[FG] Technologies for Tissue Engineering
Publications
421 found
Show per page
Dönges, Laura et al. (2024) ‘Engineered human osteoarthritic cartilage organoids’, Biomaterials. 22.03.2024, 308, p. 122549. Available at: https://doi.org/10.1016/j.biomaterials.2024.122549.
Dönges, Laura et al. (2024) ‘Engineered human osteoarthritic cartilage organoids’, Biomaterials. 22.03.2024, 308, p. 122549. Available at: https://doi.org/10.1016/j.biomaterials.2024.122549.
Majumder, Nilotpal et al. (2024) ‘Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage’, ACS Applied Materials and Interfaces, 16(8), pp. 9925–9943. Available at: https://doi.org/10.1021/acsami.3c18903.
Majumder, Nilotpal et al. (2024) ‘Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage’, ACS Applied Materials and Interfaces, 16(8), pp. 9925–9943. Available at: https://doi.org/10.1021/acsami.3c18903.
Viswanathan S et al. (2023) ‘An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells (MSC) Committee perspectives on International Standards Organization/Technical Committee 276 Biobanking Standards for bone marrow-MSCs and umbilical cord tissue-derived MSCs for research purposes.’, Cytotherapy, 25(8), pp. 803–807. Available at: https://doi.org/10.1016/j.jcyt.2023.04.005.
Viswanathan S et al. (2023) ‘An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells (MSC) Committee perspectives on International Standards Organization/Technical Committee 276 Biobanking Standards for bone marrow-MSCs and umbilical cord tissue-derived MSCs for research purposes.’, Cytotherapy, 25(8), pp. 803–807. Available at: https://doi.org/10.1016/j.jcyt.2023.04.005.
Muthu S et al. (2023) ‘Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies.’, Nature reviews. Rheumatology, 19(7), pp. 403–416. Available at: https://doi.org/10.1038/s41584-023-00979-5.
Muthu S et al. (2023) ‘Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies.’, Nature reviews. Rheumatology, 19(7), pp. 403–416. Available at: https://doi.org/10.1038/s41584-023-00979-5.
Born, Gordian et al. (2023) ‘Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues’, Biotechnology Journal, 18. Available at: https://doi.org/10.1002/biot.202200405.
Born, Gordian et al. (2023) ‘Mini- and macro-scale direct perfusion bioreactors with optimized flow for engineering 3D tissues’, Biotechnology Journal, 18. Available at: https://doi.org/10.1002/biot.202200405.
Dasen, Boris et al. (2023) ‘T-cadherin is a novel regulator of pericyte function during angiogenesis’, American Journal of Physiology - Cell Physiology, 324, pp. C821–C836. Available at: https://doi.org/10.1152/ajpcell.00326.2022.
Dasen, Boris et al. (2023) ‘T-cadherin is a novel regulator of pericyte function during angiogenesis’, American Journal of Physiology - Cell Physiology, 324, pp. C821–C836. Available at: https://doi.org/10.1152/ajpcell.00326.2022.
García-García, Andrés, Pigeot, Sébastien and Martin, Ivan (2023) ‘Engineering of immunoinstructive extracellular matrices for enhanced osteoinductivity’, Bioactive Materials, 24, pp. 174–184. Available at: https://doi.org/10.1016/j.bioactmat.2022.12.017.
García-García, Andrés, Pigeot, Sébastien and Martin, Ivan (2023) ‘Engineering of immunoinstructive extracellular matrices for enhanced osteoinductivity’, Bioactive Materials, 24, pp. 174–184. Available at: https://doi.org/10.1016/j.bioactmat.2022.12.017.
Gu, Yawei et al. (2023) ‘Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs’, Advanced Healthcare Materials, 12. Available at: https://doi.org/10.1002/adhm.202202550.
Gu, Yawei et al. (2023) ‘Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs’, Advanced Healthcare Materials, 12. Available at: https://doi.org/10.1002/adhm.202202550.
Kasamkattil, Jesil et al. (2023) ‘Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc’, Frontiers in Bioengineering and Biotechnology, 11. Available at: https://doi.org/10.3389/fbioe.2023.1119009.
Kasamkattil, Jesil et al. (2023) ‘Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc’, Frontiers in Bioengineering and Biotechnology, 11. Available at: https://doi.org/10.3389/fbioe.2023.1119009.
Wixmerten, Anke et al. (2023) ‘Good Manufacturing Practice–compliant change of raw material in the manufacturing process of a clinically used advanced therapy medicinal product–a comparability study’, Cytotherapy, 25(5), pp. 548–558. Available at: https://doi.org/10.1016/j.jcyt.2023.01.003.
Wixmerten, Anke et al. (2023) ‘Good Manufacturing Practice–compliant change of raw material in the manufacturing process of a clinically used advanced therapy medicinal product–a comparability study’, Cytotherapy, 25(5), pp. 548–558. Available at: https://doi.org/10.1016/j.jcyt.2023.01.003.
Kouba L et al. (2022) ‘A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication.’, Acta biomaterialia, 154, pp. 641–649. Available at: https://doi.org/10.1016/j.actbio.2022.10.023.
Kouba L et al. (2022) ‘A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication.’, Acta biomaterialia, 154, pp. 641–649. Available at: https://doi.org/10.1016/j.actbio.2022.10.023.
Weiss D.J. et al. (2022) ‘An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells Committee editorial on overcoming limitations in clinical trials of mesenchymal stromal cell therapy for coronavirus disease-19: time for a global registry’, Cytotherapy, 24(11), pp. 1071–1073. Available at: https://doi.org/10.1016/j.jcyt.2022.07.010.
Weiss D.J. et al. (2022) ‘An International Society for Cell and Gene Therapy Mesenchymal Stromal Cells Committee editorial on overcoming limitations in clinical trials of mesenchymal stromal cell therapy for coronavirus disease-19: time for a global registry’, Cytotherapy, 24(11), pp. 1071–1073. Available at: https://doi.org/10.1016/j.jcyt.2022.07.010.
Ding M et al. (2022) ‘Efficacy of bioreactor-activated bone substitute with bone marrow nuclear cells on fusion rate and fusion mass microarchitecture in sheep.’, Journal of biomedical materials research. Part B, Applied biomaterials, 110(8), pp. 1862–1875. Available at: https://doi.org/10.1002/jbm.b.35044.
Ding M et al. (2022) ‘Efficacy of bioreactor-activated bone substitute with bone marrow nuclear cells on fusion rate and fusion mass microarchitecture in sheep.’, Journal of biomedical materials research. Part B, Applied biomaterials, 110(8), pp. 1862–1875. Available at: https://doi.org/10.1002/jbm.b.35044.
Scialla S et al. (2022) ‘Genipin-crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization.’, Journal of biomedical materials research. Part A, 110(7), pp. 1372–1385. Available at: https://doi.org/10.1002/jbm.a.37379.
Scialla S et al. (2022) ‘Genipin-crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization.’, Journal of biomedical materials research. Part A, 110(7), pp. 1372–1385. Available at: https://doi.org/10.1002/jbm.a.37379.
Huo Z et al. (2022) ‘Perfusion-Based Bioreactor Culture and Isothermal Microcalorimetry for Preclinical Drug Testing with the Carbonic Anhydrase Inhibitor SLC-0111 in Patient-Derived Neuroblastoma.’, International journal of molecular sciences, 23(6). Available at: https://doi.org/10.3390/ijms23063128.
Huo Z et al. (2022) ‘Perfusion-Based Bioreactor Culture and Isothermal Microcalorimetry for Preclinical Drug Testing with the Carbonic Anhydrase Inhibitor SLC-0111 in Patient-Derived Neuroblastoma.’, International journal of molecular sciences, 23(6). Available at: https://doi.org/10.3390/ijms23063128.
Kasamkattil J et al. (2022) ‘Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc.’, International journal of molecular sciences, 23(5). Available at: https://doi.org/10.3390/ijms23052530.
Kasamkattil J et al. (2022) ‘Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc.’, International journal of molecular sciences, 23(5). Available at: https://doi.org/10.3390/ijms23052530.
Baranovskii D et al. (2022) ‘Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates.’, Cartilage, 13(1), p. 19476035221075951. Available at: https://doi.org/10.1177/19476035221075951.
Baranovskii D et al. (2022) ‘Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates.’, Cartilage, 13(1), p. 19476035221075951. Available at: https://doi.org/10.1177/19476035221075951.
Chawla, Shikha et al. (2022) ‘Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies’, Cells, 11. Available at: https://doi.org/10.3390/cells11244034.
Chawla, Shikha et al. (2022) ‘Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies’, Cells, 11. Available at: https://doi.org/10.3390/cells11244034.
Cheng C et al. (2022) ‘Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue.’, Frontiers in bioengineering and biotechnology, 10, p. 841690. Available at: https://doi.org/10.3389/fbioe.2022.841690.
Cheng C et al. (2022) ‘Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue.’, Frontiers in bioengineering and biotechnology, 10, p. 841690. Available at: https://doi.org/10.3389/fbioe.2022.841690.
Guerrero, Julien et al. (2022) ‘T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis’, Stem Cells Translational Medicine, 11, pp. 213–229. Available at: https://doi.org/10.1093/stcltm/szab021.
Guerrero, Julien et al. (2022) ‘T-cadherin Expressing Cells in the Stromal Vascular Fraction of Human Adipose Tissue: Role in Osteogenesis and Angiogenesis’, Stem Cells Translational Medicine, 11, pp. 213–229. Available at: https://doi.org/10.1093/stcltm/szab021.
Lehoczky, Gyözö et al. (2022) ‘In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy’, International Journal of Molecular Sciences, 23. Available at: https://doi.org/10.3390/ijms23136900.
Lehoczky, Gyözö et al. (2022) ‘In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy’, International Journal of Molecular Sciences, 23. Available at: https://doi.org/10.3390/ijms23136900.
Mainardi, Andrea et al. (2022) ‘Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective’, Frontiers in Bioengineering and Biotechnology, 9, p. 826867. Available at: https://doi.org/10.3389/fbioe.2021.826867.
Mainardi, Andrea et al. (2022) ‘Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective’, Frontiers in Bioengineering and Biotechnology, 9, p. 826867. Available at: https://doi.org/10.3389/fbioe.2021.826867.
Acevedo L. et al. (2021) ‘Comparison of Human Articular Cartilage Tissue and Chondrocytes Isolated from Peripheral versus Central Regions of Traumatic Lesions.’, Cartilage, 13(2_suppl), pp. 68S–81S. Available at: https://doi.org/10.1177/1947603520958154.
Acevedo L. et al. (2021) ‘Comparison of Human Articular Cartilage Tissue and Chondrocytes Isolated from Peripheral versus Central Regions of Traumatic Lesions.’, Cartilage, 13(2_suppl), pp. 68S–81S. Available at: https://doi.org/10.1177/1947603520958154.
Viswanathan S. et al. (2021) ‘Consensus International Council for Commonality in Blood Banking Automation–International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells’, Cytotherapy, 23(12), pp. 1060–1063. Available at: https://doi.org/10.1016/j.jcyt.2021.04.009.
Viswanathan S. et al. (2021) ‘Consensus International Council for Commonality in Blood Banking Automation–International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells’, Cytotherapy, 23(12), pp. 1060–1063. Available at: https://doi.org/10.1016/j.jcyt.2021.04.009.
Gryadunova A. et al. (2021) ‘Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation.’, Acta biomaterialia, 134, pp. 240–251. Available at: https://doi.org/10.1016/j.actbio.2021.07.064.
Gryadunova A. et al. (2021) ‘Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation.’, Acta biomaterialia, 134, pp. 240–251. Available at: https://doi.org/10.1016/j.actbio.2021.07.064.
Rua L.A. et al. (2021) ‘Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects.’, Science translational medicine, 13(609), p. eaaz4499. Available at: https://doi.org/10.1126/scitranslmed.aaz4499.
Rua L.A. et al. (2021) ‘Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects.’, Science translational medicine, 13(609), p. eaaz4499. Available at: https://doi.org/10.1126/scitranslmed.aaz4499.
Haeusner S. et al. (2021) ‘From Single Batch to Mass Production–Automated Platform Design Concept for a Phase II Clinical Trial Tissue Engineered Cartilage Product’, Frontiers in Medicine, 8. Available at: https://doi.org/10.3389/fmed.2021.712917.
Haeusner S. et al. (2021) ‘From Single Batch to Mass Production–Automated Platform Design Concept for a Phase II Clinical Trial Tissue Engineered Cartilage Product’, Frontiers in Medicine, 8. Available at: https://doi.org/10.3389/fmed.2021.712917.
Secerovic A. et al. (2021) ‘Nasal Chondrocyte-Based Engineered Grafts for the Repair of Articular Cartilage ‘Kissing’ Lesions: A Pilot Large-Animal Study.’, The American journal of sports medicine, 49(8), pp. 2187–2198. Available at: https://doi.org/10.1177/03635465211014190.
Secerovic A. et al. (2021) ‘Nasal Chondrocyte-Based Engineered Grafts for the Repair of Articular Cartilage ‘Kissing’ Lesions: A Pilot Large-Animal Study.’, The American journal of sports medicine, 49(8), pp. 2187–2198. Available at: https://doi.org/10.1177/03635465211014190.
Asnaghi M.A. et al. (2021) ‘Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells’, Advanced Functional Materials, 31(20). Available at: https://doi.org/10.1002/adfm.202010747.
Asnaghi M.A. et al. (2021) ‘Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells’, Advanced Functional Materials, 31(20). Available at: https://doi.org/10.1002/adfm.202010747.
Galipeau J. et al. (2021) ‘Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition’, Cytotherapy, 23(5), pp. 368–372. Available at: https://doi.org/10.1016/j.jcyt.2020.11.007.
Galipeau J. et al. (2021) ‘Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition’, Cytotherapy, 23(5), pp. 368–372. Available at: https://doi.org/10.1016/j.jcyt.2020.11.007.
Gay MHP et al. (2021) ‘The Survey on Cellular and Tissue-Engineered Therapies in Europe in 2016 and 2017.’, Tissue engineering. Part A, 27(5-6), pp. 336–350. Available at: https://doi.org/10.1089/ten.tea.2020.0092.
Gay MHP et al. (2021) ‘The Survey on Cellular and Tissue-Engineered Therapies in Europe in 2016 and 2017.’, Tissue engineering. Part A, 27(5-6), pp. 336–350. Available at: https://doi.org/10.1089/ten.tea.2020.0092.
Power L et al. (2021) ‘Deep learning enables the automation of grading histological tissue engineered cartilage images for quality control standardization.’, Osteoarthritis and cartilage, 29(3), pp. 433–443. Available at: https://doi.org/10.1016/j.joca.2020.12.018.
Power L et al. (2021) ‘Deep learning enables the automation of grading histological tissue engineered cartilage images for quality control standardization.’, Osteoarthritis and cartilage, 29(3), pp. 433–443. Available at: https://doi.org/10.1016/j.joca.2020.12.018.
Born, Gordian et al. (2021) ‘Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells’, Journal of Tissue Engineering, 12. Available at: https://doi.org/10.1177/20417314211044855.
Born, Gordian et al. (2021) ‘Engineering of fully humanized and vascularized 3D bone marrow niches sustaining undifferentiated human cord blood hematopoietic stem and progenitor cells’, Journal of Tissue Engineering, 12. Available at: https://doi.org/10.1177/20417314211044855.
García-García, Andrés et al. (2021) ‘Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches’, Proceedings of the National Academy of Sciences of the United States of America, 118. Available at: https://doi.org/10.1073/pnas.2114227118.
García-García, Andrés et al. (2021) ‘Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches’, Proceedings of the National Academy of Sciences of the United States of America, 118. Available at: https://doi.org/10.1073/pnas.2114227118.
García-García, Andrés and Martin, Ivan (2021) ‘Biomimetic human bone marrow tissues: models to study hematopoiesis and platforms for drug testing’, Molecular and Cellular Oncology, 8. Available at: https://doi.org/10.1080/23723556.2021.2007030.
García-García, Andrés and Martin, Ivan (2021) ‘Biomimetic human bone marrow tissues: models to study hematopoiesis and platforms for drug testing’, Molecular and Cellular Oncology, 8. Available at: https://doi.org/10.1080/23723556.2021.2007030.
Hirsiger, Julia R. et al. (2021) ‘Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination’, Journal of Autoimmunity, 124. Available at: https://doi.org/10.1016/j.jaut.2021.102714.
Hirsiger, Julia R. et al. (2021) ‘Chronic inflammation and extracellular matrix-specific autoimmunity following inadvertent periarticular influenza vaccination’, Journal of Autoimmunity, 124. Available at: https://doi.org/10.1016/j.jaut.2021.102714.
Ismail T et al. (2021) ‘Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft.’, 11. Available at: https://doi.org/10.3389/fonc.2021.775136.
Ismail T et al. (2021) ‘Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft.’, 11. Available at: https://doi.org/10.3389/fonc.2021.775136.
Pigeot, Sébastien et al. (2021) ‘Manufacturing of Human Tissues as off-the-Shelf Grafts Programmed to Induce Regeneration’, Advanced Materials, 33. Available at: https://doi.org/10.1002/adma.202103737.
Pigeot, Sébastien et al. (2021) ‘Manufacturing of Human Tissues as off-the-Shelf Grafts Programmed to Induce Regeneration’, Advanced Materials, 33. Available at: https://doi.org/10.1002/adma.202103737.
Pirosa, Alessandro et al. (2021) ‘Modeling in vitro osteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells’, International Journal of Molecular Sciences, 22. Available at: https://doi.org/10.3390/ijms22179581.
Pirosa, Alessandro et al. (2021) ‘Modeling in vitro osteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells’, International Journal of Molecular Sciences, 22. Available at: https://doi.org/10.3390/ijms22179581.
Ziadlou R et al. (2021) ‘Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs.’, Materials science & engineering. C, Materials for biological applications, 120, p. 111701. Available at: https://doi.org/10.1016/j.msec.2020.111701.
Ziadlou R et al. (2021) ‘Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs.’, Materials science & engineering. C, Materials for biological applications, 120, p. 111701. Available at: https://doi.org/10.1016/j.msec.2020.111701.
Chawla S et al. (2020) ‘Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model.’, Journal of cell science, 133(23). Available at: https://doi.org/10.1242/jcs.249094.
Chawla S et al. (2020) ‘Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model.’, Journal of cell science, 133(23). Available at: https://doi.org/10.1242/jcs.249094.
Martin I. et al. (2020) ‘Editorial: Clinical Translation and Commercialisation of Advanced Therapy Medicinal Products’, Frontiers in Bioengineering and Biotechnology, 8. Available at: https://doi.org/10.3389/fbioe.2020.619698.
Martin I. et al. (2020) ‘Editorial: Clinical Translation and Commercialisation of Advanced Therapy Medicinal Products’, Frontiers in Bioengineering and Biotechnology, 8. Available at: https://doi.org/10.3389/fbioe.2020.619698.
Ismail T et al. (2020) ‘Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts.’, Journal of tissue engineering and regenerative medicine, 14(12), pp. 1908–1917. Available at: https://doi.org/10.1002/term.3141.
Ismail T et al. (2020) ‘Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts.’, Journal of tissue engineering and regenerative medicine, 14(12), pp. 1908–1917. Available at: https://doi.org/10.1002/term.3141.
Gu Y et al. (2020) ‘Advanced Bioink for 3D Bioprinting of Complex Free-Standing Structures with High Stiffness.’, Bioengineering (Basel, Switzerland), 7(4). Available at: https://doi.org/10.3390/bioengineering7040141.
Gu Y et al. (2020) ‘Advanced Bioink for 3D Bioprinting of Complex Free-Standing Structures with High Stiffness.’, Bioengineering (Basel, Switzerland), 7(4). Available at: https://doi.org/10.3390/bioengineering7040141.
Khoury M et al. (2020) ‘Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential.’, Cytotherapy, 22(11), pp. 602–605. Available at: https://doi.org/10.1016/j.jcyt.2020.04.089.
Khoury M et al. (2020) ‘Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential.’, Cytotherapy, 22(11), pp. 602–605. Available at: https://doi.org/10.1016/j.jcyt.2020.04.089.
Power LJ et al. (2020) ‘Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays.’, Biosensors & bioelectronics, 166, p. 112467. Available at: https://doi.org/10.1016/j.bios.2020.112467.
Power LJ et al. (2020) ‘Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays.’, Biosensors & bioelectronics, 166, p. 112467. Available at: https://doi.org/10.1016/j.bios.2020.112467.
Pigeot S. et al. (2020) ‘Orthotopic bone formation by streamlined engineering and devitalization of human hypertrophic cartilage’, International Journal of Molecular Sciences, 21(19), pp. 1–14. Available at: https://doi.org/10.3390/ijms21197233.
Pigeot S. et al. (2020) ‘Orthotopic bone formation by streamlined engineering and devitalization of human hypertrophic cartilage’, International Journal of Molecular Sciences, 21(19), pp. 1–14. Available at: https://doi.org/10.3390/ijms21197233.
Ziadlou R et al. (2020) ‘Anti-Inflammatory and Chondroprotective Effects of Vanillic Acid and Epimedin C in Human Osteoarthritic Chondrocytes.’, Biomolecules, 10(6). Available at: https://doi.org/10.3390/biom10060932.
Ziadlou R et al. (2020) ‘Anti-Inflammatory and Chondroprotective Effects of Vanillic Acid and Epimedin C in Human Osteoarthritic Chondrocytes.’, Biomolecules, 10(6). Available at: https://doi.org/10.3390/biom10060932.
Mumme M, Wixmerten A and Martin I (2020) ‘Reply to comment on: Mumme M, et al. Tissue engineering for paediatric patients. Swiss Med Wkly. 2019.149.w20032.’, 150. Available at: https://doi.org/10.4414/smw.2020.20240.
Mumme M, Wixmerten A and Martin I (2020) ‘Reply to comment on: Mumme M, et al. Tissue engineering for paediatric patients. Swiss Med Wkly. 2019.149.w20032.’, 150. Available at: https://doi.org/10.4414/smw.2020.20240.
Chabannon C, Ciccocioppo R and Martin I (2020) ‘Welcome to ISCT 2020 Paris Virtual.’, 22(5S). Available at: https://doi.org/10.1016/j.jcyt.2020.04.096.
Chabannon C, Ciccocioppo R and Martin I (2020) ‘Welcome to ISCT 2020 Paris Virtual.’, 22(5S). Available at: https://doi.org/10.1016/j.jcyt.2020.04.096.
Horton ER et al. (2020) ‘Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2.’, Advanced healthcare materials, 9(7), p. e1901669. Available at: https://doi.org/10.1002/adhm.201901669.
Horton ER et al. (2020) ‘Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2.’, Advanced healthcare materials, 9(7), p. e1901669. Available at: https://doi.org/10.1002/adhm.201901669.
Pagella P et al. (2020) ‘Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth.’, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 34(4), pp. 5499–5511. Available at: https://doi.org/10.1096/fj.201902482r.
Pagella P et al. (2020) ‘Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth.’, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 34(4), pp. 5499–5511. Available at: https://doi.org/10.1096/fj.201902482r.
Huang RL et al. (2020) ‘Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation.’, Acta biomaterialia, 102, pp. 458–467. Available at: https://doi.org/10.1016/j.actbio.2019.11.046.
Huang RL et al. (2020) ‘Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation.’, Acta biomaterialia, 102, pp. 458–467. Available at: https://doi.org/10.1016/j.actbio.2019.11.046.
Asnaghi M.A. et al. (2020) ‘Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage.’, Frontiers in bioengineering and biotechnology, 8, p. 283. Available at: https://doi.org/10.3389/fbioe.2020.00283.
Asnaghi M.A. et al. (2020) ‘Biomarker Signatures of Quality for Engineering Nasal Chondrocyte-Derived Cartilage.’, Frontiers in bioengineering and biotechnology, 8, p. 283. Available at: https://doi.org/10.3389/fbioe.2020.00283.
Lehoczky G et al. (2020) ‘Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts.’, Clinical hemorheology and microcirculation, 74(1), pp. 67–78. Available at: https://doi.org/10.3233/ch-199236.
Lehoczky G et al. (2020) ‘Intra-individual comparison of human nasal chondrocytes and debrided knee chondrocytes: Relevance for engineering autologous cartilage grafts.’, Clinical hemorheology and microcirculation, 74(1), pp. 67–78. Available at: https://doi.org/10.3233/ch-199236.
Mumme, Marcus et al. (2020) ‘Expanded cells, bone marrow, adipose tissue: what is (not) allowed in Switzerland: Focus: cartilage regeneration and arthrosis’, Arthroskopie, 33, pp. 89–93. Available at: https://doi.org/10.1007/s00142-020-00346-6.
Mumme, Marcus et al. (2020) ‘Expanded cells, bone marrow, adipose tissue: what is (not) allowed in Switzerland: Focus: cartilage regeneration and arthrosis’, Arthroskopie, 33, pp. 89–93. Available at: https://doi.org/10.1007/s00142-020-00346-6.
Filippi M et al. (2019) ‘Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells.’, Biomaterials, 223, p. 119468. Available at: https://doi.org/10.1016/j.biomaterials.2019.119468.
Filippi M et al. (2019) ‘Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells.’, Biomaterials, 223, p. 119468. Available at: https://doi.org/10.1016/j.biomaterials.2019.119468.
Ziadlou R et al. (2019) ‘Regulation of Inflammatory Response in Human Osteoarthritic Chondrocytes by Novel Herbal Small Molecules.’, International journal of molecular sciences, 20(22). Available at: https://doi.org/10.3390/ijms20225745.
Ziadlou R et al. (2019) ‘Regulation of Inflammatory Response in Human Osteoarthritic Chondrocytes by Novel Herbal Small Molecules.’, International journal of molecular sciences, 20(22). Available at: https://doi.org/10.3390/ijms20225745.
Vukasovic A et al. (2019) ‘Bioreactor-manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies.’, Cell proliferation, 52(6), p. e12653. Available at: https://doi.org/10.1111/cpr.12653.
Vukasovic A et al. (2019) ‘Bioreactor-manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies.’, Cell proliferation, 52(6), p. e12653. Available at: https://doi.org/10.1111/cpr.12653.
Lunger A et al. (2019) ‘Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution’, Annals of Plastic Surgery, 83(4), pp. 464–467. Available at: https://doi.org/10.1097/sap.0000000000001857.
Lunger A et al. (2019) ‘Improved Adipocyte Viability in Autologous Fat Grafting with Ascorbic Acid-Supplemented Tumescent Solution’, Annals of Plastic Surgery, 83(4), pp. 464–467. Available at: https://doi.org/10.1097/sap.0000000000001857.
Viswanathan S et al. (2019) ‘Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature.’, Cytotherapy, 21(10), pp. 1019–1024. Available at: https://doi.org/10.1016/j.jcyt.2019.08.002.
Viswanathan S et al. (2019) ‘Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature.’, Cytotherapy, 21(10), pp. 1019–1024. Available at: https://doi.org/10.1016/j.jcyt.2019.08.002.
Bourgine PE et al. (2019) ‘Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs.’, iScience, 19, pp. 504–513. Available at: https://doi.org/10.1016/j.isci.2019.08.006.
Bourgine PE et al. (2019) ‘Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs.’, iScience, 19, pp. 504–513. Available at: https://doi.org/10.1016/j.isci.2019.08.006.
Fritsch K. et al. (2019) ‘Erratum to “Engineered humanized bone organs maintain human hematopoiesis in vivo”: (Experimental Hematology (2018) 61 (45–51.e5), (S0301472X18300389), (10.1016/j.exphem.2018.01.004))’, Experimental Hematology, 72, p. 72. Available at: https://doi.org/10.1016/j.exphem.2019.01.007.
Fritsch K. et al. (2019) ‘Erratum to “Engineered humanized bone organs maintain human hematopoiesis in vivo”: (Experimental Hematology (2018) 61 (45–51.e5), (S0301472X18300389), (10.1016/j.exphem.2018.01.004))’, Experimental Hematology, 72, p. 72. Available at: https://doi.org/10.1016/j.exphem.2019.01.007.
Mumme M et al. (2019) ‘Tissue engineering for paediatric patients.’, Swiss medical weekly, 149, p. w20032. Available at: https://doi.org/10.4414/smw.2019.20032.
Mumme M et al. (2019) ‘Tissue engineering for paediatric patients.’, Swiss medical weekly, 149, p. w20032. Available at: https://doi.org/10.4414/smw.2019.20032.
Epple C et al. (2019) ‘Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction’, Biomaterials, 192, pp. 118–127. Available at: https://doi.org/10.1016/j.biomaterials.2018.11.008.
Epple C et al. (2019) ‘Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction’, Biomaterials, 192, pp. 118–127. Available at: https://doi.org/10.1016/j.biomaterials.2018.11.008.
Stüdle C et al. (2019) ‘Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential.’, Stem cells translational medicine, 8(2), pp. 194–204. Available at: https://doi.org/10.1002/sctm.18-0147.
Stüdle C et al. (2019) ‘Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential.’, Stem cells translational medicine, 8(2), pp. 194–204. Available at: https://doi.org/10.1002/sctm.18-0147.
Blache U et al. (2019) ‘Mesenchymal stromal cell activation by breast cancer secretomes in bioengineered 3D microenvironments’, Life Science Alliance. 03.06.2019, 2(3). Available at: https://doi.org/10.26508/lsa.201900304.
Blache U et al. (2019) ‘Mesenchymal stromal cell activation by breast cancer secretomes in bioengineered 3D microenvironments’, Life Science Alliance. 03.06.2019, 2(3). Available at: https://doi.org/10.26508/lsa.201900304.
García-García, Andrés and Martin, Ivan (2019) ‘Extracellular Matrices to Modulate the Innate Immune Response and Enhance Bone Healing’, Frontiers in Immunology, 10, p. 2256. Available at: https://doi.org/10.3389/fimmu.2019.02256.
García-García, Andrés and Martin, Ivan (2019) ‘Extracellular Matrices to Modulate the Innate Immune Response and Enhance Bone Healing’, Frontiers in Immunology, 10, p. 2256. Available at: https://doi.org/10.3389/fimmu.2019.02256.
Gay M.H.P. et al. (2019) ‘Nose to back: Compatibility of nasal chondrocytes with environmental conditions mimicking a degenerated intervertebral disc’, European Cells and Materials, 37, pp. 214–323. Available at: https://doi.org/10.22203/ecm.v037a13.
Gay M.H.P. et al. (2019) ‘Nose to back: Compatibility of nasal chondrocytes with environmental conditions mimicking a degenerated intervertebral disc’, European Cells and Materials, 37, pp. 214–323. Available at: https://doi.org/10.22203/ecm.v037a13.
Martin I. et al. (2019) ‘Challenges for mesenchymal stromal cell therapies’, Science Translational Medicine, 11(480). Available at: https://doi.org/10.1126/scitranslmed.aat2189.
Martin I. et al. (2019) ‘Challenges for mesenchymal stromal cell therapies’, Science Translational Medicine, 11(480). Available at: https://doi.org/10.1126/scitranslmed.aat2189.
Martin, Ivan, Malda, Jos and Rivron, Nicolas C. (2019) ‘Organs by design: can bioprinting meet self-organisation?’, Current opinion in organ transplantation, 24(5), pp. 562–567. Available at: https://doi.org/10.1097/mot.0000000000000679.
Martin, Ivan, Malda, Jos and Rivron, Nicolas C. (2019) ‘Organs by design: can bioprinting meet self-organisation?’, Current opinion in organ transplantation, 24(5), pp. 562–567. Available at: https://doi.org/10.1097/mot.0000000000000679.
Power, Laura et al. (2019) ‘Raman spectroscopy quality controls for GMP compliant manufacturing of tissue engineered cartilage’. Available at: https://doi.org/10.1117/12.2507951.
Power, Laura et al. (2019) ‘Raman spectroscopy quality controls for GMP compliant manufacturing of tissue engineered cartilage’. Available at: https://doi.org/10.1117/12.2507951.
59. Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD et al. (2019) ‘Maintenance of primary human colorectal cancer microenvironment using a perfusion bioreactor-based 3D culture system. ’, Advanced Biosystems, 3(4), p. e1800300.
59. Manfredonia C, Muraro MG, Hirt C, Mele V, Governa V, Papadimitropoulos A, Däster S, Soysal SD et al. (2019) ‘Maintenance of primary human colorectal cancer microenvironment using a perfusion bioreactor-based 3D culture system. ’, Advanced Biosystems, 3(4), p. e1800300.
Wixmerten, Anke, Miot, Sylvie and Martin, Ivan (2019) ‘Roadmap and Challenges for Investigator Initiated Clinical Trials With Advanced Therapy Medicinal Products (ATMPs)’, in Reis, Rui (ed.) Encyclopedia of Tissue Engineering and Regenerative Medicine. London: Elsevier (Encyclopedia of Tissue Engineering and Regenerative Medicine), pp. 57–70. Available at: https://doi.org/10.1016/b978-0-12-801238-3.11119-5.
Wixmerten, Anke, Miot, Sylvie and Martin, Ivan (2019) ‘Roadmap and Challenges for Investigator Initiated Clinical Trials With Advanced Therapy Medicinal Products (ATMPs)’, in Reis, Rui (ed.) Encyclopedia of Tissue Engineering and Regenerative Medicine. London: Elsevier (Encyclopedia of Tissue Engineering and Regenerative Medicine), pp. 57–70. Available at: https://doi.org/10.1016/b978-0-12-801238-3.11119-5.
Devaud YR et al. (2018) ‘Label-Free Quantification Proteomics for the Identification of Mesenchymal Stromal Cell Matrisome Inside 3D Poly(Ethylene Glycol) Hydrogels.’, Advanced healthcare materials. 27.09.2018, 7(21), p. e1800534. Available at: https://doi.org/10.1002/adhm.201800534.
Devaud YR et al. (2018) ‘Label-Free Quantification Proteomics for the Identification of Mesenchymal Stromal Cell Matrisome Inside 3D Poly(Ethylene Glycol) Hydrogels.’, Advanced healthcare materials. 27.09.2018, 7(21), p. e1800534. Available at: https://doi.org/10.1002/adhm.201800534.
Piuzzi NS et al. (2018) ‘Proceedings of the signature series symposium ‘cellular therapies for orthopaedics and musculoskeletal disease proven and unproven therapies-promise, facts and fantasy,’ international society for cellular therapies, montreal, canada, may 2, 2018.’, Cytotherapy. 10.10.2018, 20(11), pp. 1381–1400. Available at: https://doi.org/10.1016/j.jcyt.2018.09.001.
Piuzzi NS et al. (2018) ‘Proceedings of the signature series symposium ‘cellular therapies for orthopaedics and musculoskeletal disease proven and unproven therapies-promise, facts and fantasy,’ international society for cellular therapies, montreal, canada, may 2, 2018.’, Cytotherapy. 10.10.2018, 20(11), pp. 1381–1400. Available at: https://doi.org/10.1016/j.jcyt.2018.09.001.
Gullotta F. et al. (2018) ‘Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration’, Journal of the Mechanical Behavior of Biomedical Materials, 86, pp. 294–304. Available at: https://doi.org/10.1016/j.jmbbm.2018.06.040.
Gullotta F. et al. (2018) ‘Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration’, Journal of the Mechanical Behavior of Biomedical Materials, 86, pp. 294–304. Available at: https://doi.org/10.1016/j.jmbbm.2018.06.040.
Guerrero J et al. (2018) ‘Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.’, Acta biomaterialia. 04.07.2018, 77, pp. 142–154. Available at: https://doi.org/10.1016/j.actbio.2018.07.004.
Guerrero J et al. (2018) ‘Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.’, Acta biomaterialia. 04.07.2018, 77, pp. 142–154. Available at: https://doi.org/10.1016/j.actbio.2018.07.004.
Lee JY et al. (2018) ‘Pre-transplantational Control of the Post-transplantational Fate of Human Pluripotent Stem Cell-Derived Cartilage.’, Stem cell reports. 26.07.2018, 11(2), pp. 440–453. Available at: https://doi.org/10.1016/j.stemcr.2018.06.021.
Lee JY et al. (2018) ‘Pre-transplantational Control of the Post-transplantational Fate of Human Pluripotent Stem Cell-Derived Cartilage.’, Stem cell reports. 26.07.2018, 11(2), pp. 440–453. Available at: https://doi.org/10.1016/j.stemcr.2018.06.021.
Blache U. et al. (2018) ‘Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate’, EMBO Reports, 19(8). Available at: https://doi.org/10.15252/embr.201845964.
Blache U. et al. (2018) ‘Notch-inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate’, EMBO Reports, 19(8). Available at: https://doi.org/10.15252/embr.201845964.
Sarem M. et al. (2018) ‘Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R’, Proceedings of the National Academy of Sciences of the United States of America, 115(27), pp. E6135–E6144. Available at: https://doi.org/10.1073/pnas.1805159115.
Sarem M. et al. (2018) ‘Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R’, Proceedings of the National Academy of Sciences of the United States of America, 115(27), pp. E6135–E6144. Available at: https://doi.org/10.1073/pnas.1805159115.
Rossi E. et al. (2018) ‘An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis’, Tissue Engineering - Part C: Methods, 24(7), pp. 391–398. Available at: https://doi.org/10.1089/ten.tec.2018.0061.
Rossi E. et al. (2018) ‘An In Vitro Bone Model to Investigate the Role of Triggering Receptor Expressed on Myeloid Cells-2 in Bone Homeostasis’, Tissue Engineering - Part C: Methods, 24(7), pp. 391–398. Available at: https://doi.org/10.1089/ten.tec.2018.0061.
Stüdle C et al. (2018) ‘Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues.’, Biomaterials, 171, pp. 219–229. Available at: https://doi.org/10.1016/j.biomaterials.2018.04.025.
Stüdle C et al. (2018) ‘Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues.’, Biomaterials, 171, pp. 219–229. Available at: https://doi.org/10.1016/j.biomaterials.2018.04.025.
Bourgine PE et al. (2018) ‘In vitro biomimetic engineering of a human hematopoietic niche with functional properties.’, Proceedings of the National Academy of Sciences of the United States of America. 04.06.2018, 115(25), pp. E5688–E5695. Available at: https://doi.org/10.1073/pnas.1805440115.
Bourgine PE et al. (2018) ‘In vitro biomimetic engineering of a human hematopoietic niche with functional properties.’, Proceedings of the National Academy of Sciences of the United States of America. 04.06.2018, 115(25), pp. E5688–E5695. Available at: https://doi.org/10.1073/pnas.1805440115.
Majewski M et al. (2018) ‘Improved tendon healing using bFGF, BMP-12 and TGFβ1 in a rat model.’, European cells & materials, 35, pp. 318–334. Available at: https://doi.org/10.22203/ecm.v035a22.
Majewski M et al. (2018) ‘Improved tendon healing using bFGF, BMP-12 and TGFβ1 in a rat model.’, European cells & materials, 35, pp. 318–334. Available at: https://doi.org/10.22203/ecm.v035a22.
Asnaghi MA et al. (2018) ‘Chondrogenic differentiation of human chondrocytes cultured in the absence of ascorbic acid.’, Journal of tissue engineering and regenerative medicine. 16.05.2018, 12(6), pp. 1402–1411. Available at: https://doi.org/10.1002/term.2671.
Asnaghi MA et al. (2018) ‘Chondrogenic differentiation of human chondrocytes cultured in the absence of ascorbic acid.’, Journal of tissue engineering and regenerative medicine. 16.05.2018, 12(6), pp. 1402–1411. Available at: https://doi.org/10.1002/term.2671.
Rossi E et al. (2018) ‘Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration.’, Acta biomaterialia. 21.04.2018, 73, pp. 154–166. Available at: https://doi.org/10.1016/j.actbio.2018.04.039.
Rossi E et al. (2018) ‘Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration.’, Acta biomaterialia. 21.04.2018, 73, pp. 154–166. Available at: https://doi.org/10.1016/j.actbio.2018.04.039.
Fritsch K. et al. (2018) ‘Engineered humanized bone organs maintain human hematopoiesis in vivo’, Experimental Hematology, 61, pp. 45–51.e5. Available at: https://doi.org/10.1016/j.exphem.2018.01.004.
Fritsch K. et al. (2018) ‘Engineered humanized bone organs maintain human hematopoiesis in vivo’, Experimental Hematology, 61, pp. 45–51.e5. Available at: https://doi.org/10.1016/j.exphem.2018.01.004.
Occhetta P. et al. (2018) ‘Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis’, Proceedings of the National Academy of Sciences of the United States of America, 115(18), pp. 4625–4630. Available at: https://doi.org/10.1073/pnas.1720658115.
Occhetta P. et al. (2018) ‘Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis’, Proceedings of the National Academy of Sciences of the United States of America, 115(18), pp. 4625–4630. Available at: https://doi.org/10.1073/pnas.1720658115.
Haumer A. et al. (2018) ‘Delivery of cellular factors to regulate bone healing’, Advanced Drug Delivery Reviews, 129, pp. 285–294. Available at: https://doi.org/10.1016/j.addr.2018.01.010.
Haumer A. et al. (2018) ‘Delivery of cellular factors to regulate bone healing’, Advanced Drug Delivery Reviews, 129, pp. 285–294. Available at: https://doi.org/10.1016/j.addr.2018.01.010.
Menzi N et al. (2018) ‘Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells.’, Cytotechnology. 17.01.2018, 70(2), pp. 807–817. Available at: https://doi.org/10.1007/s10616-018-0190-z.
Menzi N et al. (2018) ‘Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells.’, Cytotechnology. 17.01.2018, 70(2), pp. 807–817. Available at: https://doi.org/10.1007/s10616-018-0190-z.
Loeffler D. et al. (2018) ‘Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating’, Blood, 131(13), pp. 1425–1429. Available at: https://doi.org/10.1182/blood-2017-07-794131.
Loeffler D. et al. (2018) ‘Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating’, Blood, 131(13), pp. 1425–1429. Available at: https://doi.org/10.1182/blood-2017-07-794131.
Sarem M. et al. (2018) ‘Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo’, Acta Biomaterialia, 69, pp. 83–94. Available at: https://doi.org/10.1016/j.actbio.2018.01.025.
Sarem M. et al. (2018) ‘Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo’, Acta Biomaterialia, 69, pp. 83–94. Available at: https://doi.org/10.1016/j.actbio.2018.01.025.
Bourgine PE, Martin I and Schroeder T (2018) ‘Engineering Human Bone Marrow Proxies.’, Cell stem cell, 22(3), pp. 298–301. Available at: https://doi.org/10.1016/j.stem.2018.01.002.
Bourgine PE, Martin I and Schroeder T (2018) ‘Engineering Human Bone Marrow Proxies.’, Cell stem cell, 22(3), pp. 298–301. Available at: https://doi.org/10.1016/j.stem.2018.01.002.
Martin I, Jakob M and Schaefer DJ (2018) ‘From Tissue Engineering to Regenerative Surgery.’, 28. Available at: https://doi.org/10.1016/j.ebiom.2018.01.029.
Martin I, Jakob M and Schaefer DJ (2018) ‘From Tissue Engineering to Regenerative Surgery.’, 28. Available at: https://doi.org/10.1016/j.ebiom.2018.01.029.
Schweizer, Thierry et al. (2018) ‘Patterns of bone tracer uptake on SPECT-CT in symptomatic and asymptomatic patients with primary total hip arthroplasty’, European Journal of Nuclear Medicine and Molecular Imaging, 45(2), pp. 283–291. Available at: https://doi.org/10.1007/s00259-017-3827-9.
Schweizer, Thierry et al. (2018) ‘Patterns of bone tracer uptake on SPECT-CT in symptomatic and asymptomatic patients with primary total hip arthroplasty’, European Journal of Nuclear Medicine and Molecular Imaging, 45(2), pp. 283–291. Available at: https://doi.org/10.1007/s00259-017-3827-9.
Fennema E.M. et al. (2018) ‘Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study’, Journal of Tissue Engineering and Regenerative Medicine, 12(1), pp. e150–e158. Available at: https://doi.org/10.1002/term.2453.
Fennema E.M. et al. (2018) ‘Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study’, Journal of Tissue Engineering and Regenerative Medicine, 12(1), pp. e150–e158. Available at: https://doi.org/10.1002/term.2453.
Ireland H. et al. (2018) ‘The survey on cellular and tissue-engineered therapies in Europe and neighboring Eurasian countries in 2014 and 2015’, Cytotherapy, 20(1), pp. 1–20. Available at: https://doi.org/10.1016/j.jcyt.2017.08.009.
Ireland H. et al. (2018) ‘The survey on cellular and tissue-engineered therapies in Europe and neighboring Eurasian countries in 2014 and 2015’, Cytotherapy, 20(1), pp. 1–20. Available at: https://doi.org/10.1016/j.jcyt.2017.08.009.
Hoch AI et al. (2017) ‘Expansion of Bone Marrow Mesenchymal Stromal Cells in Perfused 3D Ceramic Scaffolds Enhances In Vivo Bone Formation.’, Biotechnology journal. 25.09.2017, 12(12). Available at: https://doi.org/10.1002/biot.201700071.
Hoch AI et al. (2017) ‘Expansion of Bone Marrow Mesenchymal Stromal Cells in Perfused 3D Ceramic Scaffolds Enhances In Vivo Bone Formation.’, Biotechnology journal. 25.09.2017, 12(12). Available at: https://doi.org/10.1002/biot.201700071.
Ismail T et al. (2017) ‘Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.’, Acta biomaterialia, 63, pp. 236–245. Available at: https://doi.org/10.1016/j.actbio.2017.09.003.
Ismail T et al. (2017) ‘Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.’, Acta biomaterialia, 63, pp. 236–245. Available at: https://doi.org/10.1016/j.actbio.2017.09.003.