1), pp. 444–461. Available at: https://doi.org/10.1364/boe.405825.
Abbasi, Hamed et al. (2021) ‘Highly flexible fiber delivery of a high peak power nanosecond Nd:YAG laser beam for flexiscopic applications’, Biomedical Optics Express, 12(1), pp. 444–461. Available at: https://doi.org/10.1364/boe.405825.
Abbasi, Hamed et al. (2021) ‘Simulation of Echellogram Using Zemax OpticStudio and Matlab for LIBS’, in Rauter, Georg; Cattin, Philippe C.; Zam, Azhar; Riener, Robert; Carbone, Giuseppe; Pisla, Doina (ed.) Mechanisms and Machine Science. Springer Nature Switzerland AG: Springer Nature Switzerland AG (Mechanisms and Machine Science). Available at: https://doi.org/10.1007/978-3-030-58104-6_24.
Abbasi, Hamed et al. (2021) ‘Simulation of Echellogram Using Zemax OpticStudio and Matlab for LIBS’, in Rauter, Georg; Cattin, Philippe C.; Zam, Azhar; Riener, Robert; Carbone, Giuseppe; Pisla, Doina (ed.) Mechanisms and Machine Science. Springer Nature Switzerland AG: Springer Nature Switzerland AG (Mechanisms and Machine Science). Available at: https://doi.org/10.1007/978-3-030-58104-6_24.
Duverney, Cédric et al. (2021) ‘Robot- and Laser-Assisted Bio-Sample Preparation: Development of an Integrated, Intuitive System’, in Rauter, Georg; Cattin, Philippe C.; Zam, Azhar; Riener, Robert; Carbone, Giuseppe; Pisla, Doina (ed.) Mechanisms and Machine Science. Springer Nature Switzerland AG: Springer Nature Switzerland AG (Mechanisms and Machine Science). Available at: https://doi.org/10.1007/978-3-030-58104-6_25.
Duverney, Cédric et al. (2021) ‘Robot- and Laser-Assisted Bio-Sample Preparation: Development of an Integrated, Intuitive System’, in Rauter, Georg; Cattin, Philippe C.; Zam, Azhar; Riener, Robert; Carbone, Giuseppe; Pisla, Doina (ed.) Mechanisms and Machine Science. Springer Nature Switzerland AG: Springer Nature Switzerland AG (Mechanisms and Machine Science). Available at: https://doi.org/10.1007/978-3-030-58104-6_25.
Hamidi A. et al. (2021) ‘Observation of controlled temperature changes of bone by phase-sensitive optical coherence tomography’. SPIE. Available at: https://doi.org/10.1117/12.2616133.
Hamidi A. et al. (2021) ‘Observation of controlled temperature changes of bone by phase-sensitive optical coherence tomography’. SPIE. Available at: https://doi.org/10.1117/12.2616133.
Hamidi A. et al. (2021) ‘Observation of controlled temperature changes of bone by phase-sensitive optical coherence tomography’. Optica Publishing Group (formerly OSA).
Hamidi A. et al. (2021) ‘Observation of controlled temperature changes of bone by phase-sensitive optical coherence tomography’. Optica Publishing Group (formerly OSA).
Hamidi, Arsham et al. (2021) ‘Long-range optical coherence tomography with extended depth-of-focus: a visual feedback system for smart laser osteotomy’, Biomedical Optics Express, 12(4), pp. 2118–2133. Available at: https://doi.org/10.1364/boe.414300.
Hamidi, Arsham et al. (2021) ‘Long-range optical coherence tomography with extended depth-of-focus: a visual feedback system for smart laser osteotomy’, Biomedical Optics Express, 12(4), pp. 2118–2133. Available at: https://doi.org/10.1364/boe.414300.
Iafolla, Lorenzo et al. (2021) ‘Machine learning-based method for linearization and error compensation of a novel absolute rotary encoder’, Measurement, 169, p. 108547. Available at: https://doi.org/10.1016/j.measurement.2020.108547.
Iafolla, Lorenzo et al. (2021) ‘Machine learning-based method for linearization and error compensation of a novel absolute rotary encoder’, Measurement, 169, p. 108547. Available at: https://doi.org/10.1016/j.measurement.2020.108547.
Manavi S. et al. (2021) ‘Using supervised deep-learning to model edge-FBG shape sensors: A feasibility study’. SPIE. Available at: https://doi.org/10.1117/12.2589252.
Manavi S. et al. (2021) ‘Using supervised deep-learning to model edge-FBG shape sensors: A feasibility study’. SPIE. Available at: https://doi.org/10.1117/12.2589252.
Nguendon Kenhagho H. et al. (2021) ‘Optoacoustic tissue classification for laser osteotomes using mahalanobis distance-based method’. Springer Science and Business Media B.V., pp. 202–210. Available at: https://doi.org/10.1007/978-3-030-58104-6_23.
Nguendon Kenhagho H. et al. (2021) ‘Optoacoustic tissue classification for laser osteotomes using mahalanobis distance-based method’. Springer Science and Business Media B.V., pp. 202–210. Available at: https://doi.org/10.1007/978-3-030-58104-6_23.
Nguendon Kenhagho H. et al. (2021) ‘Miniaturized optoacoustic feedback sensor for smart laser osteotome: Fiber-coupled Fabry-Pérot etalon sensor’, Sensors and Actuators, A: Physical, 317. Available at: https://doi.org/10.1016/j.sna.2020.112394.
Nguendon Kenhagho H. et al. (2021) ‘Miniaturized optoacoustic feedback sensor for smart laser osteotome: Fiber-coupled Fabry-Pérot etalon sensor’, Sensors and Actuators, A: Physical, 317. Available at: https://doi.org/10.1016/j.sna.2020.112394.
Rauter G. et al. (2021) ‘Preface’, 93, pp. v–vi.
Rauter G. et al. (2021) ‘Preface’, 93, pp. v–vi.
Seppi C. et al. (2021) ‘Deep-Learning Approach for Tissue Classification Using Acoustic Waves during Ablation with an Er:YAG Laser’, IEEE Access, 9, pp. 130543–130553. Available at: https://doi.org/10.1109/access.2021.3113055.
Seppi C. et al. (2021) ‘Deep-Learning Approach for Tissue Classification Using Acoustic Waves during Ablation with an Er:YAG Laser’, IEEE Access, 9, pp. 130543–130553. Available at: https://doi.org/10.1109/access.2021.3113055.
Bernal L.M.B., Abbasi H. and Zam A. (2020) ‘Laser in bone surgery’. Springer International Publishing, pp. 99–109. Available at: https://doi.org/10.1007/978-3-030-29604-9_9.
Bernal L.M.B., Abbasi H. and Zam A. (2020) ‘Laser in bone surgery’. Springer International Publishing, pp. 99–109. Available at: https://doi.org/10.1007/978-3-030-29604-9_9.
Canbaz F. and Zam A. (2020) ‘Laser safety’. Springer International Publishing, pp. 255–262. Available at: https://doi.org/10.1007/978-3-030-29604-9_20.
Canbaz F. and Zam A. (2020) ‘Laser safety’. Springer International Publishing, pp. 255–262. Available at: https://doi.org/10.1007/978-3-030-29604-9_20.
Zam A. (2020) ‘Laser-tissue interaction’. Springer International Publishing, pp. 25–34. Available at: https://doi.org/10.1007/978-3-030-29604-9_3.
Zam A. (2020) ‘Laser-tissue interaction’. Springer International Publishing, pp. 25–34. Available at: https://doi.org/10.1007/978-3-030-29604-9_3.
Abbasi, Hamed et al. (2020) ‘Combined Nd:YAG and Er:YAG lasers for real-time closed-loop tissue-specific laser osteotomy’, Biomedical Optics Express, 11(4), pp. 1790–1807. Available at: https://doi.org/10.1364/boe.385862.
Abbasi, Hamed et al. (2020) ‘Combined Nd:YAG and Er:YAG lasers for real-time closed-loop tissue-specific laser osteotomy’, Biomedical Optics Express, 11(4), pp. 1790–1807. Available at: https://doi.org/10.1364/boe.385862.
Abbasi, Hamed, Cattin, Philippe C. and Zam, Azhar (2020) ‘A Simple Acoustic-Based Method for Lens-to-Sample Distance Adjustment in µLIBS’. IEEE: IEEE. Available at: https://doi.org/10.1109/pn50013.2020.9167018.
Abbasi, Hamed, Cattin, Philippe C. and Zam, Azhar (2020) ‘A Simple Acoustic-Based Method for Lens-to-Sample Distance Adjustment in µLIBS’. IEEE: IEEE. Available at: https://doi.org/10.1109/pn50013.2020.9167018.
Beltran Bernal, Lina Marcela et al. (2020) ‘Optimizing deep bone ablation by means of a microsecond Er:YAG laser and a novel water microjet irrigation system’, Biomedical Optics Express, 11(12), pp. 7253–7272. Available at: https://doi.org/10.1364/boe.408914.
Beltran Bernal, Lina Marcela et al. (2020) ‘Optimizing deep bone ablation by means of a microsecond Er:YAG laser and a novel water microjet irrigation system’, Biomedical Optics Express, 11(12), pp. 7253–7272. Available at: https://doi.org/10.1364/boe.408914.
Beltran Bernal L.M. et al. (2020) ‘Measurements of coupling efficiency of high power Er:YAG laser in different types of optical fibers’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2546048.
Beltran Bernal L.M. et al. (2020) ‘Measurements of coupling efficiency of high power Er:YAG laser in different types of optical fibers’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2546048.
Hamidi A. et al. (2020) ‘Imaging photothermal-induced expansion of bone during laser osteotomy by phase-sensitive OCT: Preliminary results’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2555675.
Hamidi A. et al. (2020) ‘Imaging photothermal-induced expansion of bone during laser osteotomy by phase-sensitive OCT: Preliminary results’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2555675.
Iafolla, Lorenzo et al. (2020) ‘Proof of concept of a novel absolute rotary encoder’, Sensors and Actuators A: Physical, 312, p. 112100. Available at: https://doi.org/10.1016/j.sna.2020.112100.
Iafolla, Lorenzo et al. (2020) ‘Proof of concept of a novel absolute rotary encoder’, Sensors and Actuators A: Physical, 312, p. 112100. Available at: https://doi.org/10.1016/j.sna.2020.112100.
Lengenfelder B. et al. (2020) ‘Image reconstruction for remote photoacoustic tomography using speckle-analysis’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2553080.
Lengenfelder B. et al. (2020) ‘Image reconstruction for remote photoacoustic tomography using speckle-analysis’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2553080.
Schnider E. et al. (2020) ‘3D Segmentation Networks for Excessive Numbers of Classes: Distinct Bone Segmentation in Upper Bodies’. Springer Science and Business Media Deutschland GmbHinfo@springer-sbm.com, pp. 40–49. Available at: https://doi.org/10.1007/978-3-030-59861-7_5.
Schnider E. et al. (2020) ‘3D Segmentation Networks for Excessive Numbers of Classes: Distinct Bone Segmentation in Upper Bodies’. Springer Science and Business Media Deutschland GmbHinfo@springer-sbm.com, pp. 40–49. Available at: https://doi.org/10.1007/978-3-030-59861-7_5.
Iafolla L. et al. (2019) ‘Preliminary Tests of the Miniaturization of a Novel Concept of Angular Sensors’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/sensors43011.2019.8956732.
Iafolla L. et al. (2019) ‘Preliminary Tests of the Miniaturization of a Novel Concept of Angular Sensors’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/sensors43011.2019.8956732.
Iafolla L. et al. (2019) ‘Data Acquisition System for a Medical Tracking Device based on a Novel Angular Sensor : How to Acquire and Process Data from the ASTRAS Tracking System’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/sensors43011.2019.8956777.
Iafolla L. et al. (2019) ‘Data Acquisition System for a Medical Tracking Device based on a Novel Angular Sensor : How to Acquire and Process Data from the ASTRAS Tracking System’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/sensors43011.2019.8956777.
Kenhagho H.N. et al. (2019) ‘A First Approach to Miniaturized Optoacoustic Feedback Sensor for Smart Laser Osteotome : Fiber-Coupled Fabry-Pérot Etalon Sensor’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/sensors43011.2019.8956743.
Kenhagho H.N. et al. (2019) ‘A First Approach to Miniaturized Optoacoustic Feedback Sensor for Smart Laser Osteotome : Fiber-Coupled Fabry-Pérot Etalon Sensor’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/sensors43011.2019.8956743.
Kenhagho H.N. et al. (2019) ‘Contact-free Crater Depth Monitoring Using Measured Acoustic Shock Waves for Smart Laser Surgery Applications: Preliminary Result’. Institute of Electrical and Electronics Engineers Inc., pp. 118–121. Available at: https://doi.org/10.1109/icramet47453.2019.8980427.
Kenhagho H.N. et al. (2019) ‘Contact-free Crater Depth Monitoring Using Measured Acoustic Shock Waves for Smart Laser Surgery Applications: Preliminary Result’. Institute of Electrical and Electronics Engineers Inc., pp. 118–121. Available at: https://doi.org/10.1109/icramet47453.2019.8980427.
Zoller E.I. et al. (2019) ‘Assessment of the Functional Rotational Workspace of Different Grasp Type Handles for the lambda.6 Haptic Device’. Institute of Electrical and Electronics Engineers Inc., pp. 127–132. Available at: https://doi.org/10.1109/whc.2019.8816080.
Zoller E.I. et al. (2019) ‘Assessment of the Functional Rotational Workspace of Different Grasp Type Handles for the lambda.6 Haptic Device’. Institute of Electrical and Electronics Engineers Inc., pp. 127–132. Available at: https://doi.org/10.1109/whc.2019.8816080.
Bayhaqi, Yakub A. et al. (2019) ‘Neural Network in Tissue Characterization of Optical Coherence Tomography Images for Smart Laser Surgery: A Preliminary Study’, in Nasution, A.; Hatta, A. M. (ed.) Proceedings of SPIE. SPIE: SPIE (Proceedings of SPIE). Available at: https://doi.org/10.1117/12.2503214.
Bayhaqi, Yakub A. et al. (2019) ‘Neural Network in Tissue Characterization of Optical Coherence Tomography Images for Smart Laser Surgery: A Preliminary Study’, in Nasution, A.; Hatta, A. M. (ed.) Proceedings of SPIE. SPIE: SPIE (Proceedings of SPIE). Available at: https://doi.org/10.1117/12.2503214.
Bayhaqi Y.A. et al. (2019) ‘Fast optical coherence tomography image enhancement using deep learning for smart laser surgery: Preliminary study in bone tissue’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2527293.
Bayhaqi Y.A. et al. (2019) ‘Fast optical coherence tomography image enhancement using deep learning for smart laser surgery: Preliminary study in bone tissue’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2527293.
Faludi B. et al. (2019) ‘Direct Visual and Haptic Volume Rendering of Medical Data Sets for an Immersive Exploration in Virtual Reality’. Springer Science and Business Media Deutschland GmbH, pp. 29–37. Available at: https://doi.org/10.1007/978-3-030-32254-0_4.
Faludi B. et al. (2019) ‘Direct Visual and Haptic Volume Rendering of Medical Data Sets for an Immersive Exploration in Virtual Reality’. Springer Science and Business Media Deutschland GmbH, pp. 29–37. Available at: https://doi.org/10.1007/978-3-030-32254-0_4.
Kenhagho, Herve Nguendon et al. (2019) ‘Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer’, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control (IEEE T ULTRASON FERR), 66(9), pp. 1435–1443. Available at: https://doi.org/10.1109/tuffc.2019.2923696.
Kenhagho, Herve Nguendon et al. (2019) ‘Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer’, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control (IEEE T ULTRASON FERR), 66(9), pp. 1435–1443. Available at: https://doi.org/10.1109/tuffc.2019.2923696.
Lengenfelder B. et al. (2019) ‘Model for the description of remote photoacoustic sensing using speckle-analysis’. Optica Publishing Group (formerly OSA). Available at: https://doi.org/10.1117/12.2526593.
Lengenfelder B. et al. (2019) ‘Model for the description of remote photoacoustic sensing using speckle-analysis’. Optica Publishing Group (formerly OSA). Available at: https://doi.org/10.1117/12.2526593.
Nahum U., Zam A. and Cattin P.C. (2019) ‘Bone reconstruction and depth control during laser ablation’. Springer Verlagservice@springer.de, pp. 126–135. Available at: https://doi.org/10.1007/978-3-030-11166-3_11.
Nahum U., Zam A. and Cattin P.C. (2019) ‘Bone reconstruction and depth control during laser ablation’. Springer Verlagservice@springer.de, pp. 126–135. Available at: https://doi.org/10.1007/978-3-030-11166-3_11.
Nguendon Kenhagho, Herve et al. (2019) ‘Characterization of Ablated Bone and Muscle for Long-Pulsed Laser Ablation in Dry and Wet Conditions’, Materials, 12(8), p. 1338. Available at: https://doi.org/10.3390/ma12081338.
Nguendon Kenhagho, Herve et al. (2019) ‘Characterization of Ablated Bone and Muscle for Long-Pulsed Laser Ablation in Dry and Wet Conditions’, Materials, 12(8), p. 1338. Available at: https://doi.org/10.3390/ma12081338.
Susic, Ivan et al. (2019) ‘Enabling minimal invasive palpation in flexible robotic endoscopes’, in Carbone, G; Ceccarelli, M; Pisla, D (ed.) Mechanisms and Machine Science. Springer Science and Business Media B.V. (Mechanisms and Machine Science), pp. 70–77. Available at: https://doi.org/10.1007/978-3-030-00329-6_9.
Susic, Ivan et al. (2019) ‘Enabling minimal invasive palpation in flexible robotic endoscopes’, in Carbone, G; Ceccarelli, M; Pisla, D (ed.) Mechanisms and Machine Science. Springer Science and Business Media B.V. (Mechanisms and Machine Science), pp. 70–77. Available at: https://doi.org/10.1007/978-3-030-00329-6_9.
Eugster M. et al. (2018) ‘A Parallel Robotic Mechanism for the Stabilization and Guidance of an Endoscope Tip in Laser Osteotomy’. Institute of Electrical and Electronics Engineers Inc., pp. 1306–1311. Available at: https://doi.org/10.1109/iros.2018.8594188.
Eugster M. et al. (2018) ‘A Parallel Robotic Mechanism for the Stabilization and Guidance of an Endoscope Tip in Laser Osteotomy’. Institute of Electrical and Electronics Engineers Inc., pp. 1306–1311. Available at: https://doi.org/10.1109/iros.2018.8594188.
Beltran Bernal L.M. et al. (2018) ‘Optimizing controlled laser cutting of hard tissue (bone)’, At-Automatisierungstechnik, 66(12), pp. 1072–1082. Available at: https://doi.org/10.1515/auto-2018-0072.
Beltran Bernal L.M. et al. (2018) ‘Optimizing controlled laser cutting of hard tissue (bone)’, At-Automatisierungstechnik, 66(12), pp. 1072–1082. Available at: https://doi.org/10.1515/auto-2018-0072.
Kenhagho H.N. et al. (2018) ‘Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer: Preliminary Results’. IEEE Computer Societyhelp@computer.org. Available at: https://doi.org/10.1109/ultsym.2018.8579654.
Kenhagho H.N. et al. (2018) ‘Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer: Preliminary Results’. IEEE Computer Societyhelp@computer.org. Available at: https://doi.org/10.1109/ultsym.2018.8579654.
Ahmadi M. et al. (2018) ‘EndoCAT: An EtherCAT-based Articulated Rear View Endoscope for Single Port Surgery’. IEEE Computer Societyhelp@computer.org, pp. 1070–1075. Available at: https://doi.org/10.1109/biorob.2018.8487648.
Ahmadi M. et al. (2018) ‘EndoCAT: An EtherCAT-based Articulated Rear View Endoscope for Single Port Surgery’. IEEE Computer Societyhelp@computer.org, pp. 1070–1075. Available at: https://doi.org/10.1109/biorob.2018.8487648.
Iafolla, Lorenzo et al. (2018) ‘Proof of principle of a novel angular sensor concept for tracking systems’, SENSORS AND ACTUATORS A-PHYSICAL. WOS.SCI, 280, pp. 390–398. Available at: https://doi.org/10.1016/j.sna.2018.08.012.
Iafolla, Lorenzo et al. (2018) ‘Proof of principle of a novel angular sensor concept for tracking systems’, SENSORS AND ACTUATORS A-PHYSICAL. WOS.SCI, 280, pp. 390–398. Available at: https://doi.org/10.1016/j.sna.2018.08.012.
Abbasi, Hamed et al. (2018) ‘Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laserosteotomy’, Journal of biomedical optics, 23(7), pp. 1–7. Available at: https://doi.org/10.1117/1.jbo.23.7.071206.
Abbasi, Hamed et al. (2018) ‘Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laserosteotomy’, Journal of biomedical optics, 23(7), pp. 1–7. Available at: https://doi.org/10.1117/1.jbo.23.7.071206.
Abbasi, Hamed et al. (2018) ‘Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome’, in SPIE Photonics West (BiOS), High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management. International Society for Optics and Photonics (SPIE): International Society for Optics and Photonics (SPIE) (SPIE Photonics West (BiOS), High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management). Available at: https://doi.org/10.1117/12.2290980.
Abbasi, Hamed et al. (2018) ‘Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome’, in SPIE Photonics West (BiOS), High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management. International Society for Optics and Photonics (SPIE): International Society for Optics and Photonics (SPIE) (SPIE Photonics West (BiOS), High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management). Available at: https://doi.org/10.1117/12.2290980.
Abbasi, Hamed et al. (2018) ‘Differentiation of femur bone from surrounding soft tissue using laserinduced breakdown spectroscopy as a feedback system for Smart Laserosteotomy’, in Progress in biomedical optics and imaging. Society of Photo-optical Instrumentation Engineers: Society of Photo-optical Instrumentation Engineers (Progress in biomedical optics and imaging). Available at: https://doi.org/10.1117/12.2309473.
Abbasi, Hamed et al. (2018) ‘Differentiation of femur bone from surrounding soft tissue using laserinduced breakdown spectroscopy as a feedback system for Smart Laserosteotomy’, in Progress in biomedical optics and imaging. Society of Photo-optical Instrumentation Engineers: Society of Photo-optical Instrumentation Engineers (Progress in biomedical optics and imaging). Available at: https://doi.org/10.1117/12.2309473.
Beltrán Bernal, Lina M. et al. (2018) ‘Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions’, in SPIE BiOS, 2018. San Francisco, California, United States (SPIE BiOS, 2018). Available at: https://doi.org/10.1117/12.2290929.
Beltrán Bernal, Lina M. et al. (2018) ‘Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions’, in SPIE BiOS, 2018. San Francisco, California, United States (SPIE BiOS, 2018). Available at: https://doi.org/10.1117/12.2290929.
Manavi S. et al. (2018) ‘Temperature-compensated FBG-based 3D shape sensor using single-mode fibers’. Optica Publishing Group (formerly OSA). Available at: https://doi.org/10.1364/bgppm.2018.jtu6c.1.
Manavi S. et al. (2018) ‘Temperature-compensated FBG-based 3D shape sensor using single-mode fibers’. Optica Publishing Group (formerly OSA). Available at: https://doi.org/10.1364/bgppm.2018.jtu6c.1.
Nguendon H. et al. (2018) ‘Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2290094.
Nguendon H. et al. (2018) ‘Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2290094.
Shayeganrad, G. et al. (2018) ‘Effects of Laser Parameters on Incision Depth of Bone Ablation in Laser Osteotomy’, in Yurish, SY (ed.). INT FREQUENCY SENSOR ASSOC-IFSA, pp. 40–41.
Shayeganrad, G. et al. (2018) ‘Effects of Laser Parameters on Incision Depth of Bone Ablation in Laser Osteotomy’, in Yurish, SY (ed.). INT FREQUENCY SENSOR ASSOC-IFSA, pp. 40–41.
Abbasi, Hamed et al. (2017) ‘Effect of Cooling Water on Ablation in Er:YAG Laserosteotome of Hard Bone’, in Costa, Manuel Filipe P. C. M. Martins (ed.) Proceedings SPIE. SPIE Digital Library: SPIE Digital Library (Proceedings SPIE). Available at: https://doi.org/10.1117/12.2272138.
Abbasi, Hamed et al. (2017) ‘Effect of Cooling Water on Ablation in Er:YAG Laserosteotome of Hard Bone’, in Costa, Manuel Filipe P. C. M. Martins (ed.) Proceedings SPIE. SPIE Digital Library: SPIE Digital Library (Proceedings SPIE). Available at: https://doi.org/10.1117/12.2272138.
Beltran, Lina et al. (2017) ‘Effect of laser pulse duration on ablation efficiency of hard bone in microseconds regime’, in Progress in biomedical optics and imaging. Society of Photo-optical Instrumentation Engineers: Society of Photo-optical Instrumentation Engineers (Progress in biomedical optics and imaging). Available at: https://doi.org/10.1117/12.2272253.
Beltran, Lina et al. (2017) ‘Effect of laser pulse duration on ablation efficiency of hard bone in microseconds regime’, in Progress in biomedical optics and imaging. Society of Photo-optical Instrumentation Engineers: Society of Photo-optical Instrumentation Engineers (Progress in biomedical optics and imaging). Available at: https://doi.org/10.1117/12.2272253.
Nguendon, Herve K. et al. (2017) ‘Characterization of ablated porcine bone and muscle using laser-induced acoustic wave method for tissue differentiation’, in Progress in biomedical optics and imaging. Society of Photo-optical Instrumentation Engineers: Society of Photo-optical Instrumentation Engineers (Progress in biomedical optics and imaging). Available at: https://doi.org/10.1117/12.2286121.
Nguendon, Herve K. et al. (2017) ‘Characterization of ablated porcine bone and muscle using laser-induced acoustic wave method for tissue differentiation’, in Progress in biomedical optics and imaging. Society of Photo-optical Instrumentation Engineers: Society of Photo-optical Instrumentation Engineers (Progress in biomedical optics and imaging). Available at: https://doi.org/10.1117/12.2286121.
Park, Susanna S. et al. (2017) ‘Advances in bone marrow stem cell therapy for retinal dysfunction’, PROGRESS IN RETINAL AND EYE RESEARCH. WOS.SCI, 56, pp. 148–165. Available at: https://doi.org/10.1016/j.preteyeres.2016.10.002.
Park, Susanna S. et al. (2017) ‘Advances in bone marrow stem cell therapy for retinal dysfunction’, PROGRESS IN RETINAL AND EYE RESEARCH. WOS.SCI, 56, pp. 148–165. Available at: https://doi.org/10.1016/j.preteyeres.2016.10.002.
Burns ME et al. (2016) ‘New Developments in Murine Imaging for Assessing Photoreceptor Degeneration In Vivo.’, Advances in experimental medicine and biology, 854, pp. 269–75. Available at: https://doi.org/10.1007/978-3-319-17121-0_36.
Burns ME et al. (2016) ‘New Developments in Murine Imaging for Assessing Photoreceptor Degeneration In Vivo.’, Advances in experimental medicine and biology, 854, pp. 269–75. Available at: https://doi.org/10.1007/978-3-319-17121-0_36.
Zam A. and Kolios M.C. (2016) ‘Measuring intracellular motion in cancer cell using optical coherence tomography’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2209652.
Zam A. and Kolios M.C. (2016) ‘Measuring intracellular motion in cancer cell using optical coherence tomography’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2209652.
Zhang P et al. (2015) ‘Effect of scanning beam size on the lateral resolution of mouse retinal imaging with SLO.’, Optics letters, 40(24), pp. 5830–3. Available at: https://doi.org/10.1364/ol.40.005830.
Zhang P et al. (2015) ‘Effect of scanning beam size on the lateral resolution of mouse retinal imaging with SLO.’, Optics letters, 40(24), pp. 5830–3. Available at: https://doi.org/10.1364/ol.40.005830.
Bonora S. et al. (2015) ‘Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated Multi-actuator Adaptive Lens’, Optics Express, 23(17), pp. 21931–21941. Available at: https://doi.org/10.1364/oe.23.021931.
Bonora S. et al. (2015) ‘Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated Multi-actuator Adaptive Lens’, Optics Express, 23(17), pp. 21931–21941. Available at: https://doi.org/10.1364/oe.23.021931.
Zawadzki RJ et al. (2015) ‘Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.’, Biomedical optics express. 21.05.2015, 6(6), pp. 2191–210. Available at: https://doi.org/10.1364/boe.6.002191.
Zawadzki RJ et al. (2015) ‘Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.’, Biomedical optics express. 21.05.2015, 6(6), pp. 2191–210. Available at: https://doi.org/10.1364/boe.6.002191.
Rizzotto L. et al. (2015) ‘Comparison of a novel adaptive lens with deformable mirrors and its application in high-resolution in-vivo OCT imaging’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2180145.
Rizzotto L. et al. (2015) ‘Comparison of a novel adaptive lens with deformable mirrors and its application in high-resolution in-vivo OCT imaging’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2180145.
Zam A. et al. (2015) ‘Progress on developing wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2077867.
Zam A. et al. (2015) ‘Progress on developing wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2077867.
Zhang P. et al. (2015) ‘Multispectral scanning laser ophthalmoscopy combined with optical coherence tomography for simultaneous in vivo mouse retinal imaging’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2080468.
Zhang P. et al. (2015) ‘Multispectral scanning laser ophthalmoscopy combined with optical coherence tomography for simultaneous in vivo mouse retinal imaging’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2080468.
Zhang P et al. (2015) ‘In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature.’, Journal of biomedical optics, 20(12), p. 126005. Available at: https://doi.org/10.1117/1.jbo.20.12.126005.
Zhang P et al. (2015) ‘In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature.’, Journal of biomedical optics, 20(12), p. 126005. Available at: https://doi.org/10.1117/1.jbo.20.12.126005.
Alexandrov SA et al. (2014) ‘Nano-sensitive optical coherence tomography.’, Nanoscale, 6(7), pp. 3545–9. Available at: https://doi.org/10.1039/c3nr06132a.
Alexandrov SA et al. (2014) ‘Nano-sensitive optical coherence tomography.’, Nanoscale, 6(7), pp. 3545–9. Available at: https://doi.org/10.1039/c3nr06132a.
Levine E.S. et al. (2014) ‘Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1’, Vision Research, 102, pp. 71–79. Available at: https://doi.org/10.1016/j.visres.2014.07.011.
Levine E.S. et al. (2014) ‘Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1’, Vision Research, 102, pp. 71–79. Available at: https://doi.org/10.1016/j.visres.2014.07.011.
Zhang P. et al. (2014) ‘Evaluation of state-of-the-art imaging systems for in vivo monitoring of retinal structure in mice: Current capabilities and limitations’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2040964.
Zhang P. et al. (2014) ‘Evaluation of state-of-the-art imaging systems for in vivo monitoring of retinal structure in mice: Current capabilities and limitations’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2040964.
Zam A. et al. (2013) ‘Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting’, Journal of Biophotonics, 6(9), pp. 663–667. Available at: https://doi.org/10.1002/jbio.201200231.
Zam A. et al. (2013) ‘Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting’, Journal of Biophotonics, 6(9), pp. 663–667. Available at: https://doi.org/10.1002/jbio.201200231.
Dsouza R.I. et al. (2013) ‘In vivo microcirculation imaging of the sub surface fingertip using correlation mapping optical coherence tomography (cmOCT)’. Available at: https://doi.org/10.1117/12.2002384.
Dsouza R.I. et al. (2013) ‘In vivo microcirculation imaging of the sub surface fingertip using correlation mapping optical coherence tomography (cmOCT)’. Available at: https://doi.org/10.1117/12.2002384.
Zam A. et al. (2013) ‘Modelling cerebral blood oxygenation using monte carlo XYZ-PA’. Available at: https://doi.org/10.1117/12.2006065.
Zam A. et al. (2013) ‘Modelling cerebral blood oxygenation using monte carlo XYZ-PA’. Available at: https://doi.org/10.1117/12.2006065.
Alexandrov S. et al. (2013) ‘Nano-sensitive optical coherence tomography (nsOCT) for depth resolved characterization of 3D submicron structure’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2041921.
Alexandrov S. et al. (2013) ‘Nano-sensitive optical coherence tomography (nsOCT) for depth resolved characterization of 3D submicron structure’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2041921.
Stelzle F. et al. (2012) ‘In vivo optical tissue differentiation by diffuse reflectance spectroscopy: Preliminary results for tissue-specific laser surgery’, Surgical Innovation, 19(4), pp. 385–393. Available at: https://doi.org/10.1177/1553350611429692.
Stelzle F. et al. (2012) ‘In vivo optical tissue differentiation by diffuse reflectance spectroscopy: Preliminary results for tissue-specific laser surgery’, Surgical Innovation, 19(4), pp. 385–393. Available at: https://doi.org/10.1177/1553350611429692.
Stelzle F et al. (2011) ‘Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery.’, Journal of translational medicine. 10.02.2011, 9, p. 20. Available at: https://doi.org/10.1186/1479-5876-9-20.
Stelzle F et al. (2011) ‘Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery.’, Journal of translational medicine. 10.02.2011, 9, p. 20. Available at: https://doi.org/10.1186/1479-5876-9-20.
Stelzle F et al. (2010) ‘Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery.’, Lasers in surgery and medicine, 42(4), pp. 319–25. Available at: https://doi.org/10.1002/lsm.20909.
Stelzle F et al. (2010) ‘Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery.’, Lasers in surgery and medicine, 42(4), pp. 319–25. Available at: https://doi.org/10.1002/lsm.20909.