Faculty of Medicine
Faculty of Medicine
UNIverse - Public Research Portal

[FG] Center for Intelligent Optics[FG] Center for Intelligent Optics

Publications

91 found
Show per page

Bayhaqi, Y.A. et al. (2023) ‘Real-time closed-loop tissue-specific laser osteotomy using deep-learning-assisted optical coherence tomography’, Biomedical Optics Express, 14, pp. 2986–3002. Available at: https://doi.org/10.1364/boe.486660.

URLs
URLs

Canbaz, Ferda and Butkus, Arminas (2023) ‘Spectroscopic investigation of Tm<sup>3+</sup>-Dy<sup>3+</sup> co-doped KY3F10 crystals for 3 µm laser applications’. Available at: https://doi.org/10.1109/cleo/europe-eqec57999.2023.10232805.

URLs
URLs

Cetin, Cigdem et al. (2023) ‘Bone ablation performance of a Tm-Cr-Ho:YAG Laser’. Available at: https://doi.org/10.1117/12.2647703.

URLs
URLs

Hamidi, A. et al. (2023) ‘Towards phase-sensitive optical coherence tomography in smart laser osteotomy: temperature feedback’, Lasers in Medical Science, 38. Available at: https://doi.org/10.1007/s10103-023-03886-z.

URLs
URLs

Hamidi, A. et al. (2023) ‘Multimodal feedback systems for smart laser osteotomy: Depth control and tissue differentiation’, Lasers in Surgery and Medicine, 55, pp. 900–911. Available at: https://doi.org/10.1002/lsm.23732.

URLs
URLs

Hamidi, A. et al. (2023) ‘Towards miniaturized OCT-guided laser osteotomy: integration of fiber-coupled Er:YAG laser with OCT’, OSA Continuum, 2, pp. 2106–2115. Available at: https://doi.org/10.1364/optcon.497483.

URLs
URLs

Bayhaqi Y.A. et al. (2022) ‘Deep-Learning-Based Fast Optical Coherence Tomography (OCT) Image Denoising for Smart Laser Osteotomy’, IEEE Transactions on Medical Imaging, 41(10), pp. 2615–2628. Available at: https://doi.org/10.1109/tmi.2022.3168793.

URLs
URLs

Cetin C. et al. (2022) ‘Bone ablation using a Ho:YAG laser’. Walter de Gruyter GmbH, pp. 580–583. Available at: https://doi.org/10.1515/cdbme-2022-1148.

URLs
URLs

Nguendon Kenhagho H. et al. (2022) ‘Toward optoacoustic sciatic nerve detection using an all-fiber interferometric-based sensor for endoscopic smart laser surgery’, Lasers in Surgery and Medicine, 54(2), pp. 289–304. Available at: https://doi.org/10.1002/lsm.23473.

URLs
URLs

Abbasi, Hamed et al. (2022) ‘All-fiber-optic LIBS system for tissue differentiation: A prospect for endoscopic smart laser osteotomy’, Optics and Lasers in Engineering, 148, p. 106765. Available at: https://doi.org/10.1016/j.optlaseng.2021.106765.

URLs
URLs

Canbaz F. et al. (2022) ‘Laser-Induced Breakdown Spectroscopy Combined with Artificial Neural Network for Pre-carbonization Detection in Laserosteotomy’. Springer Science and Business Media B.V., pp. 89–96. Available at: https://doi.org/10.1007/978-3-030-76147-9_10.

URLs
URLs

Tajmirriahi, M. et al. (2022) ‘Mixture of Symmetric Stable Distributions for Macular Pathology Detection in Optical Coherence Tomography Scans’. Institute of Electrical and Electronics Engineers Inc., pp. 3866–3869. Available at: https://doi.org/10.1109/embc48229.2022.9871357.

URLs
URLs

Tajmirriahi, M. et al. (2022) ‘Stochastic Differential Equations for Automatic Quality Control of Retinal Optical Coherence Tomography images’. Institute of Electrical and Electronics Engineers Inc., pp. 3870–3873. Available at: https://doi.org/10.1109/embc48229.2022.9870918.

URLs
URLs

Bayhaqi Y.A. et al. (2021) ‘Deep learning models comparison for tissue classification using optical coherence tomography images: Toward smart laser osteotomy’, OSA Continuum, 4(9), pp. 2510–2526. Available at: https://doi.org/10.1364/osac.435184.

URLs
URLs

Beltran Bernal L.M. et al. (2021) ‘Optical fibers for endoscopic high-power Er:YAG laserosteotomy’, Journal of biomedical optics, 26(9). Available at: https://doi.org/10.1117/1.jbo.26.9.095002.

URLs
URLs

Tajmirriahi M. et al. (2021) ‘Modeling of Retinal Optical Coherence Tomography Based on Stochastic Differential Equations: Application to Denoising’, IEEE Transactions on Medical Imaging, 40(8), pp. 2129–2141. Available at: https://doi.org/10.1109/tmi.2021.3073174.

URLs
URLs

Kenhagho H.N. et al. (2021) ‘Corrigendum to “Miniaturized optoacoustic feedback sensor for smart laser osteotome: Fiber-coupled Fabry-Pérot etalon sensor” [Sens. Actuators A: Phys. 317 (January) (2021) 112394] (Sensors and Actuators: A. Physical (2021) 317, (S0924424720317106), (10.1016/j.sna.2020.112394))’, Sensors and Actuators, A: Physical, 320. Available at: https://doi.org/10.1016/j.sna.2021.112570.

URLs
URLs

Shevchik S. et al. (2021) ‘Machine learning monitoring for laser osteotomy’, Journal of Biophotonics, 14(4). Available at: https://doi.org/10.1002/jbio.202000352.

URLs
URLs

Duverney, Cedric et al. (2021) ‘Sterile tissue ablation using laser light⇔system design, experimental validation, and outlook on clinical applicability’, Journal of Medical Devices, Transactions of the ASME, 15(1). Available at: https://doi.org/10.1115/1.4049396.

URLs
URLs

Nguendon Kenhagho H. et al. (2021) ‘Machine Learning-Based Optoacoustic Tissue Classification Method for Laser Osteotomes Using an Air-Coupled Transducer’, Lasers in Surgery and Medicine, 53(3), pp. 377–389. Available at: https://doi.org/10.1002/lsm.23290.

URLs
URLs

Abbasi, Hamed et al. (2021) ‘Highly flexible fiber delivery of a high peak power nanosecond Nd:YAG laser beam for flexiscopic applications’, Biomedical Optics Express, 12(1), pp. 444–461. Available at: https://doi.org/10.1364/boe.405825.

URLs
URLs

Abbasi, Hamed et al. (2021) ‘Simulation of Echellogram Using Zemax OpticStudio and Matlab for LIBS’, in Rauter, Georg; Cattin, Philippe C.; Zam, Azhar; Riener, Robert; Carbone, Giuseppe; Pisla, Doina (ed.) Mechanisms and Machine Science. Springer Nature Switzerland AG: Springer Nature Switzerland AG (Mechanisms and Machine Science). Available at: https://doi.org/10.1007/978-3-030-58104-6_24.

URLs
URLs

Duverney, Cédric et al. (2021) ‘Robot- and Laser-Assisted Bio-Sample Preparation: Development of an Integrated, Intuitive System’, in Rauter, Georg; Cattin, Philippe C.; Zam, Azhar; Riener, Robert; Carbone, Giuseppe; Pisla, Doina (ed.) Mechanisms and Machine Science. Springer Nature Switzerland AG: Springer Nature Switzerland AG (Mechanisms and Machine Science). Available at: https://doi.org/10.1007/978-3-030-58104-6_25.

URLs
URLs

Hamidi A. et al. (2021) ‘Observation of controlled temperature changes of bone by phase-sensitive optical coherence tomography’. SPIE. Available at: https://doi.org/10.1117/12.2616133.

URLs
URLs

Hamidi A. et al. (2021) ‘Observation of controlled temperature changes of bone by phase-sensitive optical coherence tomography’. Optica Publishing Group (formerly OSA).

Hamidi, Arsham et al. (2021) ‘Long-range optical coherence tomography with extended depth-of-focus: a visual feedback system for smart laser osteotomy’, Biomedical Optics Express, 12(4), pp. 2118–2133. Available at: https://doi.org/10.1364/boe.414300.

URLs
URLs

Iafolla, Lorenzo et al. (2021) ‘Machine learning-based method for linearization and error compensation of a novel absolute rotary encoder’, Measurement, 169, p. 108547. Available at: https://doi.org/10.1016/j.measurement.2020.108547.

URLs
URLs

Manavi S. et al. (2021) ‘Using supervised deep-learning to model edge-FBG shape sensors: A feasibility study’. SPIE. Available at: https://doi.org/10.1117/12.2589252.

URLs
URLs

Nguendon Kenhagho H. et al. (2021) ‘Optoacoustic tissue classification for laser osteotomes using mahalanobis distance-based method’. Springer Science and Business Media B.V., pp. 202–210. Available at: https://doi.org/10.1007/978-3-030-58104-6_23.

URLs
URLs

Nguendon Kenhagho H. et al. (2021) ‘Miniaturized optoacoustic feedback sensor for smart laser osteotome: Fiber-coupled Fabry-Pérot etalon sensor’, Sensors and Actuators, A: Physical, 317. Available at: https://doi.org/10.1016/j.sna.2020.112394.

URLs
URLs

Rauter G. et al. (2021) ‘Preface’, 93, pp. v–vi.

Seppi C. et al. (2021) ‘Deep-Learning Approach for Tissue Classification Using Acoustic Waves during Ablation with an Er:YAG Laser’, IEEE Access, 9, pp. 130543–130553. Available at: https://doi.org/10.1109/access.2021.3113055.

URLs
URLs

Bernal L.M.B., Abbasi H. and Zam A. (2020) ‘Laser in bone surgery’. Springer International Publishing, pp. 99–109. Available at: https://doi.org/10.1007/978-3-030-29604-9_9.

URLs
URLs

Canbaz F. and Zam A. (2020) ‘Laser safety’. Springer International Publishing, pp. 255–262. Available at: https://doi.org/10.1007/978-3-030-29604-9_20.

URLs
URLs

Zam A. (2020) ‘Laser-tissue interaction’. Springer International Publishing, pp. 25–34. Available at: https://doi.org/10.1007/978-3-030-29604-9_3.

URLs
URLs

Abbasi, Hamed et al. (2020) ‘Combined Nd:YAG and Er:YAG lasers for real-time closed-loop tissue-specific laser osteotomy’, Biomedical Optics Express, 11(4), pp. 1790–1807. Available at: https://doi.org/10.1364/boe.385862.

URLs
URLs

Abbasi, Hamed, Cattin, Philippe C. and Zam, Azhar (2020) ‘A Simple Acoustic-Based Method for Lens-to-Sample Distance Adjustment in µLIBS’. IEEE: IEEE. Available at: https://doi.org/10.1109/pn50013.2020.9167018.

URLs
URLs

Beltran Bernal, Lina Marcela et al. (2020) ‘Optimizing deep bone ablation by means of a microsecond Er:YAG laser and a novel water microjet irrigation system’, Biomedical Optics Express, 11(12), pp. 7253–7272. Available at: https://doi.org/10.1364/boe.408914.

URLs
URLs

Beltran Bernal L.M. et al. (2020) ‘Measurements of coupling efficiency of high power Er:YAG laser in different types of optical fibers’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2546048.

URLs
URLs

Hamidi A. et al. (2020) ‘Imaging photothermal-induced expansion of bone during laser osteotomy by phase-sensitive OCT: Preliminary results’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2555675.

URLs
URLs

Iafolla, Lorenzo et al. (2020) ‘Proof of concept of a novel absolute rotary encoder’, Sensors and Actuators A: Physical, 312, p. 112100. Available at: https://doi.org/10.1016/j.sna.2020.112100.

URLs
URLs

Lengenfelder B. et al. (2020) ‘Image reconstruction for remote photoacoustic tomography using speckle-analysis’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2553080.

URLs
URLs

Schnider E. et al. (2020) ‘3D Segmentation Networks for Excessive Numbers of Classes: Distinct Bone Segmentation in Upper Bodies’. Springer Science and Business Media Deutschland GmbHinfo@springer-sbm.com, pp. 40–49. Available at: https://doi.org/10.1007/978-3-030-59861-7_5.

URLs
URLs

Iafolla L. et al. (2019) ‘Preliminary Tests of the Miniaturization of a Novel Concept of Angular Sensors’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/sensors43011.2019.8956732.

URLs
URLs

Iafolla L. et al. (2019) ‘Data Acquisition System for a Medical Tracking Device based on a Novel Angular Sensor : How to Acquire and Process Data from the ASTRAS Tracking System’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/sensors43011.2019.8956777.

URLs
URLs

Kenhagho H.N. et al. (2019) ‘A First Approach to Miniaturized Optoacoustic Feedback Sensor for Smart Laser Osteotome : Fiber-Coupled Fabry-Pérot Etalon Sensor’. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/sensors43011.2019.8956743.

URLs
URLs

Kenhagho H.N. et al. (2019) ‘Contact-free Crater Depth Monitoring Using Measured Acoustic Shock Waves for Smart Laser Surgery Applications: Preliminary Result’. Institute of Electrical and Electronics Engineers Inc., pp. 118–121. Available at: https://doi.org/10.1109/icramet47453.2019.8980427.

URLs
URLs

Zoller E.I. et al. (2019) ‘Assessment of the Functional Rotational Workspace of Different Grasp Type Handles for the lambda.6 Haptic Device’. Institute of Electrical and Electronics Engineers Inc., pp. 127–132. Available at: https://doi.org/10.1109/whc.2019.8816080.

URLs
URLs

Bayhaqi, Yakub A. et al. (2019) ‘Neural Network in Tissue Characterization of Optical Coherence Tomography Images for Smart Laser Surgery: A Preliminary Study’, in Nasution, A.; Hatta, A. M. (ed.) Proceedings of SPIE. SPIE: SPIE (Proceedings of SPIE). Available at: https://doi.org/10.1117/12.2503214.

URLs
URLs

Bayhaqi Y.A. et al. (2019) ‘Fast optical coherence tomography image enhancement using deep learning for smart laser surgery: Preliminary study in bone tissue’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2527293.

URLs
URLs

Faludi B. et al. (2019) ‘Direct Visual and Haptic Volume Rendering of Medical Data Sets for an Immersive Exploration in Virtual Reality’. Springer Science and Business Media Deutschland GmbH, pp. 29–37. Available at: https://doi.org/10.1007/978-3-030-32254-0_4.

URLs
URLs

Kenhagho, Herve Nguendon et al. (2019) ‘Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer’, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control (IEEE T ULTRASON FERR), 66(9), pp. 1435–1443. Available at: https://doi.org/10.1109/tuffc.2019.2923696.

URLs
URLs

Lengenfelder B. et al. (2019) ‘Model for the description of remote photoacoustic sensing using speckle-analysis’. Optica Publishing Group (formerly OSA). Available at: https://doi.org/10.1117/12.2526593.

URLs
URLs

Nahum U., Zam A. and Cattin P.C. (2019) ‘Bone reconstruction and depth control during laser ablation’. Springer Verlagservice@springer.de, pp. 126–135. Available at: https://doi.org/10.1007/978-3-030-11166-3_11.

URLs
URLs

Nguendon Kenhagho, Herve et al. (2019) ‘Characterization of Ablated Bone and Muscle for Long-Pulsed Laser Ablation in Dry and Wet Conditions’, Materials, 12(8), p. 1338. Available at: https://doi.org/10.3390/ma12081338.

URLs
URLs

Susic, Ivan et al. (2019) ‘Enabling minimal invasive palpation in flexible robotic endoscopes’, in Carbone, G; Ceccarelli, M; Pisla, D (ed.) Mechanisms and Machine Science. Springer Science and Business Media B.V. (Mechanisms and Machine Science), pp. 70–77. Available at: https://doi.org/10.1007/978-3-030-00329-6_9.

URLs
URLs

Eugster M. et al. (2018) ‘A Parallel Robotic Mechanism for the Stabilization and Guidance of an Endoscope Tip in Laser Osteotomy’. Institute of Electrical and Electronics Engineers Inc., pp. 1306–1311. Available at: https://doi.org/10.1109/iros.2018.8594188.

URLs
URLs

Beltran Bernal L.M. et al. (2018) ‘Optimizing controlled laser cutting of hard tissue (bone)’, At-Automatisierungstechnik, 66(12), pp. 1072–1082. Available at: https://doi.org/10.1515/auto-2018-0072.

URLs
URLs

Kenhagho H.N. et al. (2018) ‘Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer: Preliminary Results’. IEEE Computer Societyhelp@computer.org. Available at: https://doi.org/10.1109/ultsym.2018.8579654.

URLs
URLs

Ahmadi M. et al. (2018) ‘EndoCAT: An EtherCAT-based Articulated Rear View Endoscope for Single Port Surgery’. IEEE Computer Societyhelp@computer.org, pp. 1070–1075. Available at: https://doi.org/10.1109/biorob.2018.8487648.

URLs
URLs

Iafolla, Lorenzo et al. (2018) ‘Proof of principle of a novel angular sensor concept for tracking systems’, SENSORS AND ACTUATORS A-PHYSICAL. WOS.SCI, 280, pp. 390–398. Available at: https://doi.org/10.1016/j.sna.2018.08.012.

URLs
URLs

Abbasi, Hamed et al. (2018) ‘Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laserosteotomy’, Journal of biomedical optics, 23(7), pp. 1–7. Available at: https://doi.org/10.1117/1.jbo.23.7.071206.

URLs
URLs

Abbasi, Hamed et al. (2018) ‘Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome’, in SPIE Photonics West (BiOS), High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management. International Society for Optics and Photonics (SPIE): International Society for Optics and Photonics (SPIE) (SPIE Photonics West (BiOS), High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management). Available at: https://doi.org/10.1117/12.2290980.

URLs
URLs

Abbasi, Hamed et al. (2018) ‘Differentiation of femur bone from surrounding soft tissue using laserinduced breakdown spectroscopy as a feedback system for Smart Laserosteotomy’, in Progress in biomedical optics and imaging. Society of Photo-optical Instrumentation Engineers: Society of Photo-optical Instrumentation Engineers (Progress in biomedical optics and imaging). Available at: https://doi.org/10.1117/12.2309473.

URLs
URLs

Beltrán Bernal, Lina M. et al. (2018) ‘Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions’, in SPIE BiOS, 2018. San Francisco, California, United States (SPIE BiOS, 2018). Available at: https://doi.org/10.1117/12.2290929.

URLs
URLs

Manavi S. et al. (2018) ‘Temperature-compensated FBG-based 3D shape sensor using single-mode fibers’. Optica Publishing Group (formerly OSA). Available at: https://doi.org/10.1364/bgppm.2018.jtu6c.1.

URLs
URLs

Nguendon H. et al. (2018) ‘Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2290094.

URLs
URLs

Shayeganrad, G. et al. (2018) ‘Effects of Laser Parameters on Incision Depth of Bone Ablation in Laser Osteotomy’, in Yurish, SY (ed.). INT FREQUENCY SENSOR ASSOC-IFSA, pp. 40–41.

Abbasi, Hamed et al. (2017) ‘Effect of Cooling Water on Ablation in Er:YAG Laserosteotome of Hard Bone’, in Costa, Manuel Filipe P. C. M. Martins (ed.) Proceedings SPIE. SPIE Digital Library: SPIE Digital Library (Proceedings SPIE). Available at: https://doi.org/10.1117/12.2272138.

URLs
URLs

Beltran, Lina et al. (2017) ‘Effect of laser pulse duration on ablation efficiency of hard bone in microseconds regime’, in Progress in biomedical optics and imaging. Society of Photo-optical Instrumentation Engineers: Society of Photo-optical Instrumentation Engineers (Progress in biomedical optics and imaging). Available at: https://doi.org/10.1117/12.2272253.

URLs
URLs

Nguendon, Herve K. et al. (2017) ‘Characterization of ablated porcine bone and muscle using laser-induced acoustic wave method for tissue differentiation’, in Progress in biomedical optics and imaging. Society of Photo-optical Instrumentation Engineers: Society of Photo-optical Instrumentation Engineers (Progress in biomedical optics and imaging). Available at: https://doi.org/10.1117/12.2286121.

URLs
URLs

Park, Susanna S. et al. (2017) ‘Advances in bone marrow stem cell therapy for retinal dysfunction’, PROGRESS IN RETINAL AND EYE RESEARCH. WOS.SCI, 56, pp. 148–165. Available at: https://doi.org/10.1016/j.preteyeres.2016.10.002.

URLs
URLs

Burns ME et al. (2016) ‘New Developments in Murine Imaging for Assessing Photoreceptor Degeneration In Vivo.’, Advances in experimental medicine and biology, 854, pp. 269–75. Available at: https://doi.org/10.1007/978-3-319-17121-0_36.

URLs
URLs

Zam A. and Kolios M.C. (2016) ‘Measuring intracellular motion in cancer cell using optical coherence tomography’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2209652.

URLs
URLs

Zhang P et al. (2015) ‘Effect of scanning beam size on the lateral resolution of mouse retinal imaging with SLO.’, Optics letters, 40(24), pp. 5830–3. Available at: https://doi.org/10.1364/ol.40.005830.

URLs
URLs

Bonora S. et al. (2015) ‘Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated Multi-actuator Adaptive Lens’, Optics Express, 23(17), pp. 21931–21941. Available at: https://doi.org/10.1364/oe.23.021931.

URLs
URLs

Zawadzki RJ et al. (2015) ‘Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.’, Biomedical optics express. 21.05.2015, 6(6), pp. 2191–210. Available at: https://doi.org/10.1364/boe.6.002191.

URLs
URLs

Rizzotto L. et al. (2015) ‘Comparison of a novel adaptive lens with deformable mirrors and its application in high-resolution in-vivo OCT imaging’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2180145.

URLs
URLs

Zam A. et al. (2015) ‘Progress on developing wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2077867.

URLs
URLs

Zhang P. et al. (2015) ‘Multispectral scanning laser ophthalmoscopy combined with optical coherence tomography for simultaneous in vivo mouse retinal imaging’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2080468.

URLs
URLs

Zhang P et al. (2015) ‘In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature.’, Journal of biomedical optics, 20(12), p. 126005. Available at: https://doi.org/10.1117/1.jbo.20.12.126005.

URLs
URLs

Alexandrov SA et al. (2014) ‘Nano-sensitive optical coherence tomography.’, Nanoscale, 6(7), pp. 3545–9. Available at: https://doi.org/10.1039/c3nr06132a.

URLs
URLs

Levine E.S. et al. (2014) ‘Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1’, Vision Research, 102, pp. 71–79. Available at: https://doi.org/10.1016/j.visres.2014.07.011.

URLs
URLs

Zhang P. et al. (2014) ‘Evaluation of state-of-the-art imaging systems for in vivo monitoring of retinal structure in mice: Current capabilities and limitations’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2040964.

URLs
URLs

Zam A. et al. (2013) ‘Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting’, Journal of Biophotonics, 6(9), pp. 663–667. Available at: https://doi.org/10.1002/jbio.201200231.

URLs
URLs

Dsouza R.I. et al. (2013) ‘In vivo microcirculation imaging of the sub surface fingertip using correlation mapping optical coherence tomography (cmOCT)’. Available at: https://doi.org/10.1117/12.2002384.

URLs
URLs

Zam A. et al. (2013) ‘Modelling cerebral blood oxygenation using monte carlo XYZ-PA’. Available at: https://doi.org/10.1117/12.2006065.

URLs
URLs

Alexandrov S. et al. (2013) ‘Nano-sensitive optical coherence tomography (nsOCT) for depth resolved characterization of 3D submicron structure’. SPIEspie@spie.org. Available at: https://doi.org/10.1117/12.2041921.

URLs
URLs

Stelzle F. et al. (2012) ‘In vivo optical tissue differentiation by diffuse reflectance spectroscopy: Preliminary results for tissue-specific laser surgery’, Surgical Innovation, 19(4), pp. 385–393. Available at: https://doi.org/10.1177/1553350611429692.

URLs
URLs

Stelzle F et al. (2011) ‘Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery.’, Journal of translational medicine. 10.02.2011, 9, p. 20. Available at: https://doi.org/10.1186/1479-5876-9-20.

URLs
URLs

Stelzle F et al. (2010) ‘Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery.’, Lasers in surgery and medicine, 42(4), pp. 319–25. Available at: https://doi.org/10.1002/lsm.20909.

URLs
URLs