[FG] Translational Imaging in Neurology
Publications
365 found
Show per page
Oechtering, J. et al. (2025) ‘Aberrant Complement Activation Is Associated With Structural Brain Damage in Multiple Sclerosis’, Neurology Neuroimmunology & Neuroinflammation, 12(2). Available at: https://doi.org/10.1212/nxi.0000000000200361.
Oechtering, J. et al. (2025) ‘Aberrant Complement Activation Is Associated With Structural Brain Damage in Multiple Sclerosis’, Neurology Neuroimmunology & Neuroinflammation, 12(2). Available at: https://doi.org/10.1212/nxi.0000000000200361.
Cagol, A. and Montobbio, N. (2025) ‘Reassuring Insights Into the Effect of COVID-19 on Symptoms and Disability in People With Multiple Sclerosis’, Neurology, 104(2). Available at: https://doi.org/10.1212/wnl.0000000000210272.
Cagol, A. and Montobbio, N. (2025) ‘Reassuring Insights Into the Effect of COVID-19 on Symptoms and Disability in People With Multiple Sclerosis’, Neurology, 104(2). Available at: https://doi.org/10.1212/wnl.0000000000210272.
Kan, C.N. et al. (2025) ‘Tract-specific white matter hyperintensities and neuropsychiatric syndromes: a multicentre memory clinic study’, Journal of Neurology, Neurosurgery & Psychiatry, pp. jnnp–2024–334264. Available at: https://doi.org/10.1136/jnnp-2024-334264.
Kan, C.N. et al. (2025) ‘Tract-specific white matter hyperintensities and neuropsychiatric syndromes: a multicentre memory clinic study’, Journal of Neurology, Neurosurgery & Psychiatry, pp. jnnp–2024–334264. Available at: https://doi.org/10.1136/jnnp-2024-334264.
Durrer, Alicia et al. (2025) ‘Denoising Diffusion Models for 3D Healthy Brain Tissue Inpainting’, pp. 87–97. Available at: https://doi.org/10.1007/978-3-031-72744-3_9.
Durrer, Alicia et al. (2025) ‘Denoising Diffusion Models for 3D Healthy Brain Tissue Inpainting’, pp. 87–97. Available at: https://doi.org/10.1007/978-3-031-72744-3_9.
Molchanova, Nataliia et al. (2025) ‘Structural-based uncertainty in deep learning across anatomical scales: Analysis in white matter lesion segmentation’, Computers in Biology and Medicine, 184. Available at: https://doi.org/10.1016/j.compbiomed.2024.109336.
Molchanova, Nataliia et al. (2025) ‘Structural-based uncertainty in deep learning across anatomical scales: Analysis in white matter lesion segmentation’, Computers in Biology and Medicine, 184. Available at: https://doi.org/10.1016/j.compbiomed.2024.109336.
Schoenholzer, K. et al. (2024) ‘Hemimacular Thinning Due to Lesions in the Lateral Geniculate Nucleus in 2 Patients With Neuroinflammatory Diseases’, Neurology Neuroimmunology & Neuroinflammation, 11(6). Available at: https://doi.org/10.1212/nxi.0000000000200297.
Schoenholzer, K. et al. (2024) ‘Hemimacular Thinning Due to Lesions in the Lateral Geniculate Nucleus in 2 Patients With Neuroinflammatory Diseases’, Neurology Neuroimmunology & Neuroinflammation, 11(6). Available at: https://doi.org/10.1212/nxi.0000000000200297.
Yi, F. et al. (2024) ‘Baseline and Longitudinal MRI Markers Associated With 16-Year Mortality in Patients With Cerebral Small Vessel Disease’, Neurology, 103(6). Available at: https://doi.org/10.1212/wnl.0000000000209701.
Yi, F. et al. (2024) ‘Baseline and Longitudinal MRI Markers Associated With 16-Year Mortality in Patients With Cerebral Small Vessel Disease’, Neurology, 103(6). Available at: https://doi.org/10.1212/wnl.0000000000209701.
Gordaliza, P.M. et al. (2024) ‘Towards Longitudinal Characterization of Multiple Sclerosis Atrophy Employing SynthSeg Framework and Normative Modeling’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.09.17.613272.
Gordaliza, P.M. et al. (2024) ‘Towards Longitudinal Characterization of Multiple Sclerosis Atrophy Employing SynthSeg Framework and Normative Modeling’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.09.17.613272.
Spagnolo, F. et al. (2024) ‘Exploiting XAI maps to improve MS lesion segmentation and detection in MRI’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.08.29.610090.
Spagnolo, F. et al. (2024) ‘Exploiting XAI maps to improve MS lesion segmentation and detection in MRI’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.08.29.610090.
Sastre-Garriga, J. et al. (2024) ‘Value of Optic Nerve MRI in Multiple Sclerosis Clinical Management’, Neurology, 103(3). Available at: https://doi.org/10.1212/wnl.0000000000209677.
Sastre-Garriga, J. et al. (2024) ‘Value of Optic Nerve MRI in Multiple Sclerosis Clinical Management’, Neurology, 103(3). Available at: https://doi.org/10.1212/wnl.0000000000209677.
Graber, M. et al. (2024) ‘Recommendations for the Treatment of Multiple Sclerosis in Family Planning, Pregnancy and Lactation in Switzerland: Immunotherapy’, Clinical and Translational Neuroscience, 8(3), p. 26. Available at: https://doi.org/10.3390/ctn8030026.
Graber, M. et al. (2024) ‘Recommendations for the Treatment of Multiple Sclerosis in Family Planning, Pregnancy and Lactation in Switzerland: Immunotherapy’, Clinical and Translational Neuroscience, 8(3), p. 26. Available at: https://doi.org/10.3390/ctn8030026.
Weigel, M. et al. (2024) ‘Feasibility of interleaved multislice averaged magnetization inversion‐recovery acquisitions of the spinal cord’, Magnetic Resonance in Medicine [Preprint]. Available at: https://doi.org/10.1002/mrm.30223.
Weigel, M. et al. (2024) ‘Feasibility of interleaved multislice averaged magnetization inversion‐recovery acquisitions of the spinal cord’, Magnetic Resonance in Medicine [Preprint]. Available at: https://doi.org/10.1002/mrm.30223.
Ciccarelli, O. et al. (2024) ‘Using the Progression Independent of Relapse Activity Framework to Unveil the Pathobiological Foundations of Multiple Sclerosis’, Neurology, 103(1). Available at: https://doi.org/10.1212/wnl.0000000000209444.
Ciccarelli, O. et al. (2024) ‘Using the Progression Independent of Relapse Activity Framework to Unveil the Pathobiological Foundations of Multiple Sclerosis’, Neurology, 103(1). Available at: https://doi.org/10.1212/wnl.0000000000209444.
Schuchardt, F.F. et al. (2024) ‘Clinical value of neuroimaging indicators of intracranial hypertension in patients with cerebral venous thrombosis’, Neuroradiology, 66(7), pp. 1161–1176. Available at: https://doi.org/10.1007/s00234-024-03363-6.
Schuchardt, F.F. et al. (2024) ‘Clinical value of neuroimaging indicators of intracranial hypertension in patients with cerebral venous thrombosis’, Neuroradiology, 66(7), pp. 1161–1176. Available at: https://doi.org/10.1007/s00234-024-03363-6.
Ter Telgte, A. and Duering, M. (2024) ‘Cerebral Small Vessel Disease: Advancing Knowledge with Neuroimaging’, Stroke, 55(6), pp. 1686–1688. Available at: https://doi.org/10.1161/strokeaha.123.044294.
Ter Telgte, A. and Duering, M. (2024) ‘Cerebral Small Vessel Disease: Advancing Knowledge with Neuroimaging’, Stroke, 55(6), pp. 1686–1688. Available at: https://doi.org/10.1161/strokeaha.123.044294.
Cerfontaine, M.N. et al. (2024) ‘Association of NOTCH3 Variant Risk Category With 2-Year Clinical and Radiologic Small Vessel Disease Progression in Patients With CADASIL’, Neurology, 102(10). Available at: https://doi.org/10.1212/wnl.0000000000209310.
Cerfontaine, M.N. et al. (2024) ‘Association of NOTCH3 Variant Risk Category With 2-Year Clinical and Radiologic Small Vessel Disease Progression in Patients With CADASIL’, Neurology, 102(10). Available at: https://doi.org/10.1212/wnl.0000000000209310.
Li, H. et al. (2024) ‘Meso-cortical pathway damage in cognition, apathy and gait in cerebral small vessel disease’, Brain [Preprint]. Available at: https://doi.org/10.1093/brain/awae145.
Li, H. et al. (2024) ‘Meso-cortical pathway damage in cognition, apathy and gait in cerebral small vessel disease’, Brain [Preprint]. Available at: https://doi.org/10.1093/brain/awae145.
Christensen, R.H. et al. (2024) ‘Differences in Cortical Morphology in People With and Without Migraine: A Registry for Migraine (REFORM) MRI Study’, Neurology, 102(9). Available at: https://doi.org/10.1212/wnl.0000000000209305.
Christensen, R.H. et al. (2024) ‘Differences in Cortical Morphology in People With and Without Migraine: A Registry for Migraine (REFORM) MRI Study’, Neurology, 102(9). Available at: https://doi.org/10.1212/wnl.0000000000209305.
Li, H. et al. (2024) ‘Perivascular Spaces, Diffusivity Along Perivascular Spaces, and Free Water in Cerebral Small Vessel Disease’, Neurology, 102(9). Available at: https://doi.org/10.1212/wnl.0000000000209306.
Li, H. et al. (2024) ‘Perivascular Spaces, Diffusivity Along Perivascular Spaces, and Free Water in Cerebral Small Vessel Disease’, Neurology, 102(9). Available at: https://doi.org/10.1212/wnl.0000000000209306.
Weigel, M. et al. (2024) ‘Cerebellar Ex Vivo Magnetic Resonance Imaging at its Feasibility Limit: Up to 77-Microns Isotropic Resolution using Low-Bandwidth Balanced Steady State Free Precession (LoBa-bSSFP) Sequences and 3T Standard Equipment’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.04.18.589707.
Weigel, M. et al. (2024) ‘Cerebellar Ex Vivo Magnetic Resonance Imaging at its Feasibility Limit: Up to 77-Microns Isotropic Resolution using Low-Bandwidth Balanced Steady State Free Precession (LoBa-bSSFP) Sequences and 3T Standard Equipment’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.04.18.589707.
Janiaud, Perrine et al. (2024) ‘MultiSCRIPT-Cycle 1- A Pragmatic trial embedded within the Swiss Multiple Sclerosis Cohort (SMSC) on neurofilament light chain monitoring to inform personalized treatment decisions in Multiple Sclerosis: a study protocol for a randomized clinical trial’, medRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.03.22.24304720.
Janiaud, Perrine et al. (2024) ‘MultiSCRIPT-Cycle 1- A Pragmatic trial embedded within the Swiss Multiple Sclerosis Cohort (SMSC) on neurofilament light chain monitoring to inform personalized treatment decisions in Multiple Sclerosis: a study protocol for a randomized clinical trial’, medRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2024.03.22.24304720.
Galbusera, Riccardo et al. (2024) ‘Characteristics, Prevalence, and Clinical Relevance of Juxtacortical Paramagnetic Rims in Patients With Multiple Sclerosis’, Neurology, 102(3). Available at: https://doi.org/10.1212/wnl.0000000000207966.
Galbusera, Riccardo et al. (2024) ‘Characteristics, Prevalence, and Clinical Relevance of Juxtacortical Paramagnetic Rims in Patients With Multiple Sclerosis’, Neurology, 102(3). Available at: https://doi.org/10.1212/wnl.0000000000207966.
Cagol, Alessandro et al. (2024) ‘Diagnostic Performance of Cortical Lesions and the Central Vein Sign in Multiple Sclerosis’, JAMA Neurology, 81(2), p. 143. Available at: https://doi.org/10.1001/jamaneurol.2023.4737.
Cagol, Alessandro et al. (2024) ‘Diagnostic Performance of Cortical Lesions and the Central Vein Sign in Multiple Sclerosis’, JAMA Neurology, 81(2), p. 143. Available at: https://doi.org/10.1001/jamaneurol.2023.4737.
Cagol, Alessandro et al. (2024) ‘Association of Spinal Cord Atrophy and Brain Paramagnetic Rim Lesions With Progression Independent of Relapse Activity in People With MS’, Neurology, 102(1). Available at: https://doi.org/10.1212/wnl.0000000000207768.
Cagol, Alessandro et al. (2024) ‘Association of Spinal Cord Atrophy and Brain Paramagnetic Rim Lesions With Progression Independent of Relapse Activity in People With MS’, Neurology, 102(1). Available at: https://doi.org/10.1212/wnl.0000000000207768.
Cagol, Alessandro et al. (2024) ‘Association of Spinal Cord Atrophy and Brain Paramagnetic Rim Lesions With Progression Independent of Relapse Activity in People With MS’, Neurology, 102(1). Available at: https://doi.org/10.1212/wnl.0000000000207768.
Cagol, Alessandro et al. (2024) ‘Association of Spinal Cord Atrophy and Brain Paramagnetic Rim Lesions With Progression Independent of Relapse Activity in People With MS’, Neurology, 102(1). Available at: https://doi.org/10.1212/wnl.0000000000207768.
Barakovic, Muhamed et al. (2024) ‘A novel imaging marker of cortical “cellularity” in multiple sclerosis patients’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-60497-6.
Barakovic, Muhamed et al. (2024) ‘A novel imaging marker of cortical “cellularity” in multiple sclerosis patients’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-60497-6.
Cagol, Alessandro et al. (2024) ‘Advanced Quantitative MRI Unveils Microstructural Thalamic Changes Reflecting Disease Progression in Multiple Sclerosis’, Neurology: Neuroimmunology and NeuroInflammation, 11(6). Available at: https://doi.org/10.1212/NXI.0000000000200299.
Cagol, Alessandro et al. (2024) ‘Advanced Quantitative MRI Unveils Microstructural Thalamic Changes Reflecting Disease Progression in Multiple Sclerosis’, Neurology: Neuroimmunology and NeuroInflammation, 11(6). Available at: https://doi.org/10.1212/NXI.0000000000200299.
Cagol, Alessandro, Tsagkas, Charidimos and Granziera, Cristina (2024) ‘Advanced Brain Imaging in Central Nervous System Demyelinating Diseases’, Neuroimaging Clinics of North America, 34, pp. 335–357. Available at: https://doi.org/10.1016/j.nic.2024.03.003.
Cagol, Alessandro, Tsagkas, Charidimos and Granziera, Cristina (2024) ‘Advanced Brain Imaging in Central Nervous System Demyelinating Diseases’, Neuroimaging Clinics of North America, 34, pp. 335–357. Available at: https://doi.org/10.1016/j.nic.2024.03.003.
Cai, M. et al. (2024) ‘Structural Network Efficiency Predicts Conversion to Incident Parkinsonism in Patients With Cerebral Small Vessel Disease’, Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 79(1). Available at: https://doi.org/10.1093/gerona/glad182.
Cai, M. et al. (2024) ‘Structural Network Efficiency Predicts Conversion to Incident Parkinsonism in Patients With Cerebral Small Vessel Disease’, Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 79(1). Available at: https://doi.org/10.1093/gerona/glad182.
Callegari, Ilaria et al. (2024) ‘Cell-binding IgM in CSF is distinctive of multiple sclerosis and targets the iron transporter SCARA5’, Brain, 147, pp. 839–848. Available at: https://doi.org/10.1093/brain/awad424.
Callegari, Ilaria et al. (2024) ‘Cell-binding IgM in CSF is distinctive of multiple sclerosis and targets the iron transporter SCARA5’, Brain, 147, pp. 839–848. Available at: https://doi.org/10.1093/brain/awad424.
Cortese, Rosa et al. (2024) ‘Grey Matter Atrophy and its Relationship with White Matter Lesions in Patients with Myelin Oligodendrocyte Glycoprotein Antibody-associated Disease, Aquaporin-4 Antibody-Positive Neuromyelitis Optica Spectrum Disorder, and Multiple Sclerosis’, Annals of Neurology, 96, pp. 276–288. Available at: https://doi.org/10.1002/ana.26951.
Cortese, Rosa et al. (2024) ‘Grey Matter Atrophy and its Relationship with White Matter Lesions in Patients with Myelin Oligodendrocyte Glycoprotein Antibody-associated Disease, Aquaporin-4 Antibody-Positive Neuromyelitis Optica Spectrum Disorder, and Multiple Sclerosis’, Annals of Neurology, 96, pp. 276–288. Available at: https://doi.org/10.1002/ana.26951.
Custers, Emma et al. (2024) ‘Long-Term Brain Structure and Cognition Following Bariatric Surgery’, JAMA Network Open, 7, p. E2355380. Available at: https://doi.org/10.1001/jamanetworkopen.2023.55380.
Custers, Emma et al. (2024) ‘Long-Term Brain Structure and Cognition Following Bariatric Surgery’, JAMA Network Open, 7, p. E2355380. Available at: https://doi.org/10.1001/jamanetworkopen.2023.55380.
Donnay, C. et al. (2024) ‘Super resolution using sparse sampling at portable ultra-low field MR’, Frontiers in Neurology , 15. Available at: https://doi.org/10.3389/fneur.2024.1330203.
Donnay, C. et al. (2024) ‘Super resolution using sparse sampling at portable ultra-low field MR’, Frontiers in Neurology , 15. Available at: https://doi.org/10.3389/fneur.2024.1330203.
Federau, Christian et al. (2024) ‘Evaluation of the quality and the productivity of neuroradiological reading of multiple sclerosis follow-up MRI scans using an intelligent automation software’, Neuroradiology, null. Available at: https://doi.org/10.1007/s00234-024-03293-3.
Federau, Christian et al. (2024) ‘Evaluation of the quality and the productivity of neuroradiological reading of multiple sclerosis follow-up MRI scans using an intelligent automation software’, Neuroradiology, null. Available at: https://doi.org/10.1007/s00234-024-03293-3.
Galbusera, Riccardo et al. (2024) ‘Characteristics, Prevalence, and Clinical Relevance of Juxtacortical Paramagnetic Rims in Patients With Multiple Sclerosis’, Neurology, 102, p. e207966. Available at: https://doi.org/10.1212/wnl.0000000000207966.
Galbusera, Riccardo et al. (2024) ‘Characteristics, Prevalence, and Clinical Relevance of Juxtacortical Paramagnetic Rims in Patients With Multiple Sclerosis’, Neurology, 102, p. e207966. Available at: https://doi.org/10.1212/wnl.0000000000207966.
Gloor, Monika et al. (2024) ‘Longitudinal analysis of new multiple sclerosis lesions with magnetization transfer and diffusion tensor imaging’, European Radiology, 34, pp. 1680–1691. Available at: https://doi.org/10.1007/s00330-023-10173-6.
Gloor, Monika et al. (2024) ‘Longitudinal analysis of new multiple sclerosis lesions with magnetization transfer and diffusion tensor imaging’, European Radiology, 34, pp. 1680–1691. Available at: https://doi.org/10.1007/s00330-023-10173-6.
Greselin, Martina et al. (2024) ‘Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort’, Bioengineering, 11(8), p. 858. Available at: https://doi.org/10.3390/bioengineering11080858.
Greselin, Martina et al. (2024) ‘Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort’, Bioengineering, 11(8), p. 858. Available at: https://doi.org/10.3390/bioengineering11080858.
Harrison, Daniel M. et al. (2024) ‘The use of 7T MRI in multiple sclerosis: review and consensus statement from the North American Imaging in Multiple Sclerosis Cooperative’, Brain Communications, 6. Available at: https://doi.org/10.1093/braincomms/fcae359.
Harrison, Daniel M. et al. (2024) ‘The use of 7T MRI in multiple sclerosis: review and consensus statement from the North American Imaging in Multiple Sclerosis Cooperative’, Brain Communications, 6. Available at: https://doi.org/10.1093/braincomms/fcae359.
Hu, Senbin et al. (2024) ‘Characterization of Vasogenic and Cytotoxic Brain Edema Formation After Experimental Traumatic Brain Injury by Free Water Diffusion Magnetic Resonance Imaging’, Journal of Neurotrauma, 41, pp. 393–406. Available at: https://doi.org/10.1089/neu.2023.0222.
Hu, Senbin et al. (2024) ‘Characterization of Vasogenic and Cytotoxic Brain Edema Formation After Experimental Traumatic Brain Injury by Free Water Diffusion Magnetic Resonance Imaging’, Journal of Neurotrauma, 41, pp. 393–406. Available at: https://doi.org/10.1089/neu.2023.0222.
Kulsvehagen, L. et al. (2024) ‘Case report: Concurrent MOG antibody-associated disease and latent infections in two patients’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1455355.
Kulsvehagen, L. et al. (2024) ‘Case report: Concurrent MOG antibody-associated disease and latent infections in two patients’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1455355.
Lizarraga, Aldana et al. (2024) ‘Similarity between structural and proxy estimates of brain connectivity’, Journal of Cerebral Blood Flow and Metabolism, 44, pp. 284–295. Available at: https://doi.org/10.1177/0271678x231204769.
Lizarraga, Aldana et al. (2024) ‘Similarity between structural and proxy estimates of brain connectivity’, Journal of Cerebral Blood Flow and Metabolism, 44, pp. 284–295. Available at: https://doi.org/10.1177/0271678x231204769.
Moura, João et al. (2024) ‘Emerging imaging markers in radiologically isolated syndrome: implications for earlier treatment initiation’, Neurological Sciences, null. Available at: https://doi.org/10.1007/s10072-024-07402-1.
Moura, João et al. (2024) ‘Emerging imaging markers in radiologically isolated syndrome: implications for earlier treatment initiation’, Neurological Sciences, null. Available at: https://doi.org/10.1007/s10072-024-07402-1.
Müller, Jannis et al. (2024) ‘Quantifying Remyelination Using χ-Separation in White Matter and Cortical Multiple Sclerosis Lesions’, Neurology, 103(6). Available at: https://doi.org/10.1212/WNL.0000000000209604.
Müller, Jannis et al. (2024) ‘Quantifying Remyelination Using χ-Separation in White Matter and Cortical Multiple Sclerosis Lesions’, Neurology, 103(6). Available at: https://doi.org/10.1212/WNL.0000000000209604.
Müller, Jannis et al. (2024) ‘Escalating to medium- versus high-efficacy disease modifying therapy after low-efficacy treatment in relapsing remitting multiple sclerosis’, Brain and Behavior, 14. Available at: https://doi.org/10.1002/brb3.3498.
Müller, Jannis et al. (2024) ‘Escalating to medium- versus high-efficacy disease modifying therapy after low-efficacy treatment in relapsing remitting multiple sclerosis’, Brain and Behavior, 14. Available at: https://doi.org/10.1002/brb3.3498.
Oechtering, Johanna et al. (2024) ‘Complement Activation Is Associated With Disease Severity in Multiple Sclerosis’, Neurology: Neuroimmunology and NeuroInflammation, 11(2). Available at: https://doi.org/10.1212/NXI.0000000000200212.
Oechtering, Johanna et al. (2024) ‘Complement Activation Is Associated With Disease Severity in Multiple Sclerosis’, Neurology: Neuroimmunology and NeuroInflammation, 11(2). Available at: https://doi.org/10.1212/NXI.0000000000200212.
Pakeerathan, T. et al. (2024) ‘Rapid differentiation of MOGAD and MS after a single optic neuritis’, Journal of Neurology [Preprint]. Available at: https://doi.org/10.1007/s00415-024-12666-w.
Pakeerathan, T. et al. (2024) ‘Rapid differentiation of MOGAD and MS after a single optic neuritis’, Journal of Neurology [Preprint]. Available at: https://doi.org/10.1007/s00415-024-12666-w.
Papadopoulou, A. et al. (2024) ‘Visual evoked potentials in multiple sclerosis: P100 latency and visual pathway damage including the lateral geniculate nucleus’, Clinical Neurophysiology, 161, pp. 122–132. Available at: https://doi.org/10.1016/j.clinph.2024.02.020.
Papadopoulou, A. et al. (2024) ‘Visual evoked potentials in multiple sclerosis: P100 latency and visual pathway damage including the lateral geniculate nucleus’, Clinical Neurophysiology, 161, pp. 122–132. Available at: https://doi.org/10.1016/j.clinph.2024.02.020.
Pontillo, Giuseppe et al. (2024) ‘Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap’, Neurology, 103. Available at: https://doi.org/10.1212/WNL.0000000000209976.
Pontillo, Giuseppe et al. (2024) ‘Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap’, Neurology, 103. Available at: https://doi.org/10.1212/WNL.0000000000209976.
Rocca, Maria A. et al. (2024) ‘Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis’, The Lancet Regional Health - Europe, 44. Available at: https://doi.org/10.1016/j.lanepe.2024.100978.
Rocca, Maria A. et al. (2024) ‘Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis’, The Lancet Regional Health - Europe, 44. Available at: https://doi.org/10.1016/j.lanepe.2024.100978.
Rubinski, Anna et al. (2024) ‘Florbetapir PET-assessed demyelination is associated with faster tau accumulation in an APOE ε4-dependent manner’, European Journal of Nuclear Medicine and Molecular Imaging, 51, pp. 1035–1049. Available at: https://doi.org/10.1007/s00259-023-06530-8.
Rubinski, Anna et al. (2024) ‘Florbetapir PET-assessed demyelination is associated with faster tau accumulation in an APOE ε4-dependent manner’, European Journal of Nuclear Medicine and Molecular Imaging, 51, pp. 1035–1049. Available at: https://doi.org/10.1007/s00259-023-06530-8.
Sanabria-Diaz, Gretel et al. (2024) ‘Advanced MRI Measures of Myelin and Axon Volume Identify Repair in Multiple Sclerosis’, Annals of Neurology [Preprint]. Available at: https://doi.org/10.1002/ana.27102.
Sanabria-Diaz, Gretel et al. (2024) ‘Advanced MRI Measures of Myelin and Axon Volume Identify Repair in Multiple Sclerosis’, Annals of Neurology [Preprint]. Available at: https://doi.org/10.1002/ana.27102.
Scalfari, Antonio et al. (2024) ‘Smouldering-Associated Worsening in Multiple Sclerosis: An International Consensus Statement on Definition, Biology, Clinical Implications, and Future Directions’, Annals of Neurology, 96, pp. 826–845. Available at: https://doi.org/10.1002/ana.27034.
Scalfari, Antonio et al. (2024) ‘Smouldering-Associated Worsening in Multiple Sclerosis: An International Consensus Statement on Definition, Biology, Clinical Implications, and Future Directions’, Annals of Neurology, 96, pp. 826–845. Available at: https://doi.org/10.1002/ana.27034.
Spagnolo, Federico et al. (2024) ‘Down-sampling in diffusion MRI: a bundle-specific DTI and NODDI study’, Frontiers in Neuroimaging, 3. Available at: https://doi.org/10.3389/fnimg.2024.1359589.
Spagnolo, Federico et al. (2024) ‘Down-sampling in diffusion MRI: a bundle-specific DTI and NODDI study’, Frontiers in Neuroimaging, 3. Available at: https://doi.org/10.3389/fnimg.2024.1359589.
Vermersch, P. et al. (2024) ‘Inhibition of CD40L with Frexalimab in Multiple Sclerosis’, New England Journal of Medicine, 390, pp. 589–600. Available at: https://doi.org/10.1056/nejmoa2309439.
Vermersch, P. et al. (2024) ‘Inhibition of CD40L with Frexalimab in Multiple Sclerosis’, New England Journal of Medicine, 390, pp. 589–600. Available at: https://doi.org/10.1056/nejmoa2309439.
Wendebourg, Maria Janina et al. (2024) ‘Cervical and thoracic spinal cord gray matter atrophy is associated with disability in patients with amyotrophic lateral sclerosis’, European Journal of Neurology, null. Available at: https://doi.org/10.1111/ene.16268.
Wendebourg, Maria Janina et al. (2024) ‘Cervical and thoracic spinal cord gray matter atrophy is associated with disability in patients with amyotrophic lateral sclerosis’, European Journal of Neurology, null. Available at: https://doi.org/10.1111/ene.16268.
Wenger, Antonia, Calabrese, Pasquale and Granziera, Cristina (2024) ‘Unraveling the cerebellum’s role in multiple sclerosis’, Current Opinion in Behavioral Sciences, 56. Available at: https://doi.org/10.1016/j.cobeha.2024.101357.
Wenger, Antonia, Calabrese, Pasquale and Granziera, Cristina (2024) ‘Unraveling the cerebellum’s role in multiple sclerosis’, Current Opinion in Behavioral Sciences, 56. Available at: https://doi.org/10.1016/j.cobeha.2024.101357.
Zhu, Jie et al. (2024) ‘Reverse underwear sign as an indicator of alloknesis’, JDDG - Journal of the German Society of Dermatology, 22, pp. 574–575. Available at: https://doi.org/10.1111/ddg.15320.
Zhu, Jie et al. (2024) ‘Reverse underwear sign as an indicator of alloknesis’, JDDG - Journal of the German Society of Dermatology, 22, pp. 574–575. Available at: https://doi.org/10.1111/ddg.15320.
Abdelhak, Ahmed et al. (2023) ‘Neurofilament Light Chain Elevation and Disability Progression in Multiple Sclerosis’, JAMA Neurology, 80(12), p. 1317. Available at: https://doi.org/10.1001/jamaneurol.2023.3997.
Abdelhak, Ahmed et al. (2023) ‘Neurofilament Light Chain Elevation and Disability Progression in Multiple Sclerosis’, JAMA Neurology, 80(12), p. 1317. Available at: https://doi.org/10.1001/jamaneurol.2023.3997.
Donnay, C. et al. (2023) ‘Pseudo-Label Assisted nnU-Net enables automatic segmentation of 7T MRI from a single acquisition’, Frontiers in Neuroimaging, 2. Available at: https://doi.org/10.3389/fnimg.2023.1252261.
Donnay, C. et al. (2023) ‘Pseudo-Label Assisted nnU-Net enables automatic segmentation of 7T MRI from a single acquisition’, Frontiers in Neuroimaging, 2. Available at: https://doi.org/10.3389/fnimg.2023.1252261.
Li, H. et al. (2023) ‘Regional cortical thinning, demyelination and iron loss in cerebral small vessel disease’, Brain, 146(11), pp. 4659–4673. Available at: https://doi.org/10.1093/brain/awad220.
Li, H. et al. (2023) ‘Regional cortical thinning, demyelination and iron loss in cerebral small vessel disease’, Brain, 146(11), pp. 4659–4673. Available at: https://doi.org/10.1093/brain/awad220.
Müller, Jannis et al. (2023) ‘Harmonizing Definitions for Progression Independent of Relapse Activity in Multiple Sclerosis’, JAMA Neurology, 80(11), p. 1232. Available at: https://doi.org/10.1001/jamaneurol.2023.3331.
Müller, Jannis et al. (2023) ‘Harmonizing Definitions for Progression Independent of Relapse Activity in Multiple Sclerosis’, JAMA Neurology, 80(11), p. 1232. Available at: https://doi.org/10.1001/jamaneurol.2023.3331.
Sanchez-Catasus, C.A., Batista-García-Ramó, K. and Melie-Garcia, L. (2023) ‘Brain connectivity by single-photon emission computed tomography and graph theory: a mini-review’, Academia Medicine [Preprint]. Available at: https://doi.org/10.20935/acadmed6134.
Sanchez-Catasus, C.A., Batista-García-Ramó, K. and Melie-Garcia, L. (2023) ‘Brain connectivity by single-photon emission computed tomography and graph theory: a mini-review’, Academia Medicine [Preprint]. Available at: https://doi.org/10.20935/acadmed6134.
Ayroza Galvão Ribeiro Gomes, Ana Beatriz et al. (2023) ‘Immunoglobulin A Antibodies Against Myelin Oligodendrocyte Glycoprotein in a Subgroup of Patients With Central Nervous System Demyelination’, JAMA Neurology, 80(9), p. 989. Available at: https://doi.org/10.1001/jamaneurol.2023.2523.
Ayroza Galvão Ribeiro Gomes, Ana Beatriz et al. (2023) ‘Immunoglobulin A Antibodies Against Myelin Oligodendrocyte Glycoprotein in a Subgroup of Patients With Central Nervous System Demyelination’, JAMA Neurology, 80(9), p. 989. Available at: https://doi.org/10.1001/jamaneurol.2023.2523.
Hack RJ et al. (2023) ‘Three-tiered EGFr domain risk stratification for individualized NOTCH3-small vessel disease prediction.’, Brain : a journal of neurology, 146(7), pp. 2913–2927. Available at: https://doi.org/10.1093/brain/awac486.
Hack RJ et al. (2023) ‘Three-tiered EGFr domain risk stratification for individualized NOTCH3-small vessel disease prediction.’, Brain : a journal of neurology, 146(7), pp. 2913–2927. Available at: https://doi.org/10.1093/brain/awac486.
De Kort, A.M. et al. (2023) ‘Correction: Decreased Cerebrospinal Fluid Amyloid β 38, 40, 42, and 43 Levels in Sporadic and Hereditary Cerebral Amyloid Angiopathy (Annals of Neurology, (2023), 93, 6, (1173-1186), 10.1002/ana.26610)’, Annals of Neurology, 94(1), pp. 208–209. Available at: https://doi.org/10.1002/ana.26675.
De Kort, A.M. et al. (2023) ‘Correction: Decreased Cerebrospinal Fluid Amyloid β 38, 40, 42, and 43 Levels in Sporadic and Hereditary Cerebral Amyloid Angiopathy (Annals of Neurology, (2023), 93, 6, (1173-1186), 10.1002/ana.26610)’, Annals of Neurology, 94(1), pp. 208–209. Available at: https://doi.org/10.1002/ana.26675.
Dietrich O et al. (2023) ‘Integrated intravoxel incoherent motion tensor and diffusion tensor brain MRI in a single fast acquisition.’, NMR in biomedicine, 36(7), p. e4905. Available at: https://doi.org/10.1002/nbm.4905.
Dietrich O et al. (2023) ‘Integrated intravoxel incoherent motion tensor and diffusion tensor brain MRI in a single fast acquisition.’, NMR in biomedicine, 36(7), p. e4905. Available at: https://doi.org/10.1002/nbm.4905.
Coenen M et al. (2023) ‘Strategic white matter hyperintensity locations for cognitive impairment: A multicenter lesion-symptom mapping study in 3525 memory clinic patients.’, Alzheimer’s & dementia : the journal of the Alzheimer’s Association, 19(6), pp. 2420–2432. Available at: https://doi.org/10.1002/alz.12827.
Coenen M et al. (2023) ‘Strategic white matter hyperintensity locations for cognitive impairment: A multicenter lesion-symptom mapping study in 3525 memory clinic patients.’, Alzheimer’s & dementia : the journal of the Alzheimer’s Association, 19(6), pp. 2420–2432. Available at: https://doi.org/10.1002/alz.12827.
Damas J et al. (2023) ‘One for all, all for one: neuro-HIV multidisciplinary platform for the assessment and management of neurocognitive complaints in people living with HIV.’, HIV medicine, 24(6), pp. 738–748. Available at: https://doi.org/10.1111/hiv.13472.
Damas J et al. (2023) ‘One for all, all for one: neuro-HIV multidisciplinary platform for the assessment and management of neurocognitive complaints in people living with HIV.’, HIV medicine, 24(6), pp. 738–748. Available at: https://doi.org/10.1111/hiv.13472.
De Kort, A.M. et al. (2023) ‘Decreased Cerebrospinal Fluid Amyloid β 38, 40, 42, and 43 Levels in Sporadic and Hereditary Cerebral Amyloid Angiopathy’, Annals of Neurology, 93(6), pp. 1173–1186. Available at: https://doi.org/10.1002/ana.26610.
De Kort, A.M. et al. (2023) ‘Decreased Cerebrospinal Fluid Amyloid β 38, 40, 42, and 43 Levels in Sporadic and Hereditary Cerebral Amyloid Angiopathy’, Annals of Neurology, 93(6), pp. 1173–1186. Available at: https://doi.org/10.1002/ana.26610.
Tsagkas, Charidimos et al. (2023) ‘Anterior horn atrophy in the cervical spinal cord: A new biomarker in progressive multiple sclerosis’, Multiple Sclerosis Journal, 29(6), pp. 702–718. Available at: https://doi.org/10.1177/13524585221139152.
Tsagkas, Charidimos et al. (2023) ‘Anterior horn atrophy in the cervical spinal cord: A new biomarker in progressive multiple sclerosis’, Multiple Sclerosis Journal, 29(6), pp. 702–718. Available at: https://doi.org/10.1177/13524585221139152.
Meier, S. et al. (2023) ‘Serum Glial Fibrillary Acidic Protein compared with Neurofilament Light Chain as Biomarker for Multiple Sclerosis Disease Progression (P5-3.016)’, Neurology, 100(17_supplement_2). Available at: https://doi.org/10.1212/wnl.0000000000203030.
Meier, S. et al. (2023) ‘Serum Glial Fibrillary Acidic Protein compared with Neurofilament Light Chain as Biomarker for Multiple Sclerosis Disease Progression (P5-3.016)’, Neurology, 100(17_supplement_2). Available at: https://doi.org/10.1212/wnl.0000000000203030.
Cagol A. et al. (2023) ‘Optical coherence tomography reflects clinically relevant gray matter damage in patients with multiple sclerosis.’, Journal of neurology, 270(4), pp. 2139–2148. Available at: https://doi.org/10.1007/s00415-022-11535-8.
Cagol A. et al. (2023) ‘Optical coherence tomography reflects clinically relevant gray matter damage in patients with multiple sclerosis.’, Journal of neurology, 270(4), pp. 2139–2148. Available at: https://doi.org/10.1007/s00415-022-11535-8.
Georgakis MK et al. (2023) ‘Cerebral small vessel disease burden and cognitive and functional outcomes after stroke: A multicenter prospective cohort study.’, Alzheimer’s & dementia : the journal of the Alzheimer’s Association, 19(4), pp. 1152–1163. Available at: https://doi.org/10.1002/alz.12744.
Georgakis MK et al. (2023) ‘Cerebral small vessel disease burden and cognitive and functional outcomes after stroke: A multicenter prospective cohort study.’, Alzheimer’s & dementia : the journal of the Alzheimer’s Association, 19(4), pp. 1152–1163. Available at: https://doi.org/10.1002/alz.12744.
Janssen, E. et al. (2023) Visit-to-visit blood pressure variability and progression of white matter hyperintensities over 14 years. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.03.02.23286727.
Janssen, E. et al. (2023) Visit-to-visit blood pressure variability and progression of white matter hyperintensities over 14 years. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.03.02.23286727.
Keijzer HM et al. (2023) ‘Free water corrected diffusion tensor imaging discriminates between good and poor outcomes of comatose patients after cardiac arrest.’, European radiology, 33(3), pp. 2139–2148. Available at: https://doi.org/10.1007/s00330-022-09245-w.
Keijzer HM et al. (2023) ‘Free water corrected diffusion tensor imaging discriminates between good and poor outcomes of comatose patients after cardiac arrest.’, European radiology, 33(3), pp. 2139–2148. Available at: https://doi.org/10.1007/s00330-022-09245-w.
Tsagkas C et al. (2023) ‘Longitudinal assessment of cervical spinal cord compartments in multiple sclerosis’, Multiple Sclerosis and Related Disorders, 71, p. 104545. Available at: https://doi.org/10.1016/j.msard.2023.104545.
Tsagkas C et al. (2023) ‘Longitudinal assessment of cervical spinal cord compartments in multiple sclerosis’, Multiple Sclerosis and Related Disorders, 71, p. 104545. Available at: https://doi.org/10.1016/j.msard.2023.104545.
Zotin, M.C.Z. et al. (2023) ‘Peak Width of Skeletonized Mean Diffusivity: A Neuroimaging Marker for White Matter Injury’, Radiology, 306(3). Available at: https://doi.org/10.1148/radiol.212780.
Zotin, M.C.Z. et al. (2023) ‘Peak Width of Skeletonized Mean Diffusivity: A Neuroimaging Marker for White Matter Injury’, Radiology, 306(3). Available at: https://doi.org/10.1148/radiol.212780.
Müller J et al. (2023) ‘Understanding the Role of the Choroid Plexus in Multiple Sclerosis as an MRI Biomarker of Disease Activity.’, 100(9). Available at: https://doi.org/10.1212/wnl.0000000000206806.
Müller J et al. (2023) ‘Understanding the Role of the Choroid Plexus in Multiple Sclerosis as an MRI Biomarker of Disease Activity.’, 100(9). Available at: https://doi.org/10.1212/wnl.0000000000206806.
Vreeken D et al. (2023) ‘Impact of White Adipose Tissue on Brain Structure, Perfusion, and Cognitive Function in Patients With Severe Obesity: The BARICO Study.’, Neurology, 100(7), pp. e703–e718. Available at: https://doi.org/10.1212/wnl.0000000000201538.
Vreeken D et al. (2023) ‘Impact of White Adipose Tissue on Brain Structure, Perfusion, and Cognitive Function in Patients With Severe Obesity: The BARICO Study.’, Neurology, 100(7), pp. e703–e718. Available at: https://doi.org/10.1212/wnl.0000000000201538.
Dewenter A et al. (2023) ‘Disentangling the effects of Alzheimer’s and small vessel disease on white matter fibre tracts.’, Brain : a journal of neurology, 146(2), pp. 678–689. Available at: https://doi.org/10.1093/brain/awac265.
Dewenter A et al. (2023) ‘Disentangling the effects of Alzheimer’s and small vessel disease on white matter fibre tracts.’, Brain : a journal of neurology, 146(2), pp. 678–689. Available at: https://doi.org/10.1093/brain/awac265.
Saemann A et al. (2023) ‘Hemiparkinsonism caused by a lateral sphenoid wing meningioma, with tractography analysis: illustrative case.’, Journal of neurosurgery. Case lessons, 5(6). Available at: https://doi.org/10.3171/case22398.
Saemann A et al. (2023) ‘Hemiparkinsonism caused by a lateral sphenoid wing meningioma, with tractography analysis: illustrative case.’, Journal of neurosurgery. Case lessons, 5(6). Available at: https://doi.org/10.3171/case22398.
Huang D et al. (2023) ‘Recent advances in arterial spin labeling perfusion MRI in patients with vascular cognitive impairment.’, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 43(2), pp. 173–184. Available at: https://doi.org/10.1177/0271678x221135353.
Huang D et al. (2023) ‘Recent advances in arterial spin labeling perfusion MRI in patients with vascular cognitive impairment.’, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 43(2), pp. 173–184. Available at: https://doi.org/10.1177/0271678x221135353.
Tsagkas C et al. (2023) ‘Fully Automatic Method for Reliable Spinal Cord Compartment Segmentation in Multiple Sclerosis.’, AJNR. American journal of neuroradiology, 44(2), pp. 218–227. Available at: https://doi.org/10.3174/ajnr.a7756.
Tsagkas C et al. (2023) ‘Fully Automatic Method for Reliable Spinal Cord Compartment Segmentation in Multiple Sclerosis.’, AJNR. American journal of neuroradiology, 44(2), pp. 218–227. Available at: https://doi.org/10.3174/ajnr.a7756.
Tsagkas, C. et al. (2023) ‘Fully Automatic Method for Reliable Spinal Cord Compartment Segmentation in Multiple Sclerosis’, American Journal of Neuroradiology, 44(2), pp. 218–227. Available at: https://doi.org/10.3174/ajnr.a7756.
Tsagkas, C. et al. (2023) ‘Fully Automatic Method for Reliable Spinal Cord Compartment Segmentation in Multiple Sclerosis’, American Journal of Neuroradiology, 44(2), pp. 218–227. Available at: https://doi.org/10.3174/ajnr.a7756.
Verburgt E et al. (2023) ‘Role of small acute hyperintense lesions in long-term progression of cerebral small vessel disease and clinical outcome: a 14-year follow-up study.’, Journal of neurology, neurosurgery, and psychiatry, 94(2), p. 144. Available at: https://doi.org/10.1136/jnnp-2022-330091.
Verburgt E et al. (2023) ‘Role of small acute hyperintense lesions in long-term progression of cerebral small vessel disease and clinical outcome: a 14-year follow-up study.’, Journal of neurology, neurosurgery, and psychiatry, 94(2), p. 144. Available at: https://doi.org/10.1136/jnnp-2022-330091.
Barakovic, Muhamed et al. (2023) ‘Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology’, Frontiers in Neuroscience, 17. Available at: https://doi.org/10.3389/fnins.2023.1209521.
Barakovic, Muhamed et al. (2023) ‘Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology’, Frontiers in Neuroscience, 17. Available at: https://doi.org/10.3389/fnins.2023.1209521.
Bosticardo, Sara et al. (2023) ‘Evaluation of tractography-based myelin-weighted connectivity across the lifespan’, Frontiers in Neuroscience, 17. Available at: https://doi.org/10.3389/fnins.2023.1228952.
Bosticardo, Sara et al. (2023) ‘Evaluation of tractography-based myelin-weighted connectivity across the lifespan’, Frontiers in Neuroscience, 17. Available at: https://doi.org/10.3389/fnins.2023.1228952.
Cerdá-Fuertes, Nuria et al. (2023) ‘Evaluation of frequency, severity, and independent risk factors for recurrence of disease activity after fingolimod discontinuation in a large real-world cohort of patients with multiple sclerosis’, Therapeutic Advances in Neurological Disorders, 16. Available at: https://doi.org/10.1177/17562864221150312.
Cerdá-Fuertes, Nuria et al. (2023) ‘Evaluation of frequency, severity, and independent risk factors for recurrence of disease activity after fingolimod discontinuation in a large real-world cohort of patients with multiple sclerosis’, Therapeutic Advances in Neurological Disorders, 16. Available at: https://doi.org/10.1177/17562864221150312.
Chen, Xinjie et al. (2023) ‘Personalized maps of T1 relaxometry abnormalities provide correlates of disability in multiple sclerosis patients’, NeuroImage: Clinical, 37. Available at: https://doi.org/10.1016/j.nicl.2023.103349.
Chen, Xinjie et al. (2023) ‘Personalized maps of T1 relaxometry abnormalities provide correlates of disability in multiple sclerosis patients’, NeuroImage: Clinical, 37. Available at: https://doi.org/10.1016/j.nicl.2023.103349.
Coenen, Mirthe et al. (2023) ‘Spatial distributions of white matter hyperintensities on brain MRI: A pooled analysis of individual participant data from 11 memory clinic cohorts’, NeuroImage: Clinical, 40. Available at: https://doi.org/10.1016/j.nicl.2023.103547.
Coenen, Mirthe et al. (2023) ‘Spatial distributions of white matter hyperintensities on brain MRI: A pooled analysis of individual participant data from 11 memory clinic cohorts’, NeuroImage: Clinical, 40. Available at: https://doi.org/10.1016/j.nicl.2023.103547.
De Kort, Floor A.S. et al. (2023) ‘White Matter Hyperintensity Volume and Poststroke Cognition: An Individual Patient Data Pooled Analysis of 9 Ischemic Stroke Cohort Studies’, Stroke, 54, pp. 3021–3029. Available at: https://doi.org/10.1161/strokeaha.123.044297.
De Kort, Floor A.S. et al. (2023) ‘White Matter Hyperintensity Volume and Poststroke Cognition: An Individual Patient Data Pooled Analysis of 9 Ischemic Stroke Cohort Studies’, Stroke, 54, pp. 3021–3029. Available at: https://doi.org/10.1161/strokeaha.123.044297.
Duering, Marco et al. (2023) ‘Neuroimaging standards for research into small vessel disease—advances since 2013’, The Lancet Neurology, 22, pp. 602–618. Available at: https://doi.org/10.1016/s1474-4422(23)00131-x.
Duering, Marco et al. (2023) ‘Neuroimaging standards for research into small vessel disease—advances since 2013’, The Lancet Neurology, 22, pp. 602–618. Available at: https://doi.org/10.1016/s1474-4422(23)00131-x.
Durrer, Alicia et al. (2023) ‘Diffusion Models for Contrast Harmonization of Magnetic Resonance Images’, pp. 526–551.
Durrer, Alicia et al. (2023) ‘Diffusion Models for Contrast Harmonization of Magnetic Resonance Images’, pp. 526–551.
Galbusera, Riccardo et al. (2023) ‘Postmortem quantitative MRI disentangles histological lesion types in multiple sclerosis’, Brain Pathology, 33. Available at: https://doi.org/10.1111/bpa.13136.
Galbusera, Riccardo et al. (2023) ‘Postmortem quantitative MRI disentangles histological lesion types in multiple sclerosis’, Brain Pathology, 33. Available at: https://doi.org/10.1111/bpa.13136.
Gaubert, Malo et al. (2023) ‘Performance evaluation of automated white matter hyperintensity segmentation algorithms in a multicenter cohort on cognitive impairment and dementia’, Frontiers in Psychiatry, 13. Available at: https://doi.org/10.3389/fpsyt.2022.1010273.
Gaubert, Malo et al. (2023) ‘Performance evaluation of automated white matter hyperintensity segmentation algorithms in a multicenter cohort on cognitive impairment and dementia’, Frontiers in Psychiatry, 13. Available at: https://doi.org/10.3389/fpsyt.2022.1010273.
Granziera, Cristina, Derfuss, Tobias and Kappos, Ludwig (2023) ‘Time to Change the Current Clinical Classification of Multiple Sclerosis?’, JAMA Neurology, 80, pp. 128–130. Available at: https://doi.org/10.1001/jamaneurol.2022.4156.
Granziera, Cristina, Derfuss, Tobias and Kappos, Ludwig (2023) ‘Time to Change the Current Clinical Classification of Multiple Sclerosis?’, JAMA Neurology, 80, pp. 128–130. Available at: https://doi.org/10.1001/jamaneurol.2022.4156.
Horn, Mitchell J. et al. (2023) ‘Peak width of skeletonized mean diffusivity and cognitive performance in cerebral amyloid angiopathy’, Frontiers in Neuroscience, 17. Available at: https://doi.org/10.3389/fnins.2023.1141007.
Horn, Mitchell J. et al. (2023) ‘Peak width of skeletonized mean diffusivity and cognitive performance in cerebral amyloid angiopathy’, Frontiers in Neuroscience, 17. Available at: https://doi.org/10.3389/fnins.2023.1141007.
Jacob, Mina A. et al. (2023) ‘Cerebral Small Vessel Disease Progression Increases Risk of Incident Parkinsonism’, Annals of Neurology, 93, pp. 1130–1141. Available at: https://doi.org/10.1002/ana.26615.
Jacob, Mina A. et al. (2023) ‘Cerebral Small Vessel Disease Progression Increases Risk of Incident Parkinsonism’, Annals of Neurology, 93, pp. 1130–1141. Available at: https://doi.org/10.1002/ana.26615.
Jacob, Mina A. et al. (2023) ‘Cerebral Small Vessel Disease Progression and the Risk of Dementia: A 14-Year Follow-Up Study’, The American journal of psychiatry, 180, pp. 508–518. Available at: https://doi.org/10.1176/appi.ajp.20220380.
Jacob, Mina A. et al. (2023) ‘Cerebral Small Vessel Disease Progression and the Risk of Dementia: A 14-Year Follow-Up Study’, The American journal of psychiatry, 180, pp. 508–518. Available at: https://doi.org/10.1176/appi.ajp.20220380.
Kopczak, Anna et al. (2023) ‘The EffecTs of Amlodipine and other Blood PREssure Lowering Agents on Microvascular FuncTion in Small Vessel Diseases (TREAT-SVDs) trial: Study protocol for a randomised crossover trial’, European Stroke Journal, 8, pp. 387–397. Available at: https://doi.org/10.1177/23969873221143570.
Kopczak, Anna et al. (2023) ‘The EffecTs of Amlodipine and other Blood PREssure Lowering Agents on Microvascular FuncTion in Small Vessel Diseases (TREAT-SVDs) trial: Study protocol for a randomised crossover trial’, European Stroke Journal, 8, pp. 387–397. Available at: https://doi.org/10.1177/23969873221143570.