Faculty of Science
Faculty of Science
UNIverse - Public Research Portal

Theoretische Physik (Antusch)

Particles and Cosmology

The Particles and Cosmology group, led by Prof. Stefan Antusch, is working on the development of a more fundamental elementary particle theory which resolves the challenges of the present "Standard Model", gives rise to a consistent evolution of the universe and which can be tested by ongoing and future experiments. Towards this goal, we are currently focusing on particle theories of the early universe, unified theories of forces and the origin of particle masses and mixings, as well as on ways to probe new physics with neutrinos.


Neutrino Physics

One of the great challenges of the present Standard Model of elementary particle physics is the origin of neutrino masses. Our research group is systematically investigating how the mechanism of neutrino mass generation can be probed best at future experiments, in particular at possible future e- e+, pp and e-p colliders such as the ILC, FCC-ee, CLIC, CEPC, HL-LHC, FCC-hh/SppC, LHeC and the FCC-eh. Furthermore, we are exploring the predictions for the light neutrino masses and leptonic mixing angles and CP phases from Grand Unified Theories.


Grand Unified Theories

Towards the challenge of identifying a more fundamental theory behind the current Standard Model of elementary particle physics, one goal of our group is the development of predictive Grand Unified Theory (GUT) models, as well as the development of tools for their precision analysis. In this context, we are focusing on GUT predictions for proton decay rates, for the masses of the supersymmetric partner particles in supersymmetric GUTs, and for the light neutrino masses and the leptonic mixing angles and CP phases. 


Early Universe Cosmology

When constructing theoretical models for the early universe, one of the challenges is linking the phase of cosmic inflation to the later phase of the universe where, e.g., the matter-antimatter asymmetry and the dark matter are produced. In addition to developing new models for the early universe in the framework of GUTs, we contribute to clarifying this link by calculating the intermediate "reheating phase", including the production of gravitational waves and non-perturbative phenomena like "oscillons", after particle physics motivated classes of inflation models.

Follow this link for more information